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Actin assembly produces sufficient forces 
for endocytosis in yeast

ABSTRACT We formulated a spatially resolved model to estimate forces exerted by a polym-
erizing actin meshwork on an invagination of the plasma membrane during endocytosis in 
yeast cells. The model, which approximates the actin meshwork as a visco-active gel exerting 
forces on a rigid spherocylinder representing the endocytic invagination, is tightly constrained 
by experimental data. Simulations of the model produce forces that can overcome resistance 
of turgor pressure in yeast cells. Strong forces emerge due to the high density of polymerized 
actin in the vicinity of the invagination and because of entanglement of the meshwork due to 
its dendritic structure and cross-linking. The model predicts forces orthogonal to the invagi-
nation that are consistent with formation of a flask shape, which would diminish the net force 
due to turgor pressure. Simulations of the model with either two rings of nucleation-promot-
ing factors (NPFs) as in fission yeast or a single ring of NPFs as in budding yeast produce 
enough force to elongate the invagination against the turgor pressure.

INTRODUCTION
Assembly of actin filaments at sites of endocytosis is necessary for 
invagination of the plasma membrane in both budding and fission 
yeast (Aghamohammadzadeh and Ayscough, 2009; Basu et al., 
2014). The transient accumulation of actin filaments around the in-
vaginating plasma membrane is called an “actin patch.” Patches 
form in ∼10 s, peak, and disappear over ∼10 s. Polymerizing actin is 
believed to produce the forces required to form a tubular invagina-
tion of the plasma membrane with a clathrin-coated hemisphere at 
the tip (Kaksonen and Roux, 2018). Force is required to overcome 
the very high turgor pressure in yeast cells, which is estimated to be 
on the order of 10 atm in fission yeast (Basu et al., 2014). This 

amounts to a force on the order of 3000 pN on a typical endocytic 
tubule (Carlsson, 2018). Previous modeling studies concluded that 
actin polymerization alone is unlikely to generate such a force, and 
various additional mechanisms were proposed (Scher-Zagier and 
Carlsson, 2016; Lacy et al., 2018).

We used simulations of mathematical models to estimate the 
forces exerted on an endocytic, plasma membrane tubule by a sur-
rounding network of actin filaments. In our model, mechanics of the 
filamentous meshwork is coupled to a detailed description of actin 
nucleation and polymerization (Berro et al., 2010). We assumed that 
proteins called nucleation-promoting factors (NPFs) reside on the 
membrane tubule and stimulate the Arp2/3 complex to nucleate 
branched actin filaments. Simulations of the model constrained by 
experimental parameters yielded dense networks of actin filaments 
around the tubule in the vicinity of the NPFs. Entanglement of the 
branched filaments makes the network highly viscous, so that the 
energy released during the polymerization generates forces suffi-
cient to work against the turgor pressure and elongate the nascent 
invagination.

The elongating invaginations were simulated with either one or 
two narrow bands of NPFs around the membrane tubule. Fission 
yeast has two rings of NPFs, one that remains in the initial position 
at the base of the invagination, while the other moves with the tip of 
the tubule (Arasada and Pollard, 2011; Arasada et al., 2018). Bud-
ding yeast has one ring of NPFs that remains near the base of the 
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invagination (Mund et al., 2018). Consistent with experimental ob-
servations, both versions of the model yielded similar forces, elon-
gation rates, and lengths of the invaginations.

MODEL
Generalized description of the biochemistry and physics of 
the expanding actin filament network
The model of the actin filament network is formulated in a continu-
ous approximation, such that the distribution of filaments in the 
patch is characterized by a continuous density of actin subunits ρ (x, 
t), which is a function of location x and time t. The peak number of 
∼6500 actin subunits per patch in fission yeast (Sirotkin et al., 2010) 
suffices for a continuous formulation to provide reasonably accurate 
results. This large number makes a discrete stochastic approach lo-
gistically burdensome, though such an approach would otherwise 
be appropriate, given the submicron sizes of endocytic patches 
(Mund et al., 2018).

We describe filamentous actin as a visco-active fluid (Kruse et al., 
2005; Prost et al., 2015). In a viscosity-dominated environment, a 
balance between active and dissipative forces governs the mechan-
ics of actin filament networks. The active repulsive stress, originating 
from the impingement of polymerizing subunits on existing fila-
ments, is elastically stored in the meshwork, causing it to expand 
with velocities limited by dissipation due to viscosity of the 
meshwork.

The force balance requires that the divergence of the total stress 
tensor be zero everywhere in the fluid (Kruse et al., 2005): 

σ σ∇ ⋅ + =( ˆ ˆ ) 0viscous active . Here, the viscous stress tensor is 
v vσ η= ∇ + ∇ˆ ( ( ) )T

viscous , where v = v (x, t) is the the local actin veloc-
ity, (∇v)T is the transpose of the velocty gradient tensor ∇v, and the 
viscosity coefficient η is a function of the local densities ρ and local 
average length of actin filaments, L: η = η(ρ,L) (Doi and Edwards, 
1998). Because ρ is allowed to vary in space, actin velocities v = 
v(x,t) are not subjected in our model to the incompressibility condi-
tion. The density of actin subunits, however, has an upper limit due 
to excluded volume, as explained further in this section.

The active stress tensor is approximated as isotropic: 
ˆ ˆaactive Iσ σ= − , where Î is the unit tensor and σa can be interpreted 

as the energy per unit volume stored in the meshwork during po-
lymerization. Active stress is generated when a polymerizing subunit 
impinges on an existing filament. This requires high filament densi-
ties characteristic of the endocytic actin patches, where large num-
bers of polymerized subunits are concentrated in submicron vol-
umes, resulting in high ρ. The requirement of a direct interaction 
between two filaments is consistent with the quadratic ρ depen-
dence of the “storage” modulus of overlapping actin filaments 
(MacKintosh et al., 1995; Satcher and Dewey, 1996; Gardel et al., 
2003); see subsection Parameterization of the force-balance equa-
tion (Eq. 1). Hydrostatic pressure is not included in the force-balance 
equation in our model, because the mechanics of the actin filament 
network decouples from mechanics of the cytoplasm. Indeed, the 
viscous drag exerted on actin filaments by the cytoplasm is much 
weaker than the intrinsic viscous forces due to direct contacts of the 
filaments and can thus be ignored (Nickaeen et al., 2017). Techni-
cally, the repulsive active stress can be viewed as playing a role of 
pressure in our model. Overall, the equation governing v (x,t) is 
written as

v vη ρ σ ρ∇ ⋅ ∇ + ∇ − ∇ =L( ( , )( ( ) )) ( ) 0T
a  (1)

Equation 1 is coupled with the spatiotemporal dynamics of the 
molecules regulating actin filament assembly. In both types of 

yeast cells, NPFs initiate the assembly of the actin filament net-
works by stimulating the Arp2/3 complex to nucleate new actin 
filaments on the sides of existing filaments, forming a dendritic 
network.

