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The rigidity and flexibility of small molecules are complementary in 3-dimensional ligand-
protein interaction. Therefore, the chemical library with conformational diversity would be a
valuable resource for investigating the influence of skeletal flexibility on the biological
system. In this regard, we designed and synthesized ten conformationally diverse
pyrimidine-embedded medium/macro- and bridged cyclic scaffolds covering 7- to 14-
member rings via an efficient skeletal transformation strategy. Their high conformational
and shape diversity was confirmed by chemoinformatic analysis.
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INTRODUCTION

The construction of small-molecule libraries with high skeletal diversity and biological relevancy
is an invaluable resource to discover new therapeutics and chemical modulators (Dandapani and
Marcaurelle, 2010; Galloway et al., 2010; O’ Connor et al., 2011). In this respect, we have
developed a privileged substructure-based diversity-oriented synthesis (pDOS) strategy over the
last decade. The pDOS strategy focuses on creatively reconstructing heterocyclic moieties
around the biologically relevant privileged substructures through diversity-generating
reactions efficiently (Oh and Park, 2011; Kim et al., 2014). Continuing our endeavor to
develop novel pDOS pathways, we recently focused on pyrimidine as a valuable privileged
substructure since pyrimidine and its analogs have been extensively used as nucleotide analogs.
Although pyrimidine is a well-known molecular framework ensuring good bioactivity,
previously reported pyrimidine-containing compounds are mostly monocycles or flat
bicycles with limited structural diversity (Wakeling et al., 2002; Yaziji et al., 2011; Lawrence
et al., 2012). To overcome this structural limitation, we have developed several pDOS pathways
to construct unprecedented pyrimidine-embedded polyheterocycles (Kim et al., 2013; Kim et al.,
2016; Choi et al., 2019) and identified a list of small-molecule modulators controlling the cellular
contents of lipid droplets (Choi et al., 2015), inhibiting the protein-protein interaction (Kim
et al., 2016), and regulating tau proteostasis (Shin et al., 2021).

This report proposed a new pDOS strategy for pyrimidine-containing polyheterocycles with
conformational diversity. Either rigid or flexible conformation of small molecules can be critical
for specific modulation of 3-dimensional ligand-protein interactions. As the overall orientation
of crucial substituents can be pre-organized in the conformationally constrained molecular
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skeletons, they might exhibit specific interaction toward
biological targets with high affinity and selectivity. On the
other hand, flexible molecules of which different
conformations exist in equilibrium enable distinct binding
modes for different proteins, which rigid molecules cannot
achieve (Becker et al., 2000; Rubin and Qvit, 2016). In this
regard, the chemical library with diverse skeletal flexibility

would be a valuable resource for chemical biology and drug
discovery community to investigate the influences of skeletal
flexibility on the biological system.

Although bioactive medium/macro- and bridged cyclic
scaffolds are frequently found in many natural products
with conformational diversity (Figure 1A), they are scarce
in the reported chemical libraries due to the limited synthetic

FIGURE 1 | Examples of medium/macro- and bridged rings in bioactive natural products (A) and conformational analysis of their core skeletons (B).
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accessibility (Gradillas and Pérez-Castells, 2006; Shiina, 2007;
Hussain et al., 2014; Cheng-Sánchez et al., 2018; Mu et al.,
2020). To visualize the conformational diversity of core
scaffolds, we conducted a conformational analysis of
bioactive natural products shown in Figure 1A. Among the
searched conformers of these natural products containing 8- to
15- member rings, we selected the conformers of which
Boltzmann population is higher than 2.5% at room
temperature and displayed the distribution of the chosen
conformers on the bubble chart (Figure 1B, please see the
Supplementary Material for detailed search method and raw
data in a tabular form). The size of the circle represents the
population of the corresponding conformer. As a result, the
natural products containing medium-sized rings and
macrocycles are relatively flexible with various low-energy
conformations. On the other hand, the natural products
with bridged cycles are more constrained with a lower
number of possible conformers. Although these natural
products show apparent conformational diversity, it is
impossible to compare their biological activities in response
to their skeletal flexibility because these molecules are not
directly comparable with different structures.

