
Citation: Lee, S.-J.; Tseng, C.-H.;

Yang, H.-Y.; Jin, X.; Jiang, Q.; Pu, B.;

Hu, W.-H.; Liu, D.-R.; Huang, Y.;

Zhao, N. Random RotBoost: An

Ensemble Classification Method

Based on Rotation Forest and

AdaBoost in Random Subsets and Its

Application to Clinical Decision

Support. Entropy 2022, 24, 617.

https://doi.org/10.3390/e24050617

Academic Editor: Éloi Bossé

Received: 8 March 2022

Accepted: 19 April 2022

Published: 28 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Random RotBoost: An Ensemble Classification Method Based
on Rotation Forest and AdaBoost in Random Subsets and Its
Application to Clinical Decision Support
Shin-Jye Lee 1, Ching-Hsun Tseng 2, Hui-Yu Yang 1, Xin Jin 3 , Qian Jiang 3, Bin Pu 4, Wei-Huan Hu 5,
Duen-Ren Liu 6, Yang Huang 6 and Na Zhao 3,*

1 Institute of Management of Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
camhero@gmail.com (S.-J.L.); eydie1995@gmail.com (H.-Y.Y.)

2 Department of Computer Science, The University of Manchester, Manchester M13 9PL, UK;
hank131415go61@gmail.com

3 National Pilot School of Software, Yunnan University, Kunming 650504, China; xinjin@ynu.edu.cn (X.J.);
jiangqian@ynu.edu.cn (Q.J.)

4 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China;
pubin@hnu.edu.cn

5 College of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
indi6748@gmail.com

6 Institute of Information Management, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
dliu@mail.nctu.edu.tw (D.-R.L.); bokxko1023@gmail.com (Y.H.)

* Correspondence: zhaonayx@126.com

Abstract: In the era of bathing in big data, it is common to see enormous amounts of data generated
daily. As for the medical industry, not only could we collect a large amount of data, but also
see each data set with a great number of features. When the number of features is ramping up,
a common dilemma is adding computational cost during inferring. To address this concern, the
data rotational method by PCA in tree-based methods shows a path. This work tries to enhance
this path by proposing an ensemble classification method with an AdaBoost mechanism in random,
automatically generating rotation subsets termed Random RotBoost. The random rotation process
has replaced the manual pre-defined number of subset features (free pre-defined process). Therefore,
with the ensemble of the multiple AdaBoost-based classifier, overfitting problems can be avoided,
thus reinforcing the robustness. In our experiments with real-world medical data sets, Random
RotBoost reaches better classification performance when compared with existing methods. Thus,
with the help from our proposed method, the quality of clinical decisions can potentially be enhanced
and supported in medical tasks.

Keywords: classification; Rotation Forest; AdaBoost; clinical decision support

1. Introduction

According to Mitchell, T., “Machine learning is the study of computer algorithms
that improves automatically through experience.” [1]. That is to say, the collected data are
classified or predicted by the machine learning algorithm. As the new data are obtained,
the trained model can be applied for the purpose of prediction or classification, and then
applied on a range of real-world fields. One of the popular fields is the medical industry,
which generates enormous amounts of data with multiple features every day. When
applying a machine learning algorithm on these types of data sets, increased data numbers
and the expanding dimensions of features can create an observable increase in noise and
time loss. This is especially true when ensemble decision trees are applied in the medical
field. More trees [2–4] only increase the dilemma and cloud the prediction performance.
The dilemma keeps impeding professional staff from making the right decision fast.
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In order to support medical decision making and keep high time cost to a minimum,
one of the key aspects of this work is the Rotation Forest method, which belongs to the
forest-type algorithm of the decision tree family. It has been developed in many applica-
tion scenarios with excellent performances, such as hyperspectral image classification [5],
identification of cell pathology [6], etc. Meanwhile, as attention on the robustness from
using trees increases, one of the advantages of decision trees is that they are explainable by
viewing classifying value in each tree. Another advantage is that they are able of handling
various types of data. By building a Rotation Forest (RotForest) [7] based on decision
trees, it not only has the aforementioned advantages, but it could also decrease expensive
time cost by using PCA to reduce features. In the rotation, the features are divided into
K non-overlapping subsets of equal size, and then the integrating PCA [8] rotates subsets
to new subsets with pre-defined fewer features. Latterly, rotation matrix and voting scene
with bagging method have involved prediction. Although there have been many works
on decision trees and Rotation Forest, such as isomerous multiple classifier [9], the short-
comings still include complicated calculations and high computation cost. Particularly,
RotForest requires pre-knowledge to manually pre-define the K. Therefore, this work aims
to develop a RotForest-based ensemble learning algorithm without pre-defining the K and
rotated features. Namely, a random K is implemented in the proposed method and ran-
domly rotated based on the random segment K data sets. Moreover, because most of the
existing methods do not connect each rotated classifier, which indicates that each classifier
is independent, this work builds the connection among classifiers using AdaBoost [10].
Hence, we called the proposed method Random Rotation Boost (Random RotBoost), which
inherits advantages from ensemble decision trees and RotForest with stronger robustness
from the proposed random process and connection. In our simulations, Random RotBoost
outshines other ensemble learning methods in terms of accuracy, recall, precision, F1-score,
and speed.