The model includes a spatial description of actin nucleation and 
polymerization that follows a kinetic model used by Berro et al. 
(2010), which consists of rate equations detailing actin filament nu-
cleation, polymerization, and aging, as well as the capping of the 
barbed ends of polymerizing filaments and severing of aged 
filaments by cofilin. Simulations of the model using protein concen-
trations measured in cells (Berro et al., 2010) adequately describe 
experimentally measured time courses of the appearance and 
disappearance of patch proteins (Sirotkin et al., 2010). The rate con-
stants giving good fits of the simulations to the experimental data 
were larger than expected from biochemical measurements, owing 
in part to molecular crowding in cells (Schmit et al., 2009). We use 
the rate constants and equations of Berro et al. (2010) to integrate 
measurements of actin kinetics into our model.

The actin density ρ is determined by concentrations of all of the 
species of actin in an actin patch. These species include newly po-
lymerized ATP-bound subunits (FATP), subunits aged by ATP hydro-
lysis and phosphate dissociation (FADP), and subunits bound by 
cofilin (FCOF), as shown in the reaction diagram in Figure 1. In our 
model, ρ also includes concentrations of the filaments’ barbed ends, 
both active and capped (BEa and BEc, respectively), and slowly de-
polymerizing pointed ends (PE). Overall,

∑ρ = n X[ ]A
X

where X stands for FATP, FADP, FCOF, BEa, BEc, and PE, and [X] is 
the concentration of molecule X (in μM); the prefactor nA converts 
the concentration (in μM) into the density expressed in molecules 
per cubic micrometer (nA = 602 μm–3/μM).

All concentrations [X], with the exception of [ActiveArp], are gov-
erned by reaction-transport equations of the following type,

v∂ = −∇ ⋅ +X X R[ ] ([ ] )t X  (2)

where the first term in the right-hand side describes the flow of X 
with velocity v, and RX is the sum of the rates of all reactions affect-
ing X. The next subsection describes the equations for [ActiveArp].

Functional forms of RX and parameters are from Berro et al. 
(2010), with modifications reflecting the effects of mechanical forces 
and high local filament densities on polymerization kinetics. In loca-
tions where the filament network is dense, molecular diffusion slows 
down (Novak et al., 2009), which affects reaction rates (Schmit et al., 
2009). Because the effective diffusion coefficient of molecules in 
spaces filled with the filaments reduces by the factor (1 – ρ /ρmax)1/2 
(Novak et al., 2011), we modify by this factor the on- and off-rate 
constants of polymerization, capping, cofilin binding, and cofilin-
dependent severing. This ensures that the above-mentioned 
processes slow down as ρ approaches ρmax = (4πδ 3/3)–1, where δ = 
2.7 nm is the subunit radius, and, therefore, ρ never exceeds ρmax = 
20.15 mM. Note that the factor (1–ρ/ρmax)1/2 is significantly different 
from unity only where ρ approaches ρmax, so in most locations, the 
rate constants are essentially unchanged. We also take into account 
that the filaments that generate active stress polymerize under load. 
The fraction of such filaments is estimated as follows. Assuming that 
one of the two filament ends is immobilized at the membrane or a 
branching point, the probability of the filament growing under load 
is equivalent to that of its other end pushing against the network, 
which is p (x, t) = ρ (x, t)/ρmax. Thus, the affected rates need to be 



2016 | M. Nickaeen et al. Molecular Biology of the Cell

multiplied by (1 – p(x, t)) + p(x, t) exp (–σαδ3/(kBT)). For simplicity, 
we ignore the contributions of such filaments to actin density alto-
gether, dropping the second term and modifying the rates of 
polymerization and capping by an additional factor 1 – ρ (x, t)/ρmax.

Reaction steps that lead to formation of ActiveArp occur on the 
surface of the membrane (Figure 1) and involve dimers of WASp 
bound to G-actin monomers (WGD), Arp2/3 ternary complexes 
consisting of Arp2/3 complex bound to WGD (ArpTernCompl), and 
activated Arp2/3 ternary complexes (FArpTernCompl). These 
reactions are described by rate equations,

∂ =Y R[ ]t Y  (3)

where [Y] is the surface density of a membrane-bound protein Y. 
Note that while these variables are governed by ordinary differential 
equations, they also depend on spatial coordinates, given that RY is 
nonzero only at the locations of NPFs (see below) and RArpTemCompl 
depends on [FATP] and [FADP] near the plasma membrane.

Table 1 and Table S2 in the Supplemental Text summarize, 
respectively, the parameters used in the model and all the variables 
and their governing equations.

Coupling the expansion of the actin filament network to the 
membrane invagination
Equations 1 and 2 are solved in a sufficiently large neighborhood of 
the invagination, denoted Ω in Figure 2. The plasma membrane Γ 
includes the invagination. Equation 3 is solved on the parts of the 
invagination occupied by NPFs. Fission yeast assembles two rings 
containing different NPFs around the invagination of the plasma 
membrane (dark red bands in Figure 2) (Arasada and Pollard, 2011; 
Arasada et al., 2018). Both zones start near the cell surface at the 

FIGURE 1: Reaction diagram corresponding to the kinetic model by Berro et al. (2010), with 
added partitioning of species between membrane and cytosol. Directions of arrows toward or 
away from reaction nodes (yellow squares) determine roles of species (green circles) in a 
particular reaction as reactants or products, and reactions without products describe 
disappearance of reactants from the patch. Species connected to reactions by dashed curves 
act as “catalysts,” that is, they are not consumed in those reactions.

neck of the invagination. One ring is station-
ary, while the other moves with the tip of the 
invagination, where it is assumed to be at-
tached to a hemisphere of the protein clath-
rin. Budding yeast has a single zone contain-
ing both types of NPFs, which remains at 
the base of the invagination (Mund et al., 
2018).

