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Stroke is a leading cause of death worldwide. Ischemic stroke is caused by blockage of blood vessels in the brain leading to tissue
death, while intracerebral hemorrhage (ICH) occurs when a blood vessel ruptures, exposing the brain to blood components. Both
are associated with glial toxicity and neuroinflammation. Microglia, as the resident immune cells of the central nervous system
(CNS), continually sample the environment for signs of injury and infection. Under homeostatic conditions, they have a ramified
morphology and phagocytose debris. After stroke, microglia become activated, obtain an amoeboid morphology, and release
inflammatory cytokines (the M1 phenotype). However, microglia can also be alternatively activated, performing crucial roles in
limiting inflammation and phagocytosing tissue debris (the M2 phenotype). In rodent models, microglial activation occurs very
early after stroke and ICH; however, their specific roles in injury and repair remain unclear. This review summarizes the literature
on microglial responses after ischemic stroke and ICH, highlighting the mediators of microglial activation and potential therapeutic

targets for each condition.

1. Introduction

Microglia are the resident immune cells of the central nervous
system (CNS). The majority of our understanding about
microglial responses to injury comes from rodent models.
In mice, microglia arise from hematopoietic progenitors
in the yolk sac at E8 in development [1]. Under normal
physiological conditions, microglia self-renew and locally
expand to maintain their numbers. However, blood-derived
cells have been shown to regenerate microglial populations
under scientific manipulations [2]. Microglia survey the CNS
and phagocytose debris under homeostatic conditions as
well as in injury and disease [3]. Microglia express Toll-like
receptors (TLR) and NOD-like receptors (NLR), allowing
them to detect bacterial pathogens and molecular signa-
tures of injury, leading to the transcription of proinflamma-
tory cytokine genes. Local [4] and systemic [5] infections,

neurodegenerative conditions [6], and sterile injury [7] have
been reported to activate microglia.

Once activated, microglia retract their ramifications and
obtain an amoeboid morphology, becoming indistinguish-
able from activated macrophages. Both cell types derive from
primitive myeloid cells, causing them to express many of the
same markers (CD11b, F4/80, Iba-1) 1, 8], Due to this, study-
ing microglial activity by immunohistochemistry has been
difficult, causing researchers to identify activated phagocytes
as microglia/macrophages. However, with the use of flow
cytometry, populations of microglia and macrophages can be
separated and studied individually due to their differences
in CD45 expression [9]. Like macrophages, microglia can
have either an M1, classically activated phenotype, or an M2,
alternatively activated phenotype (Figure1). M1 microglia
are considered to be proinflammatory and secrete TNF-a,
iNOS, and CCL2. They express CD80, CD86, and MHCII on
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FIGURE 1: Microglia polarization is characterized by distinct pheno-
types.

their cell surface, possessing the capability to present antigens
to T cells [10]. They express IL-23, giving implications that
microglia T-cell crosstalk may occur [11]. Microglia also pro-
duce IL-1/3 and IL-18 through activation of the inflammasome
[11]. M2 microglia are interpreted to be healing cells that
are involved with neuroprotection and repair after injury
with arginase activity and upregulation of neurotrophic
factors [10, 12]. Because of their polarity, microglia have the
potential to be both injurious and neuroprotective in CNS
disease and injury. Here, we will review the role of microglia
in neuroinflammation and acute injury after ischemic and
hemorrhagic stroke.

2. Cerebral Ischemia

Stroke is the 4th leading cause of death in the United States,
affecting 7 million people [13-15]. Ischemic stroke constitutes
87% of all strokes and is caused by the occlusion of a blood
vessel due to either embolism or thrombus. As a result, brain
tissue is deprived of blood glucose and oxygen [13]. This leads
to neuronal death, release of reactive oxygen species, activa-
tion of complement, and upregulation of adhesion molecules
on endothelial cells. Dying cells release danger signals into
the environment, including HMGBI and ATP, activating
microglia [16]. This cascade of events leads to glial toxicity
and infiltration of peripheral leukocytes [14, 16]. The treat-
ment for ischemic stroke is tissue plasminogen activator (tPA)
which degrades the clot in the blood vessel in order to restore
perfusion to the brain. However, tPA can only be admin-
istered to patients within a 3-to-4.5-hour window after the
onset of stroke, and the majority of stroke patients are left with
some infarction despite treatment [17, 18]. With reperfusion
of the brain or collateral circulation, peripheral leukocytes
can infiltrate the brain to the area of injury and secrete proin-
flammatory cytokines, thus leading to secondary injury [14].