The process of this research work is organized as follows. Section 1 elaborates on the
research background, purpose, and motivation. Section 2 discusses the relevant literature
and the background knowledge, which laid the foundation of the proposed model. Next,
the proposed method and comparisons with others are presented in Sections 3 and 4,
respectively. Section 5 draws conclusions and presents future works, along with the extra
materials toward this work in Appendix A.

2. Related Works

In this section, the literature reviews of ensemble learning, PCA transformation, and
the Rotation Forest are discussed. The narrative in this section helps to understand the
background knowledge for the proposed model.

2.1. Decision Trees

With the gradual expansion of machine learning, a variety of machine learning al-
gorithms have been developed with niche functions, such as decision tree. The decision
tree is a branch with long history and diverse kinds of machine learning algorithms. Its
learning strategy is based on the reasoning principle of loss function minimization, which
is conducted via a top-down recursive mechanism to calculate the information contribution
of each feature type. There are various decision tree algorithms, such as classification and
regression trees (CART) [2], ID3 [3], and C4.5 [4]. By using this information to split the
category of data, we have witnessed not only applications on classification [11], but also on
support decision with hypotheses [12–14].These tree algorithms have built the foundation
and the application examples for the following ensemble learnings and inspired this work.

2.2. Ensemble Learning

Ensemble learning [15] is a supervised learning algorithm proposed by Opitz, D. and
Maclin, R., which applies multiple learning models to enhance the prediction performance.
Its comprehensive performance is usually stronger than that of any single model, so it
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usually has better performance than a separate learning method. Among the ensemble
learnings, the Forest is one of the most widely known and combines weak learners (tree)
to form a more accurate and stronger learner. According to the sampling method, strong
learners can further be divided into two main categories: bagging [16] and boosting [17].
The core idea of bagging is randomly sampling and then voting on the training sample
set. A typical representation of this is Random Forest [18]. In addition, the mechanism of
boosting aims to adjust weight in the sampling, which stands for GBDT [19], XGBoost [20],
etc. These algorithms have won numerous awards in the Kaggle contest in recent years
and have excellent performance in many application fields [21]. However, evaluating the
performance of ensemble learning models usually requires more computation cost than a
single learning model.

2.3. Adaptive Boosting (AdaBoost)

The AdaBoost algorithm is also a boosting ensemble learning method [22]. It is
a popular method for improving quality, and it constructs strong classifiers through linear
combination of weak classifiers. The boosting decision tree algorithm is a boosting method
using the classification and regression trees (CART) as the base classifier. It can be stated
that the decision tree algorithm in this situation is a special case of AdaBoost. As the linear
combination of decision trees can effectively fit the training data, the boosting decision tree
is also a well-performing learning algorithm [10]. During the training process, each weak
classifier is trained in turn, and their weights are obtained, and the previously misclassified
samples are dynamically adjusted. Samples that are misclassified by the previous weak
classifiers will increase the weight, and the opposite will reduce the weight. The purpose
of updating the weight is to improve the most useful samples in each successive iteration.
Finally, the prediction result of the final classifier is the weighted sum of the prediction
results generated by the weak classifiers. However, what needs to be overcome is that
it is sensitive to noise data, which has been discussed as a common issue for decision
trees [21,23]. Toward this sensitivity to noise, rotation operation by PCA could be the cure.