We assume that an initial invagination 
forms by an unknown mechanism before 
the assembly of the actin patch. This coated 
pit of plasma membrane is associated with 
clathrin molecules and adapter proteins 
(Arasada and Pollard, 2011; Chen and Pol-
lard, 2013). Our modeling starts after the 
initial invagination has a depth sufficient to 
accommodate two adjacent rings of NPFs. 
The next section describes the shape and 
size of the initial invagination used in 
simulations.

Actin filaments polymerizing around the 
initial invagination are constrained by the 
plasma membrane, which is pressed against 
the stiff cell wall. This resistance causes the 
actin filament network to expand inward 
from, and laterally along, the cell surface. 
The flow of actin filaments exerts a drag on 
an initial invagination, counterbalancing the 
forces of turgor pressure and elongating the 
invagination further inward. It is believed 
that the drag occurs because the actin fila-
ments bind to proteins associated with the 

membrane (Lacy et al., 2018), though little is known about the bio-
chemical mechanism. The connection between the actin meshwork 
and the plasma membrane is included in the model as a condition 
that the membrane and the adjacent actin filaments move with the 
same velocities: (v – u) | Γ = 0, where u | Γ are the velocities of the 
points of the membrane. This condition is consistent with the treat-
ment of viscous fluids at interfaces with adjacent media in contin-
uum mechanics (Landau and Lifshitz, 1987). Mathematically, it serves 
as a boundary condition for Eq. 1 at Γ. The conditions at other 
boundaries of the computational domain were zero-stress, though 
they did not affect the solution significantly, because Ω was substan-
tially larger than the size of the invagination (see “Methods” in the 
Supplemental Text).

The net force exerted on the endocytic invagination is obtained 
by evaluating an integral of the tangential force density, 
e nσ σ+ ⋅( ˆ ˆ )z viscous active , over the surface of the invagination S:

e n∫ σ σ= + ⋅f ds( ˆ ˆ )z z
S

viscous active  (4)

where n is the outward normal vector to Γ (directed from Γ toward 
the interior of Ω ), ez is the unit vector orthogonal to the cell wall, 
and ds is the infinitesimal surface element (Landau and Lifshitz, 
1987). The Results section considers in detail the rheological data 
for actin networks that are critically important for the constitutive 
dependences σa = σa (ρ) and η = η (ρ, L) used in Eq. 1.

Equation 2 is subject to zero-flux boundary conditions at Γ for 
all X, except for ActiveArp, for which there is an incoming flux 
from the rings that describes the detachment of FArpTernCompl 
from the membrane; see Figure 1. The magnitude of the 
corresponding flux density is equal to the detachment rate, 
RFArpTernCompl->ActiveArp | γrings, where γrings denotes the zones of 



Volume 30 July 22, 2019 Actin assembly drives yeast endocytosis | 2017 

Γ occupied by the rings (see Figure 2 and “Methods” in the 
Supplemental Text). The existence of a nonzero influx of ActiveArp 
requires modification of the transport term in Eq. 2 for this vari-
able. Indeed, given the boundary condition for v, pure advection 
is generally incompatible with a nonzero influx, resulting in un-
physical Dirac-delta singularities. The inconsistency is resolved by 
taking into account that the detachment of the ternary complex 
from the membrane inherently involves diffusion. Adding the dif-
fusive term restricted to the vicinity of the rings, we arrive at

D R[ActiveArp] ( ) ([ActiveArp] [ActiveArp])t ActiveArpx v( )∂ = ∇ ⋅ ∇ − +

and a corresponding boundary condition, (D(x)∇([ActiveArp]) + 
RFArpTernCompl->ActiveArp ) | γrings = 0, where D (x) is nonzero only in the 

vicinity of the rings (see “Methods” in the Supplemental Text).
At all other boundaries of the computational domain, Eq. 2 was 

subject to the outflow boundary conditions. As we have noted in the 
context of Eq. 1, the type of these boundary conditions does not 
really matter, because, so long as the size of Ω is sufficiently large, 
they do not affect the solution in any significant way (see “Methods” 
in the Supplemental Text).

Simulations of the models
Equations 1–3 coupled with respective boundary conditions were 
solved numerically. Importantly, when the membrane elongates, Γ 
and Ω in Figure 2 are changing: Γ increases and Ω decreases, so the 
model must be solved in a domain with a moving boundary (see 
“Methods” in the Supplemental Text). Note that the concentrations 
of molecules with names followed by zero in Figure 1 are constants, 

and the surface density of the NPFs, WASp0, is uniform within the 
rings and varies over time as a bell-shaped curve (Berro et al., 2010; 
Sirotkin et al., 2010). The initial values of all other concentrations 
and v(x, 0) were set to zero, except for [FADP], [BEa], and [PE], which 
were assigned small initial values, corresponding to a small number 
of seed filaments (Chen and Pollard, 2013).

The geometry of the initial invagination was a cylinder with ra-
dius 30 nm capped with a hemisphere of the same radius. The initial 
length of the cylindrical part was 40 nm, accommodating two 
20-nm-wide rings positioned next to each other. It was assumed, for 
simplicity, that during elongation, the invagination preserves its 
(sphero)cylindrical shape and is infinitely rigid, that is, all points of 
the tubular membrane have the same instantaneous velocities col-
linear with the axis of the cylinder. Realistically, the invaginations are 
not infinitely rigid. Indeed, electron micrographs showed the endo-
cytic invaginations of budding yeast are flask shaped (Kukulski et al., 
2012). Our model yields forces orthogonal to the tubule distributed 
in a way that is consistent with such a shape (see Figure 6, discussed 
in detail later).