Microglial activation and proinflammatory cytokine pro-
duction have been well characterized in rodent models of
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ischemic stroke. Early studies using flow cytometry show
an increase in microglial populations in the ipsilateral
hemisphere, whereas the contralateral hemisphere remains
at basal levels [9]. As resident immune cells in the CNS,
microglia are known to both phagocytose debris and secrete
proinflammatory cytokines under ischemic conditions, con-
tributing to tissue damage [19]. Under ischemic conditions,
microglia can become destructive and phagocytose tissues
as well. However, microglia have been reported to also
secrete anti-inflammatory cytokines such as IL-10 and TGF-
B [20-22], which act to quell inflammation. In studies where
microglia have been ablated, mice had larger infarctions and
a doubling of apoptotic neurons after ischemia, indicating
the importance of microglial activity after ischemic stroke
[23]. Thus, while microglia can be destructive in repair and
recovery, their presence is needed to alleviate injury. The
balance of these processes may depend on the location of the
microglia, the degree of ischemia, and the timing after injury.

2.1. Microglial Activation in the Ischemic Core. The location
of microglia in the ischemic brain changes their activation
and cell fate. In the ischemic core, where blood flow is
reduced to near zero, cell death is nearly universal by 24 hours
[24]. In a 90-minute transient ischemia model, degenerating
Ibal+ microglia are apparent 3.5-12 hours after reperfu-
sion. Over 24-48 hours, round Ibal+EDI+ cells appear
throughout the core [25]. Immediately after 60 minutes of
focal ischemia without reperfusion, microglia/macrophages
in the striatum (ischemic core) significantly increased the
number of their processes. Twenty-four hours later, the
microglia/macrophages in the ischemic core showed a reduc-
tion in numbers of processes, had significantly shorter pro-
cesses, and increased CD1lb expression indicating activa-
tion and the formation of an amoeboid morphology [24].
Twenty-four hours after permanent MCAO, few double
positive CD11b+CD68* (a marker for phagocytosis) cells
were found in the ischemic core; however, by day 7, CD68
expression increased. At 24 hours, M2 markers Yml and
CD206 were exclusively found in the ischemic core, sug-
gesting that the microglia/macrophages in the ischemic core
promote tissue repair [26]. These findings were corroborated
by another study examining the location of MI versus
M2 microglia/macrophages, which found M2 microglia/
macrophages infiltrating the ischemic core at 24 hours,
peaking at 5 days, and declining in the striatum by 14 days
[27]. In contrast, using the inflammatory marker CD16/32
(Fcy receptors), they found M1 cells increasing in number in
the striatum over time and outnumbering the M2 cells during
the second week. However, nonvital (measurement of vitality
undefined) cellular debris found in the ischemic core at 72
hours after photothrombosis in rats exhibited CD11b staining,
indicating that large numbers of microglia/macrophages in
the ischemic core are destined to die [28]. Likewise, at 7 days
after TiO, sphere-medicated ischemia, CD11b+ cells in the
ischemic core “showed signs of disintegration” [29]. These
studies show that the microglia in the infarct core are initially
injured as a result of ischemia. M2 microglia/macrophages
then enter the area during the first week before declining
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in numbers, while M1 microglia/macrophages increase in
numbers over the first 2 weeks.