2.4. Principal Components Analysis (PCA)

PCA was proposed by Pearson, K. [8] for analyzing data and establishing mathematical
models, also known as Karhunen–Loeve Transform. It is applied in machine learning as
a technique for dimensionality reduction, compression, and simplification of data sets.
Additionally, it can be applied for the exploration and visualization of high-dimensional
data. The main steps aim to normalize the data and then perform singular value (SVD) [24]
feature decomposition on the covariance matrix to obtain the eigenvector, eigenvalue of
the data, and the feature values in descending order. During the process, K eigenvalues
and feature vectors are selected and projected into a low-dimensional subspace to achieve
dimensionality reduction for new features. The new low-dimensional data set preserves
the variables of the original data as much as possible. The dimensions changing operation
of PCA is also applied to retain the most important and valuable features in the data set,
so the overall performance will not degrade. Moreover, a better result could be possible
because the projected data set is simplified by reducing the concern of overfitting. It is
quite practical at analyzing complex data. However, the interpretability is highly impacted
by pre-defined K, so the needed prior-knowledge could dim the merit of PCA during
the process.

2.5. Rotation Ensemble Learning

As per the ensemble learning discussion in Section 2.1, Forest-type can be divided
into bagging and boosting. In the light of Rotation, we can see a similar picture as Forest:
Rotation Forest (RotForest) for bagging, Rotation Boosting (RotBoost) for boosting.

Rotation Forest [7] is an ensemble learning method based on feature extraction by PCA.
The rotation operation aims to ensure the performance of the classifier while generating
different training subsets to enhance the diversity. Thus, with the same process of voting
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in prediction as Forest, it has better prediction performance. Apart from tabular data
classification, RotForest is also active in classifying images [25,26]. Compared with the
support vector machine-recursive feature elimination (SVM-RFE), RotForest shows a supe-
rior performance for all subsets. In addition, the integration of RotForest and AdaBoost,
which is using AdaBoosting as the final voting part, is applied for hyperspectral image
classification [5]. The integration follows RotBoost [27], whose base classifiers are decision
trees with AdaBoost to improve the performance by adjusting the error. Most importantly,
it operates in a parallel way, so the reduction of error toward each base classifier is applied
after calculating the loss as a whole. The operation shares a similar aspect of this work. We
elaborate on this in Section 3.

3. Random Rotation Boosting

Based on PCA, AdaBoost, and ensemble learnings, the detail of the proposed work
Random RotBoost is as follows. Before the detailed explanation, a series of primaries toward
our proposed method is revealed in advance, including RotForest, AdaBoost, and RotBoost.

3.1. Prelimanries and Notations

Throughout this work, we set a binary classification training data set as L, where
L = {(x1 , y1), (x2 , y2), · · · , (xN , yN)}, xi ∈ X ⊆ RN, yi = {−1,+1}, number of data
as N, number of features as F, number of subsets as K, initial weight distribution as
D, where Di = (w1n, · · ·w1N), iteration as i, sample as S, classifiers as t.

3.1.1. RotForest

In RotForest, for the initial S, F is randomly divided into K subsets (can be defined
according to the requirement), and these subsets may be intersecting or disjointed (disjoint
scenario is applied in this work). After obtaining K, each feature subset has M features,
M = F/K. If the feature number cannot be divisible, the remaining features are added to the
last set of features. The division of feature subsets determines the new samples generated,
which affects the differences among the ensemble classifiers. Then, K samples are resampled
to obtain a bootstrap sample, and PCA is applied to the sample subset of classes. PCA stores
the principal component coefficients a(1)v,j , a(2)v,j , · · · , a(M)

v,j to preserve the important parts of
the data and variability information. After performing PCA transformation processing on
all K sample subsets, the K-axis rotation of the data set occurs, and all the coefficients are
combined to generate a sparse rotation matrix Ri that can be presented as follows:

Ri =


a(1)v,j , a(2)v,j , · · · , a(M1)

v,j · · · [0]
...

. . .
...

[0] · · · a(1)v,j , a(2)v,j , · · · , a(MK)
v,j

 (1)

where Ri is rearranged according to the order of the original features to get Ra
i , so the new

training set of the classifier is XRa
i . By getting the new training set, the whole process of

RotForest [7] is below.
Input: L, loss: l.