We computed the time-dependent magnitude of these veloci-
ties, assuming a linear force-velocity relationship (Peskin et al., 
1993),

u t
f t f

f t f f t f
( ) |

0, if ( )
( ( ) ), if ( )z

z c

z c z cµ
=

≤
− >






Γ

 (5)

where fz (t) is the force exerted on the invagination at time t, defined 
by Eq. 4, fc is the critical force due to turgor pressure, and μ is a 

Parameter Value/units Definition Source

L 36–138 nm Local average lengths of actin filaments

Estimated in Results
N 12–46 Local numbers of subunits in a filament

t0 13 s Parameter used in modeling fc(t)

τ 0.66 s Parameter used in modeling fc(t)

ηA 602 μm–3/μM Conversion factor

μ 0.4 nm/(s · pN) Mobility coefficient Defined in Model

kactive n3.69 10 A
–3 2× −

 Pa/(μM)2 Active stress coefficient Computed in Model

kvisc n3.93 A
1−
 Pa⋅s/μM Shear viscosity coefficient Estimated in Model

ρmax 20.15 × 103nA μM Maximum actin density Defined in Model

nmax 6500 Maximum number of actin subunits in a patch

Berro et al., 2010RArp2/3 0.035–0.06 Molar Arp2/3 complex-to-actin ratio

G0 21.6 μM Concentration of actin monomers

fstall 10.5 pN Actin polymerization stalling force Estimated in Results

εmax 6.9 kBT Maximum energy stored in the patch per subunit Estimated in Results

E 1 GPa Young’s modulus of the actin filament

Broedersz and MacKintosh, 
2014

I πa4/4 nm4 Rotational inertia of the filament

a 3.5 nm Radius of the filament cross-section

δ 2.7 nm Radius of actin subunit

WASp0 259.6 μm–2 Surface density of NPFs Based on Berro et al., 2010

Arp0 1.3 μM Concentration of Arp2/3 complex

Berro et al., 2010C0 0.8 μM Concentration of capping protein

COF0 40 μM Concentration of cofilin

TABLE 1: Model parameters.
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given mobility coefficient (see Results and “Methods” in the Sup-
plemental Text).

Parameterization of the force-balance equation (Eq. 1)
We begin with a description of constitutive relations for active stress 
and viscosity of actin meshwork in the absence of branching and 
cross-linking. Measurements of the viscoelasticity of filaments of pu-
rified actin can explain how the active stress and viscosity of the 
meshwork depend on its density and the properties of the filaments. 
Rheological data usually include information about dynamic (i.e., 
frequency-dependent) “storage” and “loss” moduli, denoted as 
G′(ω) and G″(ω), respectively (Wirtz, 2009). The active stress, σa, 
which is determined by the energy released during polymerization 
and elastically stored in the meshwork, should be proportional to 
G′. For overlapping actin filaments, G′(ω) scales with actin density 
ρ as ∝ρ2 for any ω (Gardel et al., 2003). We therefore assume σa = 
kactive ρ2, where the proportionality coefficient kactive depends on 
the extent of branching and cross-linking.

Obtaining a constitutive relation for viscosity η is not as straight-
forward. Based on polymer physics, it is expected to be of the form, 
η ∝ ραLβ, where L is the polymer length and exponents α and β de-
pend on whether the polymer is flexible or rigid and whether the 
solution is dilute or concentrated (Doi and Edwards, 1998). For con-
centrated solutions of certain flexible chemical polymers, measure-
ments yielded α = 4–5 and β ≈ 3.5, in agreement with theoretical 
results. Note that the same theory predicts that the viscosity of a 
polymer solution is always proportional to the viscosity of a solvent; 
this is based on the assumption that the cross-sectional area of a 
polymer is vanishingly small. While this assumption is adequate for 
chemical polymers, it does not apply to a biopolymer meshwork, 
where the viscosity originates from direct interactions between fila-
ments and is essentially independent of viscosity of the medium. It 
is intuitive to assume that viscosity of overlapping actin filaments 
increases as a function of the number of contacts made by the fila-
ments and how long these contacts “slide” along the filaments. The 
average number of contacts a given filament makes with its neigh-
bors can be estimated as the average number of subunits per vol-
ume occupied by a filament, that is, ∼ρNδ 3, where N is the average 
number of subunits per filament and δ is the radius of the actin sub-
unit, as defined earlier. The contact density is then obtained as a 
product of the number of contacts per filament and the number of 

filaments per unit volume. The latter is ρ /N, so that the density of 
contacts is ∼ρ2δ 3. Assuming further that, for the rod-like filaments, 
the “lifetime” of a contact is proportional to the number of subunits 
in a filament N, we arrive at η ∼ ρ2δ 3N = ρ2δ 2L, or

Lvisc
2 2η κ δ ρ=  (6)

where the proportionality coefficient kvisc can depend on the struc-
tural properties of an actin meshwork, such as branching or 
cross-linking.

We corroborated the constitutive relation of Eq. 6 by estimating 
η from rheological data for filaments of purified actin. The estima-
tion of η is complicated by the fact that solutions of actin filaments 
are non-Newtonian fluids with viscosities depending on the shear 
rates (Buxbaum et al., 1987). This was approximated by deriving 
kvisc, treated as a constant, from G′ (ω) and G″ (ω), with ω close to 
the shear rates in actin patches, which are ∼1 s−1 (see Salient proper-
ties of the model in Results). It is also important to note that the 
shear viscosity of the meshwork differs from η′(ω) = G″(ω)/ω (Cox 
and Merz, 1958; Wirtz, 2009). The effective shear viscosity is often 
well approximated by an empirical Cox-Merz rule η = ω–1 (G′2 (ω) + 
G″(ω))1/2, with ω being identified with the shear rate (Cox and Merz, 
1958). In what follows, values of η were computed by applying the 
Cox-Merz formula to the moduli measured at ω = 1 s−1. The length 
dependence in Eq. 6 is close to η ∝ L0.7, as proposed by Zaner and 
Stossel (1983), who measured dynamic moduli of solutions of over-
lapping actin filaments with controlled lengths and applied the Cox-
Merz rule to compute η. More recent data by Kasza et al. (2010) 
point to a linear dependence, η ∝ L. These authors measured G′(ω) 
and G″(ω) of overlapping actin filament networks prepared with a 
fixed actin concentration and varying filament lengths and concen-
trations of linkers. Extrapolation of the data of Kasza et al. (2010) to 
a zero cross-linker concentration gives the filament length depen-
dence of η without cross-linking. Specifically, the data points of 
Figure 4c in Kasza et al. (2010), corresponding to ω = 1 s−1, were 
extrapolated to the linker-to-actin concentration ratio R = 0 by ap-
proximating the increase in viscosity due to cross-linking as ∝ (RL)2 
(McFadden et al., 2017). Figure 3, which also includes data for R = 0 
of Figure 4a in Kasza et al. (2010), shows the dependence of η on 
filament length in the absence of cross-linking or branching.