2.2. Microglial Activation in the Peri-Infarct Zone. Microglia
in the peri-infarct zone have different patterns of microglial
activation than those found in the ischemic core. After 90
minutes of transient ischemia, activated Ibal+EDI- cells
increased in number from 3.5 to 7 days after reperfusion but
were decreased by day 14 [25]. In another study, eight and
twenty-four hours after transient MCAO in mice, microglia/
macrophages in the border zone had shorter processes with
fewer endpoints indicating activation. CDIlb and F4/80
expression were the greatest on those microglia/macrophages
closest to the infarct border, localizing their activation to
the site of injury [24, 30]. Yml and CD206+ cells were not
found in the peri-infarct zone at either 24 hours or 7 days
in one study [26], while another found CD206+ cells in the
cortex at the border zone of ischemia peaking at day 5 after
ischemia before being outnumbered by M1 cells [27]. In both
a photothrombosis model in rats and permanent MCAO in
mice, the majority of the microglia/macrophages expressing
CD68 were localized to the border zone and peri-infarct
region [26, 28]. Microglia in the peri-infarct zone proliferated
48 and 72 hours after middle cerebral artery occlusion
(MCAO); however, the amount of proliferation is reduced
after 60-minute compared to 30-minute ischemia [31]. This
work used CFSE and BrdU injection to distinguish between
microglia and blood-derived macrophages histologically and
determined that microglial proliferation, not macrophage
recruitment, led to the increase in peri-infarct myeloid cells.
By 72 hours after stroke, microglia/macrophages at the infarct
border and peri-infarct region coexpress CD68 and MHCI],
a marker of antigen presentation. By 7 days, the infarct
was demarcated by a GFAP+ glial scar and double posi-
tive CD68", MHCII" phagocytic cells [32]. Together these
studies indicate that the peri-infarct region is dominated by
proinflammatory, proliferating, and activated microglia that
increase in number over the first week after ischemia. These
studies reveal that the dynamics of microglial phenotypes
change over time and that the location of the microglia (core
versus penumbra) is critical in determining that phenotype.
However, these studies have been limited by an inability to
differentiate between infiltrating macrophages and microglia,
which both likely contributed to the measured phenotypes.
Bone marrow chimeras have been helpful in distinguish-
ing the activated microglia from macrophages after ischemia.
In this experimental paradigm, C57Bl/6 mice were irradi-
ated and the hematopoietic system reconstituted with bone
marrow from mouse expressing GFP in leukocytes. Resident
microglia, due to their radioresistant nature, would remain
of host origin (GFP™). Twenty-four hours after MCAO,
activated, GFP™ microglia were seen in the infarct region
[33]. At 48 hours after stroke, GFP-Iba-1" microglia ingested
neuronal debris [34]. By 4 days after infarct, numerous GFP",
F4/80" phagocytic cells were seen in the infarct area. These
studies indicate that the activated, phagocytic F4/80" cells
identified in the early time points after ischemia are likely
microglia [33, 34]. While these studies help elucidate the role

of microglia from monocytes after ischemia, it is important
to note that radiation may alter the blood brain barrier. In
a West Nile Virus infection model, bone marrow chimeras
reconstituted with bone marrow from a GFP* mouse showed
resting, ramified microglial-like cells which were GFP", sug-
gesting that blood-derived monocytes traffic into the brain
after radiation and obtain a microglial morphology [35]. In
order to properly study the role of microglia after stroke
using bone marrow chimeras, heads need to be protected
from radiation with a lead shield. Alternatively, a parabiosis
model may be employed, although this precludes the ability
to perform functional outcome testing.

2.3. Microglial Cytokine Production after Ischemic Stroke.
Microglial cytokine production can be seen as early as 1
hour after stroke. Microglia have been reported to be the
primary source of IL-1§ in a biphasic time course peaking at
1 hour and 24 hours. IL-1f3 deficient mice have significantly
smaller infarct volume 24 hours after permanent MCAO [36].
Microglia have also been reported to be the main source of
IL-6, TGF-p, and IL-10 after ischemia [37]. RhIL-6 treatment
30 minutes prior to and 15 minutes after permanent MCAO
notably reduced infarct size [38]. Within 4 hours after stroke,
TNF-« production can be seen within and surrounding the
infarct. Microglial/macrophage production of TNF-« can be
measured 6, 12, and 24 hours after ischemic stroke [19].
However, the role of TNF-« production in ischemic stroke
still remains controversial. While some studies found that
TNF-« antagonism resulted in improved outcomes [39, 40],
other studies found that TNF-« is important in hippocampal
and striatal neurogenesis [40-42].