To construct a set of small molecules that allows comparable
skeletal flexibility, we paid attention to medium/macro- and
bridged cyclic scaffolds sharing similar structural motifs.
Therefore, we proposed an efficient skeletal transformation
strategy encompassing medium/macro- and bridged rings
(Figure 2A). The rigid polyheterocyclic starting scaffolds are
composed of 6,5,6- and 6,5,7-membered tricyclic rings (1) that
can be easily accessed from the reaction of functionalized 4-
formyl pyrimidines with cyclic hydrazines. The cleavage of the
central N–N bond in azatricycles (1) would afford relatively
flexible 9- and 10-membered medium-sized rings (3). The
subsequent intramolecular cyclization would convert them to
conformationally restricted bridged cyclic skeletons (4). The
resulting bridged cycles can be converted to conformationally
labile 12- to 14-membered macrocycles (5) via selective C–C
bond cleavage. The most significant advantage of this skeletal
transformation strategy is that all respective products for each
scaffold can be used as the starting materials for the following
transformation. Therefore, we do not need to prepare the
intermediate separately.

Before exploring each scaffold, we conducted a
conformational analysis to investigate the skeletal flexibility
of each scaffold as we did for the representative natural
products in Figure 1B. As shown in Figure 2B, initial
azatricycles (1) and bridged cyclic skeletons (4) were
conformationally restricted in a single or a small number of
possible conformations (see the Supplementary Material for
the raw data in a tabular form). On the other hand, the
medium-sized rings (3) and macrocycles (5) showed relative
skeletal flexibility with multiple low-energy conformers
depending on the ring size. The conformational flexibility of
each skeleton was also visualized through the overlay of
selected conformers aligned by the pyrimidine moiety
(Figure 2C). From this chemoinformatic analysis, we
envisioned that this set of polyheterocycles sharing
pyrimidine moiety with conformational diversity could be a
valuable resource to investigate how skeletal flexibility
influences their biological functions.

RESULT AND DISCUSSION

Design of Synthetic Routes for Medium/
Macro- and Bridged Cyclic Skeletons
To access the pyrimidine-embedded medium/macro- and
bridged cyclic compounds with sufficient conformational
diversity, we first designed conformationally rigid starting
tricycles (1) that were easily accessible through coupling of
functionalized pyrimidines with cyclic hydrazines. In the
preparation of starting tricycles, we could secure both the
appendage diversity and skeletal diversity by introducing
the R1 group and varying the ring size of cyclic hydrazines,
respectively. The resulting 6,5,6- and 6,5,7-azatricycles (1) can
become key intermediates (2) by selective N-quaternization of
their tertiary amines (Figure 3, see the Supplementary
Material for detailed procedure). These key intermediates
(2) were then treated with base and hydride sources under

FIGURE 2 | Design strategy for pyrimidine-embedded medium/macro-
and bridged cyclic scaffolds. (A) Overview of skeletal transformation strategy.
(B) Conformational analysis of all designed scaffolds. (C) Overlay of the
selected conformers of representative scaffolds aligned by pyrimidine
substructure.
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FIGURE 3 | Overall synthetic route for pyrimidine-embedded medium/macro- and bridged cycles.

SCHEME 1 | Exploration for each scaffold. Reagents and conditions: (i) NaOEt, NaBH4, EtOH, 60°C; (ii) BnBr, ACN, r.t.; (iii) HF/pyridine/THF, r.t., then MsCl, TEA,
DCM, r.t., then NaH, dry DMF, r.t.; (iv) AuCl, TMSCN, DCE, 80 C. R = tert-butyldiphenylsilyl.

Frontiers in Chemistry | www.frontiersin.org April 2022 | Volume 10 | Article 8412504

Choi et al. Conformational Diversity in Pyrimidine Cycles

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


N–N bond cleavage conditions (Choi et al., 2019). Base-
promoted N–N bond cleavage and hydride-mediated
neutralization afforded flexible 9- and 10-membered
medium-sized rings (3), and we can secure additional
appendage diversity by introducing the R2 group.
Intramolecular cyclization of medium cycles (3) would
generate conformationally constrained bridged cyclic
scaffolds (4) with varying chain lengths. Finally, the
unconventional gold-catalyzed C–C bond cleavage reaction
between the carbon at the 5-position of the pyrimidine ring
and the benzylic carbon (Koo et al., 2017) would lead to the
formation of ring-expanded flexible macrocycles (5) with
appendage diversity point at the R3 position. Consequently,
this skeletal transformation strategy would procure a distinct
collection of pyrimidine-embedded medium/macro- and
bridged cyclic molecules with skeletal and conformational
diversity.