To confirm the quadratic ρ dependence of Eq. 6, one would 
need rheological data for actin filament samples with a fixed fila-
ment length and a range of actin concentrations. The data closest 
to these requirements are for G′(ω) and G″(ω) of pure actin fila-
ments without branching or cross-linking at concentrations of 
1 mg/ml and 0.3 mg/ml (Gardel et al., 2003). Measurements at 

FIGURE 2: Computational domain, Ω, and plasma membrane, Γ, 
including invagination. Two rings of NPFs are shown in dark red. 
When the invagination elongates, both Γ and Ω change with time.

FIGURE 3: Viscosity of actin filament meshwork as a function of mean 
filament length at ρ/nA = 12 µM. Extrapolated from data of Kasza 
et al. (2010).
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ω = 1 s−1 yielded η ∝ ρα with α = 1.98. Equation 6 also yields plau-
sible average filament lengths, 15 and 12 μm, based on the data 
for pure actin filaments reported in Sato et al. (1987) and Mullins 
et al. (1998), respectively. These values were obtained using kvisc 
for pure actin filaments that was estimated by applying Eq. 6 to 
data points in Figure 4a of Kasza et al. (2010) corresponding to 
R = 0 (open and filled triangles) and ω = 1 s−1. In this experiment, L 
= 15 μm, ρ/nA = 0.5 mg/ml = 12 μM, and the respective viscosity η, 
computed by the Cox-Merz rule, is 1.32 Pa · s, yielding kviscnA ≈ 
0.14 Pa s/μM.

Note that Eq. 6 holds only for overlapping filaments, that is, for 
dense actin networks of sufficiently long filaments, such that 
(ρN2)1/3 × δ > 1 (Doi and Edwards, 1998). This condition is most 
certainly violated at early stages of patch assembly, when only few 
short filaments are present. In this limit, η is expected to be a 
multiple of solvent viscosity and ∝ρ. Because noticeable stresses 
and shear rates are generated only after filaments begin to overlap, 
the two regimes were bridged in our computations by using a 
simple “interpolation” formula that crosses over to Eq. 6 when the 
condition for the filament overlapping is met,

N L(1/ )visc
2η κ ρ ρδ= +

In this formula, the number of subunits per filament N was computed 
as [Ftot]/([BEa] + [BEc]]), where [Ftot] = ρ /nA and [BEa] + [BEc] is equiv-
alent to local filament number density, and the filament length is 
L = Nδ, as above.

RESULTS
Salient properties of the model
Substituting the constitutive relations σα(ρ) = kactiveρ2 and η (ρ, L) = 
kvisc ρ2δ2L in Eq. 1 yields

L( ( ( ) )) 0T
visc

2 2
active

2v vκ ρ δ κ ρ∇ ⋅ ∇ + ∇ − ∇ =

from which it follows that both actin densities ρ (x, t) and velocities v(x, 
t) are controlled by the ratio kactive/kvisc, rather than separately by 
kactive and kvisc (as defined earlier, here and below, vector x denotes 
spatial coordinates of a location in the cell). We confirmed, by solving 
the model numerically with varying kactive and kvisc, that v(x,t) did not 
change beyond numerical error when both coefficients were varied 
proportionally. Also in agreement with the prediction, we found that 
kactive/kvisc controls a maximum number of polymerized subunits in a 
patch n n tmax( ( ))max = , where n t t d( ) ( , ) 3

patch
x x∫ ρ=

Ω
 is the number 

of subunits at time t in the volume Ωpatch occupied by the invagina-
tion and surrounding network of actin filaments. Modeling an elon-
gating cylindrical invagination with varying kactive/kvisc (see Dynamics 
of the invagination during elongation), we found that the ratios 

/ n s1 mMAactive visc
1 1 1κ κ ∼ − − −  result in nmax close to the experimental 

numbers. For example, the maximum number of 6500 subunits inside 
a cylinder Ωpatch of radius 0.15 μm and length 0.3 μm, enveloping the 
endocytic tubule, is obtained with / n0.9 Aactive visc

1κ κ ≈ −  s−1 mM−1. 
The ratio kactive/kvisc, constrained by the experimental nmax, in turn 
determines actin velocities v(x,t) and the corresponding shear rates, 
which are found to be ∼1 s−1 (see below).

Figure 4 depicts a snapshot of a solution of the two-ring model 
with / n0.94 Aactive visc

1κ κ = −  s−1 mM−1, showing distributions of actin 
density (colors) and actin velocities (white arrows) for an r–z section 
(r and z are cylindrical coordinates) at a time when the rings on an 
elongating invagination have separated. The solution yields two 
zones of actin filaments that are particularly dense in the vicinity of 
the rings. Note that, even though the two rings are identical in size 

and NPF density, the actin filament density is higher near the 
plasma membrane, owing to the inhomogeneity of active barbed 
ends whose transport is restricted by the rigid cell wall surrounding 
the plasma membrane. The gradient of actin density then results, 
as expected, in a net tangential force directed toward the tip of the 
invagination. Figure 4 indicates low filament densities at the tip of 
the invagination. Thus, the tip lacks the support of actin and must 
be sufficiently stiff to withstand turgor pressure. We show in “Actin 
density and forces at a tip of a tubule” in the Supplemental Text 
that measurements of rigidity of clathrin-coated vesicles by Nossal 
and coworkers (Jin et al., 2006) lend support for this assumption. 
Note that radial and tangential components of actin velocities in 
the vicinity of the invagination are ∼0.02 μm/s, yielding patch 
diameters of ∼100–200 nm, consistent with experimental data 
(Berro et al., 2010; Arasada et al., 2018). The solution also indicates 
(unpublished data) that tangential components of actin velocity 
vary significantly in the normal direction over distances ∼0.02 μm 
from the membrane, yielding shear rates of ∼1 s−1, as mentioned 
earlier.

Control of the shear rates and actin densities by kactive/kvisc 
has another consequence: for a given nmax, the force exerted on 
the invagination depends on kvisc (or alternatively on kactive, 
given that kactive/kvisc is fixed). Mathematically, this is seen upon 
substitution of the constitutive relations in Eq. 4. Qualitatively, 
the tangential force exerted on the invagination, which largely 
originates from the viscous stress, is locally defined by a product 
of viscosity and shear rates. Because the latter are fixed by the 
known nmax, this leaves the tangential force to be directly propor-
tional to kvisc. We confirmed this assertion computationally by 
solving the model with constant kactive/kvisc over a range of kvisc 
(see “Model Solutions with Varying kactive and kvisc” in the 
Supplemental Text).