2.4. Mediators of Microglial Activation. The identification
of specific mediators of microglial activation may pro-
vide a therapeutic target to alleviate microglial-mediated
injury (Table 1). Recent work has identified galectin-3 as an
important survival factor in microglial survival, prolifera-
tion, and migration [23, 43] after ischemic injury. In vivo,
microglia/macrophages upregulate galectin-3 72 hours after
MCAO. In culture, WT microglia upregulate Iba-1, TLR2,
CD68, and galectin-3. However, galectin-3~/~ microglia were
only capable of upregulating Iba-1, indicating that galectin-
3 plays a role in the upregulation of TLR2 and CD68 [23].
The absence of galectin-3 led to larger areas of infarction
and enhanced neuronal apoptosis after MCAO [23]. The
role of Notch signaling has also been studied in microglial
activation. Notch signaling occurs during inflammation and
had been correlated to worse outcome after stroke. Transgenic
mice with an antisense Notch have less CDI1 staining; in
the presence of LPS, microglia had less CDI11b expression.
In culture exposed to oxygen glucose deprivation (OGD),
activated WT microglia upregulate Notch expression. Anti-
sense Notch mice, when injected with LPS or subjected
to MCAO, produced less TNF-o and IL-18 and also had
attenuated NF«xB p65 activity, indicating that Notch signaling
may play a role in microglia toxicity after ischemia [44].
These studies indicate that galectin-3 provides a mechanism
for reducing cell death and infarction after cerebral ischemia,
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TABLE 1: Mediators of microglial activation after cerebral ischemia and intracerebral hemorrhage.
Mediator Measurements used Results Citation
Ischemic stroke
Galectin 3 Galectin 37~ mice subjected to 60-minute MCAO Galectin 3 reduces cell death and (23]
followed by reperfusion for either 24 or 72 hours infarct volume
Notch Primary cell cultures and in vivo models of microglial Notch leads to increased (44]
activation (LPS) and MCAO in antisense Notch mice neuroinflammation
—/= . . .
Focal photothrombotic model of ischemic stroke in SPARC ™ microglia have 1n?reased
SPARC AR processes length and branching and (45]
SPARC™"™ mice . . -
increased microgliosis
shRNA and HMGBI inhibitor used to knock down
HMGBI1 HMGBI in ischemic stroke model and primary HMGBI promotes neuroinflammation [46-48]
microglial cultures
Behavioral outcomes, edema, peripheral cell CX3CLI-CX3CRI signaling leads to
CX3CL1 infiltration, cytokine production in CX3CRI1 knockout worse functional outcome and higher [49-54]
mice in 30- and 60-minute MCAO neuroinflammation
Intracerebral hemorrhage
. Thrombin injection in rats and in culture caused Activates microglia and promotes
Thrombin . . . . . . [55-60]
neuronal apoptosis and increased cytokine production cytokine production
Heme Blood or hemin injection Activates microglia and leads to [61-63]

neuroinflammation

SPARC: secreted protein acidic rich in cysteine; HMGBI: high mobility group box 1.

while Notch signaling leads to enhanced inflammation and
increased microglial neurotoxicity.

Secreted protein acidic rich in cysteine (SPARC) is a
matricellular protein that regulates growth factors and the
assembly of the extracellular matrix. SPARC has been shown
to play a role in microgliosis after ischemia. Under homeo-
static conditions, mature microglia express SPARC. In a focal
photothrombotic cortical ischemic stroke model, microglia
downregulate SPARC expression after injury. SPARC-null
mice show increased processes length and branching at
steady state in white matter. Microglial expansion is sig-
nificantly increased in grey matter and reduced in white
matter in the SPARC-null mice, indicating that SPARC plays
a differential role in microglial expansion depending on the
location in brain. By immunohistochemistry, SPARC-null
mice had an increase in Gal-3 expression, indicating higher
levels of microgliosis, which correlated to better functional
outcome after cortical ischemia [45]. The evidence points to a
role for SPARC in microglial toxicity and poor outcome after
cerebral ischemia.