For t = 1, 2, · · · , T:

1. Split the feature set F into K subsets; each subset has M = F/K features;
2. Draw a bootstrap sample of every subset and apply PCA to get the principal compo-

nent coefficients;
3. Repeat the step 1 and 2 K times and put the K principal component coefficients into

the rotation matrix;
4. Rearrange the rotation matrix according to the order of the original feature set, and

then the training set of the classifier Gt(x) is XRa
t ;

5. Get the classification result of Gt(x).
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Output:
The final classifier is as follows:

G(x) =
1
M

T

∑
t=1

Gt(x) (2)

The above process can also be shown as Figure 1.
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3.1.2. AdaBoost

In our proposed method, one of the important parts is to connect each rotation result
via AdaBoost [10]. The following process shows the typical detailed steps of AdaBoost.
Input: L, loss: l, initial weight D

For t = 1, 2, · · · , T:

1. Calculate the classifier error of Gt(x) from l on training set:

et = P((Gt(xi) 6= yi)) =
N

∑
i=1

wtil(Gt(xi) 6= yi) (3)

2. Calculate the classification of Gt(x):

αt =
1
2

log
1− et

et
(4)

3. Update the weight distribution:

Dt+1 =
(

wt+1,n, · · · , wt+1,N)

)
(5)

4. Build a linear combination:

f (x) =
M

∑
t=1

αtGt(x) (6)

where wt+1, n = wtn
zt

exp(−αtynGt(x)) and Zt is a normalization factor, so that Dt+1 is a
probability distribution.
Output:

The final classifier is as follows:

G(x) = sign( f (x)) = sign

(
T

∑
t=1

αtGt(x)

)
(7)
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3.1.3. RotBoost

In Section 2, RotBoost [27] shares a similar aspect of this by simply combining RotBoost
with AdaBoost. In order to train multiple base classifiers parallelly, AdaBoost minimizes the
residual from the aggregation of all classifier results. Based on the elaborations of RotForest
and AdaBoost in the last two sub-sections, the process of RotBoost can be represented in
the following description along with Figure 2:

1. Apply the same steps of 1 to 4 from RotForest to obtain the training data;
2. Apply the decision tree as the base classifier;
3. Update the weights of each classifier based on the aggregation result of all classifiers,

which is following the steps of 1 to 3 by calculating the residual from the output of
G(x) in (7).
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3.2. Random RotBoost

In order to take the advantages from RotForest and AdaBoost and further improve
them, a pre-defined free random Rotation with adaptive boosting connection Forest is
Proposed entitled Random RotBoost. The training process is different from the process
detailed above with AdaBoost connecting each tree between each rotation, and each rota-
tion part conducting randomly featured projections on random segment subsets before
processing PCA conversion. That is, instead of predefining K as a number of rotation
sample subsets, a random number is applied for randomly selecting feature subsets at
each round, and this design increases the diversity of features. After processing the PCA
conversion, the useful information of features can be retained to the greatest extent, and the
redundant information, as well as less impactful features, can also be effectively removed.
The following process with Figure 3 explains the whole process of Random RotBoost.
Input: L, loss: l, initial weight D

For f in F:

1. Randomly select K:

(a) Split the feature set F into K subsets; each subset has M = F/K features;
(b) Process PCA to get a rotation matrix;
(c) Apply decision tree to perform the classification and calculate the weight of

each time.

1. AdaBoost connect:

(a) Calculate the classifier error of g f

(
XRa

f

)
from l on the training set:

g f = P
((

g f (xi) 6= yi

))
=

N

∑
i=1

w f il
(

g f (xi) 6= yi

)
(8)
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(b) Calculate the classification of g f (x):

α f =
1
2

log
1− e f

e f
(9)

(c) Update the weight distribution:

D f+1 =
(

w f+1,n, · · · , w f+1,N)

)
(10)

(d) Build the updated combination:

g f (x) = sign

(
f

∑
i=1

αiGi(x)

)
(11)

Output:
The final classifier is as follows:

G(x) = sign( f (x)) = sign

(
F

∑
f=1

α f G f (x)

)
(12)
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4. Experiments and Results
4.1. Data Sets and Evaluation Metric

In our simulations, nine data sets are selected from UCI ML Repository [28] for
evaluating the reliability of the proposed method and the diversity of simulations. These
data sets involve different fields, including medicine, machinery, etc. Especially in the
medical field, there are 6 medical data sets, including Brainwave, Parkinson, Breast-Cancer,
Wisconsin-Breast, Heart-Stalog, and real-world electrocardiogram (ECG) data. The data
size and number of features of all data sets are summarized in Table 1.
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Table 1. Experimental data description.