FIGURE 4: A snapshot from a simulation of an elongating endocytic 
invagination shown for r–z cross-section of three-dimensional 
geometry. The extracellular space is white. The color shows the 
density distribution of actin filaments, and the arrows show the local 
velocities of their movements at the peak of actin assembly (see 
Figure 7C for snapshots at other time points). The velocity scale bar in 
the upper left corner corresponds to 0.08 µm/s.
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Patch assembly can generate pushing forces comparable to 
turgor pressure in fission yeast
We use the model with / n0.94 Aactive visc

1κ κ = −  s−1 mM−1 to determine 
the kvisc required to obtain forces sufficient to exceed the turgor 
pressure. For this, we solved the model in a static geometry with the 
shape and size of the initial invagination described in Simulations of 
the models. We found that the required kvisc is n4 A

1∼ −  Pa · s/μM. For 
example, a tangential force of ∼2538 pN, sufficient to withstand 
turgor pressure of ∼9 atm, requires n3.93 Avisc

1κ = −  Pa · s/μM and, 
correspondingly, n3.69 10 Aactive

3 2κ = × − −  Pa/(μM)2. The obtained 
value of kvisc is ∼28-fold larger than n0.14visc A

1κ = −  Pa · s/μM of actin 
filaments alone.

Two factors in patches contribute to a higher viscosity than actin 
filaments alone. First, the meshwork is highly entangled due to the 
high density of branching. For example, the viscosity of 24 μM of 
actin filaments at a shear rate of ω = 1 s−1 was more than sevenfold 
higher when polymerized with 0.12 μM of Arp2/3 complex accord-
ing to Figure 3 in Tseng and Wirtz (2004). The molar ratio of Arp2/3 
complex-to-actin in these experiments, RArp2/3 = 0.005, was signifi-
cantly lower than the range of 0.035 and 0.06 observed in actin 
patches (Berro et al., 2010). Such high values of RArp2/3 increase the 
viscosity by at least a factor of 2.5, according to rheological mea-
surements of actin filaments with a range of concentrations of 
Arp2/3 complex (Mullins et al., 1998). Overall, the entanglement of 
the filaments due to branching alone yields an 18-fold increase of 
the patch viscosity compared with filament networks obtained in the 
absence of Arp2/3 complex. Second, actin patches accumulate a 
very high concentration of the cross-linking protein fimbrin (Berro 
and Pollard, 2014), which also increases the viscosity. Rheological 
data indicate that the viscosity of actin networks cross-linked by soft 
(muscle alpha-actinin, filamin) and rigid (avidin-biotin) linkers ranges 
from few fold to an order of magnitude higher than actin filaments 
that are not cross-linked (Wachsstock et al., 1994; Kasza et al., 2010). 
The properties of actin filaments cross-linked by fimbrin are likely to 
be in the same range. Thus, cross-linking by fimbrin accounts for the 
remaining increase of kvisc by a factor of 1.6.

Our simulations of patch formation and force generation must 
satisfy several constraints. For a fixed kactive/kvisc, the increase of kvisc 
implies a similar increase of kactive and hence the corresponding in-
crease of σa. The latter is limited by free energy released during a 
polymerization step: εmax = kBT In (G0/Gcrit), where G0 is the concen-
tration of actin monomers and the critical concentration Gcrit = 
k–

Depolymerization/k+
Polymerization (Footer et al., 2007). For the parame-

ter values used in our model, the upper bound for the stored energy 
is εmax = 6.9 kBT, corresponding to the stalling force εmax/δ ≈ 10.5 pN 
per filament, which is consistent with published estimates (Lacy 
et al., 2018). In simulations, the mechanical work per filament 
polymerizing under load depends on the local actin density: 

xx xxw t t( ) 4
3 ( )( , / ) (1– , / )a

3
max max

0.5ρ πδ σ ρ ρ ρ ρ ρ( ) ( )= × , where σa = 
kactive ρ2; see Parameterization of the force-balance equation (Eq. 1). 
The maximum of w (x, t) evaluated for the above-mentioned solu-
tion in static geometry yields w t k Tmax [ ( ( , ))] 7.1

t
B

, patch

x
x

ρ =
∈Ω

, which is 
comparable to εmax.

The ability of a filament to sustain generated forces is another 
constraint on the system; the force per filament should not exceed 
the buckling threshold, fcrit = π2 EI/(2L)2 (Broedersz and MacKintosh, 
2014). In this formula, E = 1 GPa is Young’s modulus of the actin fila-
ment; I = πa4/4 is the rotational inertia of the filament, where a = 3.5 
nm is the radius of the filament cross-section; and L is the filament 
length. To satisfy the constraint, the force per filament in the vicinity 
of the invagination must be less than the critical load fcrit. For the 
solution with the static geometry described earlier, at the time of 

peak actin assembly, the filament lengths in the vicinity of the endo-
cytic tubule varied from 36 to 138 nm (recall that filament lengths are 
calculated as L = Nδ , where N = ρ(x, t)/ρBE (x, t)). These lengths are 
consistent with previous estimates (Berro et al., 2010). Then, the 
number of filaments in the vicinity of the invagination, obtained by 
integrating the density of barbed ends ρBE(x, t) = nA([BEa] + [BEc]) in 
a shell with thickness equal to the shortest filament length, is 96. 
So for this solution, the average force per filament is 2538 pN/96 ≈ 
26 pN. Of the total 146 filaments inside the shell with thickness of 
138 nm, the lengths of 67 filaments are under 103 nm, and their criti-
cal loads are above 27 pN. Thus, these shorter filaments endure the 
generated force on their own. The longer filaments sustain their 
share of the load through cross-linking by fimbrin: because the criti-
cal load for a bundle of filaments grows roughly as the square of the 
number of filaments in a bundle, the buckling threshold for a bundle 
of just two filaments will be at least 100 pN.

We thus conclude that the forces generated during patch assem-
bly can withstand the opposing forces from turgor pressure in fission 
yeast.