High motility group protein Bl (HMGBI) may act as a
cytokine to activate microglia after ischemia [46]. HMGBI
increases in the blood and cerebral spinal fluid in rats after
ischemia [46] and induces postischemia neurodegeneration
[47]. When HMGBI was reduced using a shRNA transgene
injected into the striatum, the number of microglia in the
infarct was reduced. Those in the infarct maintained a rami-
fied morphology and had less p38 MAPK activity and TNF-«,
IL-18, COX2, and iNOS expression. In vitro, HMGBI1 was
released after incubation of microglial cultures with NMDA-
treated cortical cells. Cultured microglia remained quiescent
in this model when an HMGBI inhibitor was introduced into
the media with the cortical cells, identifying HMGBI as the
mediator of inflammation [46]. HMGBI induces activation
via the RAGE receptor on both microglia and blood-derived

macrophages after ischemia [48]. Taken together, these stud-
ies indicate that HMGB1 may be a potential therapeutic target
for modulating microglial activation and mediated injury.
The chemokine receptor CX3CRI is expressed at high
levels on murine microglia under homeostatic conditions.
Its ligand, CX3CLI (fractalkine), is produced by neurons
and can be either secreted or membrane bound. When it
is membrane-bound, neuronal CX3CLI binds to microglial
CX3CRI and maintains microglia in a quiescent state
[64, 65]. Cleaved CX3CLI acts as a chemokine to induce
microglial chemotaxis [49]. The CX3CLI-CX3CRI interac-
tion has been shown to regulate microglial toxicity in models
of Parkinson’s, ALS, and LPS activation—when the receptor
is nonfunctional, mice have worse functional outcome [65].
However, this neuroprotective role for microglial CX3CR1
signaling may not be preserved after ischemia. CX3CL1
expression is upregulated within 48 hours after MCAO
and decreases by 7 days, while CX3CRI expression was
the highest on the microglia within the infarcted tissue at
7 days. These results suggest that this pathway may play
a role in microglia/macrophage cell recruitment into the
infarcted region [50]. However, mice genetically deficient
for either CX3CRl or CX3CLl have smaller infarct vol-
umes after MCAO [51-54]. This was accompanied by fewer
blood-derived leukocytes infiltrating the brain at 72 hours
and improved functional outcomes [53]. After 30 minutes
of ischemia, CX3CRI™/~ microglia remained in a ramified
state, whereas WT microglia/macrophages had amoeboid
morphology at 24 hours. WT microglia/macrophages had
a proinflammatory profile with elevated iNOS and CD68
expression, whereas CX3CR1™/~ microglia/macrophages had
low expression of iNOS and CD68 but elevated YmlI impli-
cating a healing phenotype [52]. The addition of exoge-
nous CX3CLI intracerebroventricularly prior to MCAO in
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WT resulted in smaller infarct [54]. These studies indi-
cate that global deficiency of this signaling pathway in
both microglia and peripheral leukocytes is protective after
ischemia. Through the use of bone marrow chimeras, the spe-
cific role of microglial CX3CRI in infarct volume, functional
outcome, and neuroinflammation can be better understood.
It is possible that the differences observed in these studies
were in part due to CX3CRI deficiency on the peripheral
monocytes. It has recently been reported that human bone
marrow stromal cells transplanted into rats after MCAO
used the fractalkine-CX3CRI1 pathway to migrate to area of
infarct [66]. In addition, in a clinical study, it was found that
patients with lower concentrations of plasma CX3CL1 had
worse outcome 6 months after stroke [67]. The apparently
conflicting roles of CX3CL1-CX3CRI signaling may be due to
alterations in signaling pathways in genetically altered mice,
opposing roles of this pathway on microglia and CX3CRI1+
macrophages or other factors.