Data Set Instances Attributes

Adult 48,842 14

Brainwave 12,811 15

Truck 60,000 171

Parkinson 197 23

Breast-cancer 569 32

Xdt20w(ECG) 202,594 14

German-credit 1000 20

Ionosphere 351 34

Wisconsin-breast 699 10

Heart-Stalog 270 13

The confusion matrix is applied to evaluate the classification performance of the
proposed method. In our experiment, evaluation, accuracy, precision, recall, and F-measure
(F1-score) [28] are applied. Accordingly, the following results and discussion are divided
toward each index to discuss. Finally, a time cost observation toward each candidate is also
revealed after the metrics evaluation.

4.2. Results and Discussion

The performance of Random RotBoost is compared with four ensemble methods,
including the RotForest, RotBoost, Ensemble 1, and Ensemble 2. The detailed information
about Ensemble 1 and Ensemble 2 can be seen in the Appendix A. Both ensembles follow
the structure of RotForest, but each ensemble replaced the base classifier from the decision
tree with a set of different classifiers. For example, Ensemble 1: decision tree, boosting tree,
and Random Forest; Ensemble 2: Logistic Regression, boosting tree, and KNN. For each
model with every data set, 80% of randomly sampled data are assigned as the training set,
and 20% are assigned for testing accuracy, precision, recall and F1-score.

4.2.1. Accuracy

Accuracy is one of the most intuitive ways of observing performance. In Figure 4,
except for the performance in Parkinson, Random RotBoost outshines others in most of
the medical data sets. In light of many difficult tasks in Truck, which consists of over
100 features, Random RotBoost dominates over competitors. On the other hand, although
Breast-Cancer and Xdt20w(ECG) have non-obvious differences between features, Random
RotBoost still maintains a better result.
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4.2.2. Precision

A similar picture in accuracy is witnessed in this precision comparison in Figure 5.
By using precision, it reflects the ability of the model to distinguish between negative
samples. Based on this expectation, Random RotBoost performed better than others in
the Breast-Cancer data set, which could indicate our method is less likely to misdiagnose
cancer-free patients. Moreover, the gap between Random RotBoost shrinks in terms of
Parkinson, which further demonstrates Random RotBoost’s ability.
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When evaluating models with Recall in Figure 6, the assessment of models’ complete-
ness and ability to classify positive results is considered In the medical industry, this type
of capability is vital to recognize disease. We can see that Random RotBoost still has a high
performance across the data sets. Although the results of Truck have degraded slightly, the
gap between Parkinson and others has also degraded.
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4.2.4. F1-Score

After evaluating accuracy, precision, and recall, an all-around evaluating aspect is
F1-Score, which is an index balancing the ability of evaluation of positive and negative
capability. As our proposed method, Random RotBoost, keeps maintaining the high-
level performance compared with others, we see a similar picture in the former three
metrics. However, the result of RotBoost shows a much different picture in the former
evaluations, which are quite different from metric to metric. Further, another surprising
aspect is the unstable results of Ensemble 2, which has fluctuating results in different data
sets. This could indicate that a combination of very diverse base classifiers will dim each
other. Overall, from these evaluations, Random RotBoost maintains the merit of providing
high-dimensional data to reflect on every metric performance, please see Figure 7.
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4.2.5. Time Cost

Apart from classifying performance, evaluating total prediction time is also an im-
portant aspect. In Section 3, the detailed mechanism of Random RotBoost was revealed.
Adding the random rotation process and AdaBoost connection operations could increase
time spent. Although a typical method is measuring the time complexity [23], as the
proposed algorithm involves a random process, we conducted a comparison in average
time spending in prediction. Therefore, a total time cost result in prediction is recorded in
Table 2, where bold text means the best performance among the comparison. By directly
comparing average costing time, Random RotBoost did not sacrifice too much time cost
performance, which ranks second among all candidates. Most importantly, it costs the least
time in Wisconsin-breast. When focusing on medical data sets, although the computation
time of proposed method is not necessarily the shortest, it is not far from those of other
ensemble methods. This demonstrates the superior performance of Random RotBoost
toward medical data sets.