Dynamics of the invagination during elongation
In this section, we elucidate factors determining the dynamics of 
elongating invaginations and their maximum length. For this, we 
solve our model in a moving geometry, allowing the invagination to 
grow freely. We also show that the invagination dynamics are similar 
in fission and budding yeast, despite different localizations of the 
NPFs.

Once the force exerted on the invagination exceeds the turgor 
pressure threshold, the invagination will grow inward. The rate of 
the growth in our model is given by Eq. 5: uz(t) = μ(fz(t)–fc). It may 
seem that the length, which the invagination can attain during 
patch assembly, is controlled by the mobility coefficient μ. How-
ever, solving the model in a dynamic geometry with varying μ indi-
cates that the final length of the endocytic tubule is virtually insen-
sitive to μ. This is because the increase of μ is mitigated by the 
drop in fz that depends on the shear rates ∂rvz , so the elongation 
rate uz does not change appreciably (in computations, we used μ = 
0.4 nm s–1/pN).

The kinetic parameters of actin nucleation and polymerization 
govern the duration of patch assembly, so the time during which the 
patch elongates depends on how quickly fz overcomes the critical 
threshold fc from turgor pressure. The time before fz exceeds fc is 
shorter for larger kvisc, but kvisc has an upper bound. The reason for 
this is that kactive must increase in proportion to kvisc, because the 
ratio kactive/kvisc is limited by a maximum number of subunits in a 
patch, and kactive is limited by the energy constraints considered in 
the previous subsection.

Solving the model in a geometry allowing the invagination to 
lengthen freely yields a growing endocytic tubule (Supplemental 
Movie S1). Figure 5 illustrates the time courses of fz, uz, and invagi-
nation length obtained with n3.69 10 Aactive

–3 2κ = × −  Pa/(μM)2, 
n3.93 Avisc

1κ = −  Pa · s/μM, and the threshold fc = 1894 pN corre-
sponding to a turgor pressure of ≈7 atm. Note that the rate of 
increase of fz drops sharply when the exerted force crosses the tur-
gor-pressure threshold (Figure 5A). Above this threshold, the surface 
area increases, but fz plateaus below the values reached in static 
geometry with the same kactive and kvisc, due to the drop of shear 
rates when the invagination starts to move. This results in a relatively 
short elongation (Figure 5B).

The model produces longer invaginations if we take into ac-
count the effects of the forces produced by actin polymerization 
on the shape of the plasma membrane invagination. The 
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distribution of force density er · σ σ+( ˆ ˆ )viscous active  · n orthogonal to 
an invagination, shown in Figure 6A for the static geometry solu-
tion of the previous subsection, suggests that normal forces tend 
to squeeze the invagination near the plasma membrane and 
stretch the middle of the invagination. If the tubule were not mod-
eled as infinitely rigid, these forces would likely distort the invagi-
nation into a flask or “head-and-neck” shape (Figure 6B), as ob-
served in electron micrographs of budding yeast actin patches 
(Kukulski et al., 2012).

Because turgor pressure is isotropic, the net resistance force fc it 
would produce for the flask shape is proportional to the cross- 
sectional area of the opening of the invagination delineated in 
Figure 6B by dashed lines. Indeed, the net force exerted by turgor 
pressure in the upward direction along the tubule’s axis is 

∫∫∝ θ dscos , where θ (θ∈[0, π]) is the angle that the outward, with 
respect to the cytoplasm, normal vector makes with the axis of sym-
metry; ds is the area of a surface element; and the integral is taken 
over the surface of the invagination. Because cosθ ds is the signed 
area of the surface element projection on the plane perpendicular 
to the axis, the integral yields the difference of the projection area 
obtained for the surface points with θ ≤ π/2 and that for the points 

FIGURE 5: Simulation of the elongation of an endocytic tubule with a fixed threshold 
corresponding to turgor pressure of ≈7 atm. Time zero is the peak of actin assembly. (A) Time 
course of net tangential force (solid line) and the speed of elongation (dashed line). (B) Tubule 
length over time.

FIGURE 6: Simulated forces exerted by actin assembly normal to the endocytic tubule. 
(A) Distribution of forces at ≈5 s before peak on a static tubule. (B) Rough sketch of a plausible 
shape if the membrane lining the invagination is flexible. The vertical dashed lines show the area 
of the pore that determines the force produced by the turgor pressure. (C) Time course of the 
force normal to the tubule at its base. Time zero is the peak of actin assembly.

with θ > π/2. This difference is exactly the 
cross-sectional area of the opening delin-
eated by the dashed lines in Figure 6B, 
which is πr2, where r is the radius of the 
opening. Thus, as the opening tightens and 
r diminishes, fc decreases in proportion to r2, 
while the turgor pressure remains un-
changed. We further assume that the radius 
of the opening, initially equal to the radius 
of the tubule R, decreases linearly with the 
normal force fn(t) (Figure 6C), starting with 
some threshold value fn,0 . Then, fc (t,fn,0) = 
fc,maxr2(t)/R2, where fc,max = πR2Pturgor, with 
the turgor pressure Pturgor fixed at ≈9 atm, 
and r(t) = R–k (fn(t)–fn,0) for fn(t) ≥ fn,0. We de-
fine the proportionality coefficient k to find 
the maximum invagination length that our 
model could yield. The corresponding con-
dition is that r approaches zero as 
fn(t)→fn,max. For a full derivation, see “Mod-

eling the time-dependent force due to turgor pressure” in the 
Supplemental Text.

To facilitate the incorporation of the numerically defined fn(t) in 
the model, we observe that the time-dependent threshold fc(t, fn,0) 
is accurately approximated by an analytical function fc,max 
(1 + exp((t − t0)/τ))−1 . The fitting of the analytical function to fc(t, fn,0) 
was done by varying t0 and τ. Parameter τ is largely constrained by 
the time window within which fn(t) takes off, and t0, which is the tim-
ing of the fc(t) decrease, depends in part on fn,0. Varying fn,0 resulted 
only in marginal changes of the simulation outputs. The dashed 
curve in Figure 7A, obtained with t0 = 13 s and τ = 0.66 s, is an ap-
proximation of fc(t) with fc,max = 2538 pN, corresponding to Pturgor ≈ 
9 atm, and fn,0 = 120 pN. Using the same values of κactive, κvisc and 
other model parameters as before, solutions of the model with the 
time-dependent threshold yielded a longer invagination than the 
model with a fixed threshold (Figure 7D and Supplemental Movie 
S2).