Exploration for Each Scaffold
With key intermediates 2a–2d varying in the ring size of cyclic
hydrazines and the chain length of alkylating partners in hand,
we explored the synthetic feasibility of each designed scaffold
(Scheme 1, see the Supplementary Material for detailed
procedures). First of all, the central N–N bond cleavage
reaction of N-quaternized key intermediates 2a–2d under
sodium ethoxide and sodium borohydride in elevated
temperature condition proceeded robustly to afford

conformationally labile medium cycles (3a–3d) containing
pyrimidine-embedded 9-membered diazonanes (3a and 3b)
or 10-membered diazecanes (3c and 3d) in a single step with
moderate to good yields. Furthermore, introducing a benzyl
group as an R2 substituent occurred selectively at the newly
generated aniline moiety to yield 3a9–3d9 with generally good
yields. We then pursued converting the silyl-protected hydroxyl
group to a leaving group and the subsequent intramolecular
cyclization reaction to afford conformationally rigid methano-
bridged cycles (4). Both the ring size of medium cycles and the
length of appending alkyl chains gave rise to the structural
diversity of bridged cyclic skeletons with unique ring-size
combinations (4a [6.4.1], 4b [6.5.1], 4c [7.4.1], and 4d
[7.5.1]). Finally, we applied an unconventional gold-catalyzed
C–C bond cleavage reaction to access relatively flexible
macrocycles (Koo et al., 2017). In this case, the methano-
bridge of the bridged scaffold was the appropriate bond
cleavage site by the gold-mediated activation of the
diaminopyrimidine ring. The iminium intermediate produced
by gold-catalyzed ring opening reaction was trapped by an
external cyanide nucleophile to append the R3 substituent,
thus readily generating 12- to 14-membered macrocyclic
scaffolds in a single step. As we installed the functional
handles at R1, R2, and R3 positions of each scaffold, we could
secure further appendage diversity through introducing various
moieties instead of p-methoxybenzyl (R1) and benzyl (R2)
groups or modifying the cyanide (R3) group to other
moieties. Collectively, we obtained ten distinct medium/
macro- and bridged cyclic scaffolds sharing pyrimidine
moiety with skeletal and conformational flexibility.

Chemoinformatic Analysis
To examine the overall shape diversity of newly synthesized
pyrimidine-embedded medium/macro- and bridged cyclic
molecules, we performed principal moment of inertia
(PMI) analysis. Among the searched conformers of all
synthesized molecules, we selected the conformers of
which the Boltzmann population is higher than 10% at
room temperature. The resulting selected conformers were
compared with a set of 45 known pyrimidine-containing
bioactive molecules and a set of 60 diverse natural
products (Kopp et al., 2012). As shown in Figure 4, the
selected conformers of newly synthesized heterocyclic
molecules obtained via skeletal transformation covered
broader areas with more spherical properties similar to
natural products, different from the known pyrimidine-
embedded bioactive molecules plotted on rod- and disk-
like regions. This high shape diversity of our pyrimidine-
embedded medium/macro- and bridged cyclic molecules
indicates their potential for distinct biological activities
compared to the known flat pyrimidine compounds.

CONCLUSION

In conclusion, we constructed a small collection of structurally
diverse pyrimidine-embedded medium/macro- and bridged

FIGURE 4 | Principal moment of inertia (PMI) plot of natural products,
bioactive pyrimidine compounds, and all new molecules synthesized in this
study. The 3D molecular shapes of the selected conformers of the newly
synthesized compounds (red circles, The dark red circles represent the
lowest energy conformers) were compared with reference sets of 45 known
bioactive pyrimidine compounds (blue squares) and 60 diverse natural
products (grey × shape).
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cyclic molecules with unique conformational flexibility. We
envisioned that building a set of pyrimidine-containing
polyheterocycles with skeletal diversity could be a valuable
resource to investigate how differences in skeletal flexibility
influence the function of the molecules. Using skeletal
transformation strategy, we accessed
conformationally flexible 9- to 14-member medium/
macrocycles as well as rigid tricycles and bridged cycles
sharing pyrimidine moiety. Conformational analysis showed
that all synthesized molecules in this study have broad
coverage of 3D molecular shapes in PMI, unlike the known
bioactive pyrimidine molecules. Therefore, we are confident
that this collection of pyrimidine-embedded polyheterocycles
would serve as a valuable resource in exploring unique
biological activities unattainable with previous pyrimidine
compounds.
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