2.5. Treatments Targeting Microglial Activation after Cerebral
Ischemia. While tPA is available to aid in reperfusion for
selecting patients with ischemic strokes, there is a necessity
for treatments to reduce injury and aid in repair after stroke.
Microglial activation is one potential target. Several studies
have investigated the role of minocycline on inhibiting or
altering microglial activation. In a mouse model of ALS,
minocycline attenuated microglial activation and reduced the
expression of M1, but not M2, microglia/macrophage mark-
ers suggesting that minocycline inhibits the proinflammatory
microglia/macrophages [68]. In mice, minocycline admin-
istered two hours after transient MCAO reduced infarct
volume by 25% [69]. Rats which received continual minocy-
cline treatment for 4 weeks after ischemia had reduced
microglial activation by microscopy, which correlated with
increased neurogenesis and better functional outcome [70].
Transplantation of bone marrow mononuclear cells (BMMC)
is also being investigated as a possible treatment for ischemic
stroke [71-73]. In vitro, BMMCs reduced neuronal death due
to LPS and hypoxia activated mixed culture of microglia and
peritoneal macrophages. Microglial cultures in the presence
of BMMCs had higher levels of IL-10, VEGE, IGF], and SDF-
la [74]. Recent studies have investigated whether the addition
of minocycline can improve functional outcome and neuro-
protection after BMMC transfer after ischemia in vivo. Rats
that received minocycline and BMMC treatment had reduced
CD68" cells by immunohistochemistry and better functional
outcome [75, 76]. These studies suggest that microglia con-
tribute to neuroinflammation after ischemia and that BMMC
therapy and minocycline have additive effects in reducing
poststroke microglial activation. However, the dosing of
minocycline is crucial for benefit; high doses induced toxicity
in both neurons and astrocytes [77]. Minocycline is a tetra-
cycline antibiotic that is not specific for microglia [77], and
oft-target effects may contribute to dose-limiting toxicities.
While many studies have focused on understanding
the mechanism by which microglia cause secondary injury
after stroke, other studies have shown that microglia are
essential for prevention of neuronal apoptosis [23]. Microglia
are needed for recovery and repair after ischemia. Rats

transplanted with a human microglial cell line 48 hours after
MCAO had better functional outcome 7, 10, and 14 days
after stroke. The improved functional outcome correlated
with fewer apoptotic cells, fewer CD68 phagocytic cells, and
less GFAP glial scar in the ipsilateral hemisphere. Notably,
rats that received human microglia had less endogenous
microglial activation and upregulation of IL-4, IL-5, and
neurotrophic factors, thus decreasing their neurotoxicity.
Human microglial cells reduced ischemic injury and pro-
moted repair in rats [78]. Therefore, microglia have potential
for augmenting repair after ischemia and studies on the
modulation of their phenotype towards healing processes
may identify new therapeutic targets for stroke.

3. Intracerebral Hemorrhage

Research on the mechanisms of injury and repair after ICH
has been more limited than after cerebral ischemia. ICH
occurs when a blood vessel in the brain parenchyma ruptures,
most commonly due to hypertension [79]. ICH has a high
mortality rate: 30-50% of patients die within the first 30 days
[79]. Of those who survive, only 20% regain independence
within six months [80]. Despite recent advances in ICH
research, no specific treatment for ICH currently exists [81].
The introduction of blood components, including thrombin,
heme, and leukocytes and platelets, into the brain creates the
basis for a secondary injury due to microglial activation and
neuroinflammation resulting in the recruitment of leukocytes
into a normally immune privileged site [82, 83].

The activation of microglia likely has dual roles after ICH.
While some microglial processes may be beneficial, microglia
have also been shown to play a role in the secondary injury
that occurs after ICH [82]. A major role of microglial cells
after ICH is to phagocytose the debris and erythrocytes left
in the brain after hemorrhage. They have been shown to
endocytose heme and hemoglobin. These processes are medi-
ated through scavenger receptors, such as CD36, on their cell
surface [84]. They also produce proinflammatory cytokines
(TNF-a, IL-18, IL-6) [85] and chemokines (CXCL2) [86],
which promotes neuroinflammation and the recruitment of
blood-derived leukocytes to the brain [8, 84].

3.1. Time Course of Microglial Activation after Intracere-
bral Hemorrhage. The activation of microglia/macrophages
occurs early in the timeline of neuroinflammation following
ICH. Microglial/macrophage activation within the perihe-
matomal region was seen as early as 1 hour following ICH
by immunofluorescence staining in the collagenase injection
model of ICH and within 4 hours using the double injection
method of whole blood [62, 87]. Microglial/macrophage
production of IL-1f3 in rats can be seen as early as 6 hours
and can persist up to 24 hours. Interestingly, there was no
IL-6 or MMP-12 staining within the activated microglial/
macrophage population [88]. Twelve hours after a mouse
model of ICH, microglial numbers between the ipsilateral
and contralateral hemisphere did not differ, suggesting that
robust proliferation or migration has not yet occurred [89].
However, by 72 hours microglia reach their peak number



in the perihematomal region [8, 90], which corresponds to
roughly a 40% increase in their numbers by flow cytometry
[91]. A week after ICH, microglial/macrophage numbers
begin to reduce; by 21 days, microglial/macrophage numbers
have returned to basal levels, although some reports find
that microglial/macrophage activation persists for 4 weeks
[8, 90]. A time course of functional study in rats has
shown a correlation between the resolution of microglial/
macrophage numbers in the ipsilateral hemisphere with
improvement in behavioral tests, suggesting that the presence
of microglia/macrophages contributes to neurological deficit
[90].