Table 2. Total time cost comparison (time/s).

Data Set
Method RotForest RotBoost Ensemble 1 Ensemble 2 Random RotBoost

Adult 51.601 85.179 2048.000 2525.200 174.665

Brainwave 51.601 20.662 144.048 83.250 127.250

Truck 6775.965 2394.330 10,078.85 1592.149 2103.997

Parkinson 324.470 78.705 1099.380 795.991 478.519

Breast-cancer 100.952 103.477 107.026 102.880 113.555

Xdt20w (ECG) 220.200 252.553 454.574 618.849 220.288

German-credit 100.780 100.535 105.992 100.659 102.749

Ionosphere 101.797 100.820 112.111 101.215 101.049

Wisconsin-breast 101.149 100.820 104.431 100.839 100.741

Heart-Stalog 100.489 100.494 105.336 100.679 100.818

Adult 51.601 85.179 2048.000 2525.200 174.665

Average 725.510 311.159 1491.613 786.083 345.300

5. Conclusions and Future Works
5.1. Conclusions

This work effectively integrates the advantages of Rotation Forest and AdaBoost to
propose a new tree-based algorithm, Random RotBoost. Regarding the concern of noise
from sparse features in medical data sets, a less-solid classification method is not only un-
able to reach a good classification performance but can also easily cause the problem of data
distortion in processing medical data. From the practical evidence, this work shows that
the proposed method can reach a reliable classification performance in simulation experi-
ments when compared with other novel ensemble methods. Thus, the proposed method
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can potentially enhance the quality of clinical decision support based on its prediction
performance of processing medical data sets.

5.2. Future Works

In the future, we expect that the proposed method can be used in practical applications.
When selecting experimental data sets, there are special types of medical fields, such as
Brainwave, Parkinson, and Xdt20w (ECG). It can be said that the proposed method can
help medical personnel to make good diagnostic predictions and support informed clinical
decisions. Although Random RotBoost has improved the classification accuracy compared
with traditional classification methods, there is still much room for improvement in the
processing of small sample data sets. Determining how to deal with this type of data is still
a major challenge in the field of machine learning.
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Appendix A

A.1. Other Ensembles

A.1.1. Isomerous Ensemble 1

A high-performance ensemble method usually depends on the quality of base classifier
embedded [29]. To obtain better generalization capability, it is essential that the classifiers
are composed of highly accurate and as diverse models as possible. The integration of
only a single classifier cannot meet the requirements of higher ensemble performance [30].
Hence, three base classifiers are applied to the Isomerous Ensemble Classifier 1 algorithm,
hereinafter referred to as Ensemble 1. In Ensemble 1, the base classifier is a combination of
three different algorithms consisting of decision tree, boosting decision tree, and Random
Forest. The goal is to increase the diversity by applying different kinds of decision tree
algorithm and voting mechanism to form a strong classifier. The flowchart is shown in the
following figure.

https://ergodicity.net/2013/07/
https://ergodicity.net/2013/07/
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A.1.2. Isomerous Ensemble 2

The Isomerous Ensemble Classifier 2 in this paper, hereinafter referred to as Ensemble
2, is the ensemble concept of the isomerous multiple classifier [9]. This work also makes
changes on the base classifiers, with the purpose to increase the difference by combining
different types of classifiers, which make up the corresponding deficiency of each classifier.
Basically, the difference between Ensemble 1 and Ensemble 2 is that Ensemble 2 is based on
the integration of three base classifiers, including logistic regression [31], boosting tree, and
KNN [32]. Further, the flowchart is shown in the following figure:
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A.2. Experimental Comparison toward Each Data Set

In Section 4, a range of combination comparisons of accuracy, precision, recall, F1-Score
have been well discussed. The following Figures A3–A12 are the aforementioned four
metric evaluations of each data set. By showing these comparisons, another easily compared
aspect can be seen. The following results correspond to the same results in Figures A4–A7.
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