3.2. Mediators of Microglial Activation after ICH. Many stud-
ies have focused on the triggers of microglial activation after
ICH. Blood components directly activate microglia and initi-
ate immune responses. Thrombin, a serine protease in blood
that is necessary for coagulation, causes apoptosis in neurons
and astrocytes, provoking researchers to investigate whether
thrombin plays a role in microglial activation after ICH [55].
In rats, direct injection of thrombin into the striatum caused
neuronal apoptosis. Microglia upregulated CDI11b expression
and morphed from the ramified, resting state to an activated,
amoeboid shape with increased p-ERK within 4 hours. By
24 hours, the activated microglia stained positive for iNOS
and by 72 hours, the microglial/macrophage numbers in
the ipsilateral striatum increased [56]. Thrombin-mediated
activation of microglia is induced by MAPK signaling. Inter-
estingly, MAPK inhibitors injected into the striatum prior to
ICH caused a large reduction in pERK 8 hours after ICH and
an increase of TUNEL positive microglia/macrophages [57].
It has also been reported that inhibitors of p38 MAPK and c-
JNK inhibitors not only caused microglial/macrophage apop-
tosis but also greatly reduced the TNF-« levels. These studies
suggest that the MAPK pathway in microglia/macrophages
is induced by thrombin and promotes cell maintenance,
allowing the production of TNF [58].

The effect of thrombin on microglial proinflammatory
cytokines and matrix metalloproteases (MMPs) has also
been described. In culture, microglia express thrombin
receptors and when stimulated with thrombin produce IL-
18 and TNF-«. Cultures treated with tuftsin fragmentl-3,
a microglial/macrophage inhibitory factor (MIF), had less
cytokine secretion. In vivo, mice treated with MIF had less
edema, suggesting that activated microglia are a cause of
blood-brain barrier dysfunction after ICH [59]. In vivo,
thrombin promotes the cleavage of pro-MMP9 to active
MMP9. MMP9 ™/~ mice had less injury and microglial/
macrophage activation than wild-type mice [60]. Another
work identified neutrophils as the main source of MMP9 [92].
Interestingly, neutrophil depletion did not change microglia
numbers at 3 days after ICH [93] but was found to reduce
microglial/macrophage populations seven days after ICH, as
well as decrease the level of CD68 on microglial/macrophage
cells 3 to 14 days after ICH [92].

Products of erythrocyte lysis, including heme and iron,
are also active initiators of microglial activation and neu-
roinflammation. Heme is converted to ferric iron, biliverdin,
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and carbon monoxide by heme oxygenase (HO). Iron-
handling proteins, including ferritin and hemosiderin, have
been found within activated microglia/macrophages after
ICH [59], suggesting that microglia are responsible for iron
clearance and processing. Metalloporphyrin resulted in a
decrease in ferritin deposition in microglia and less neuronal
loss [61]. In aged rats, treatment with deferoxamine, an iron
chelator, greatly reduced the number of activated microglia/
macrophages and the overall ROS production in the striatum
[94]. Unconjugated bilirubin and bilirubin oxidative species
are hypothesized to activate microglia in vivo, resulting in
production of proinflammatory cytokines [95]. However, in
a mouse animal model, unconjugated bilirubin infusion with
the whole blood to create the ICH, there was a reduction
in microglia but increase in neutrophils at 24 hours [96].
The role of unconjugated bilirubin in microglial phenotype
is yet unknown. Therapies modulating iron handling by
microglia may improve outcomes by reducing both iron-
induced oxidative damage and inflammation.

Toll-like receptor 4 (TLR4) activation also leads to neu-
roinflammation after ICH. In the CNS, microglia are the most
prevailing cell type expressing TLR4 [97]. TLR4-deficient
mice were shown to have reduced peripheral myeloid cell
infiltration and fewer microglia in the perihematomal region
3 days after ICH, along with better functional outcome
[91]. Another recent study found that heme degradation
products lead to production of TNF-«, IL-15, and IL-6 via
TLR4 in cultured microglia [63]; however, another work used
blood transfer experiments to localize the location for TLR4
signaling to the cells in the ICH itself, rather than microglia
[91]. Together, these studies indicate that TLR4 antagonism
may be a potential therapeutic target for reducing microglial
activation after ICH, either directly or by reducing leukocyte
recruitment that then contributes to further microglial acti-
vation.

A recent study expanded upon HMGBI1 acting as a proin-
flammatory cytokine after ICH. In vitro, heme stimulates
cultured microglia to release HMGBI [98]. After collagenase-
induced ICH in rats, the release of HMGBI into the cytoplasm
in the brain was detected by 1 hour. The administration
of ethyl pyruvate reduced the number of HGMBI" cells in
the ipsilateral hemisphere, improved functional outcome,
and reduced edema and the number of apoptotic cells. Rats
given ethyl pyruvate also had reduced numbers of activated
microglia by immunohistochemistry and immunofluores-
cence [99]. As in ischemic stroke, targeting HMGBI produc-
tion after ICH may serve as a potential target to attenuate the
immune response.

3.3. Treatments Targeting Microglial Activation after Intracere-
bral Hemorrhage. While there is currently no treatment for
microglial activation after ICH, investigation into therapeutic
targets is ongoing. Minocycline has been tested for neuro-
protective qualities in ICH animal models as in ischemic
stroke. One study administered minocycline to rats 3 hours
after ICH to obtain clinical relevance. Minocycline had no
effect on hemorrhage volume in either short term (5 days)
or long term (28 days) survival but did reduce microglia/
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macrophages numbers surrounding the hematoma at 5 days
[100]. In other studies, animals were given minocycline
treatment 6 hours, 1 day, and 2 days after ICH. Minocycline
reduced the brain water content and increased intact blood
vessels 72 hours after ICH. TNF-a and MMPI2 levels were
upregulated at 24 and 72 hours after ICH, respectively.
Minocycline treatment leads to a reduction in both TNF-«
and MMPI2 after ICH. However, the authors did not find
colocalization of these proinflammatory factors with acti-
vated microglia/macrophages, but with neutrophils, suggest-
ing that microglia may not be the only target of minocycline
after ICH [101]. Thrombin-mediated activation of microglial
cultures caused an upregulation in TNF-« and IL-1§3 produc-
tion; minocycline treatment greatly reduced the production
of both cytokines. In vivo, minocycline treatment reduced
edema and improved functional outcome by 14 days [102].
Taken together, minocycline may serve as a promising treat-
ment for ICH.

Peroxisome proliferator-activated receptor y (PPARy) has
also been investigated as a potential therapeutic for ICH. In
mice, PPARy agonist treatment beginning 24 hours after ICH
enhanced the phagocytosis of the hematoma and reduced
IL-1B3, TNE, MMP-9, and iNOS expression. In microglial cul-
tures, PPARYy increased CD36-mediated microglial phagocy-
tosis of red blood cells [103, 104]. Targeting microglial func-
tion (i.e., phagocytosis) as a therapeutic for ICH may have
potential for modulating the immune response and enhanc-
ing recovery. Since recovery after ICH is at least partially
dependent on microglial responses, therapies that modulate
these responses towards repair have promise as treatments for
ICH.

4. Conclusions

Investigations on the role of microglia in the immune
response after ischemic stroke and ICH can advance our
understanding of the mechanisms of secondary injury and
repair. Interestingly, the mediators of microglial activation
differ between the two major types of strokes. In each
condition, however, microglia can contribute to injury via
the production of proinflammatory mediators and yet are
crucial for remodeling and repair. Therapies that inhibit the
injurious phase of microglial activation while augmenting
repair would offer great promise for stroke patients. However,
much of the work described above was performed on young,
male rodents. The translational potential of the findings
will be determined by the ability of therapies to improve
outcomes across age, sex, and species. Future advances will
also depend on differentiating the roles of microglia and
macrophages in poststroke responses. With advances in sci-
entific techniques, such as flow cytometry and cell sorting, the
mechanisms by which microglia and macrophages contribute
to neuroinflammation can be further understood, opening
the possibility for new therapeutic targets.
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