The lengths of modeled invaginations are similar to the distances 
that actin patch proteins moved from the cell surface in superresolu-
tion movies, taking into account the size of the protein coat around 
the membrane (Arasada et al., 2018). To illustrate the qualitative 

agreement between the model and experi-
ment, we processed the simulation data us-
ing the protocol of Arasada and Pollard (see 
“Methods” in the Supplemental Text for 
details), so that the results shown in Figure 8 
can be directly compared with the experi-
mental data (see Figure 3, A–F, in Arasada 
et al., 2018).

We compared the solution of the two-
ring model with a fixed threshold fc against 
the corresponding solutions of the models, 
in which all of the NPFs remained at the 
base or moved together with the tip of the 
tubule (Figure 9). For all three versions of 
the model, we used invaginations with the 
same widths and total numbers of NPFs and 
ran the simulations with the same initial con-
ditions. The model with the NPFs remaining 
at the base slightly overperforms the 
two-ring model. In contrast, the model with 
the NPFs moving together with the tip 
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generates significantly weaker forces, resulting in a slower move-
ment and much shorter invagination than the two-ring model. These 
results highlight the importance of the cell wall in supporting the 

FIGURE 7: Simulation of endocytic tubule elongation with the force threshold from turgor pressure decreasing with time. 
Time zero is the peak of actin assembly. (A) Time course of the assumed decrease in force threshold due to turgor pressure, 
fc (dashed curve), and the simulated pushing force, fz (solid line). (B) Time course of the variation in the speed of 
invagination, which begins when fz is greater than fc. (C) Snapshots of r–z sections of the actin filament density around the 
endocytic tubule and its velocities (arrows; scale bar in upper left corner of snapshot in the middle corresponds to 
0.08 µm/s); see also Supplemental Movie S2. (D) Comparison of the time courses of tubule elongation with decreasing 
force from turgor pressure (solid line) against that with a fixed threshold due to turgor pressure in Figure 5B (dashed curve).

FIGURE 8: Simulation of elongating tubule with time-dependent force threshold is consistent 
with experimental data. (A) Heat maps of simulated actin density (see Figure 7), projected on 
plane of image and subjected to median filtering to mimic 35-nm resolution limit due to 
convolution with point-spread function, are shown for selected time points. See “Methods” in 
the Supplemental Text for details of how simulation results were processed for this figure; see 
Supplemental Figure 2 for results before filtering. (B) Width and length distributions of actin 
density, obtained by integrating results of A over time, are consistent with experimental data in 
Arasada et al. (2018). FWHM is the full width of a distribution at half-maximum.

actin meshwork to generate traction forces. The partial absence of 
such support in the two-ring model is mitigated almost entirely by 
the repulsion of the two zones of polymerizing actin.

DISCUSSION
Endocytosis in fission and budding yeast 
depends on forces produced by the assem-
bly of expanding networks of actin filaments 
that drive invagination of the plasma mem-
brane against the high internal turgor pres-
sure. However, it was unclear whether actin 
assembly generates forces sufficient to 
overcome the turgor pressure.

We formulated a mathematical model of 
the forces based on principles of polymer 
physics that integrates the kinetics of the 
biochemical reactions (actin filament nucle-
ation, elongation, capping, and severing), 
the rheological properties of actin filament 
networks, and the time course of numbers 
of participating proteins. Certain modeling 
assumptions and approximations used in 
this study are similar to those adopted in 
other models of endocytosis in yeast (Carls-
son and Bayly, 2014; Carlsson, 2018; Lacy 
et al., 2018; Mund et al., 2018). In particular, 
as in previous studies, we assume that 
movement is transmitted from a growing 
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actin patch to the endocytic invagination via connections of actin 
filaments to the plasma membrane. As assumed previously 
(Carlsson and Bayly, 2014), our model approximates a network of 
actin filaments as a continuous medium, though Carlsson and 
coworkers (as well as the authors of a discrete model in Mund 
et al., 2018) approximate the actin patch as a growing elastic solid. 
Taking into account the turnover of actin in the patch, largely due to 
severing of the filaments by cofilin, we interpret the mechanics of 
the endocytic actin meshwork as that of a viscoelastic fluid, with 
parameters constrained by measured rheological properties of 
overlapping filaments. This has yielded forces sufficient to withstand 
turgor pressure in fission yeast. Simulations of the model also repro-
duce the temporal and spatial distributions of actin filaments at sites 
of endocytosis and point to the flask-type shapes of invaginations of 
the plasma membrane observed by electron microscopy (Kukulski 
et al., 2012).

Our model allows for different assumptions about the location of 
the NPFs that activate the Arp2/3 complex to drive the assembly of 
the actin filament networks. We compared a two-ring hypothesis 
proposed for fission yeast (Arasada and Pollard, 2011; Arasada 
et al., 2018), a model proposed for budding yeast (Picco et al., 
2015; Sun et al., 2017; Mund et al., 2018) in which all NPFs remain 
at the base of the invagination, and a hypothetical model in which 
the NPFs move with the tip of the invagination.

FIGURE 9: Comparison of the simulation results from models with three different locations of 
NPFs: solid lines, two-ring model with NPFs at the base and tip of the invagination; dashed line, 
one-ring model in which all NPFs stay at the base of the invagination; and gray dashed line, 
one-ring model with all NFPs at the tip. Time zero is the peak of actin assembly in the two-ring 
model. Time dependencies for pushing force (A), elongation speed (C), and tubule length (B) are 
shown for elongating invaginations with fixed threshold corresponding to turgor pressure 
≈7 atm.

Simulations of the two-ring model pro-
duced two interacting zones of actin fila-
ments with high densities near the rings. 
The internal repulsive stress generated by 
actin polymerization causes the entire patch 
to expand. Constraints imposed by the 
plasma membrane and cell wall result in ex-
pansion of the network inward and laterally, 
exerting drag on an initial invagination and 
thus pulling it inward. Given the known 
number of polymerized actin subunits and 
viscosity of the actin meshwork, we estimate 
the magnitude of this drag. The dendritic 
structure of the meshwork produces entan-
glement that enhances viscosity to levels 
sufficient to produce forces in the range of 
2200–3000 pN, which, for invaginations 
with typical diameters, would overcome tur-
gor pressure ∼8–10 atm. The estimates are 
within the energy and critical load con-
straints, with the buckling threshold being 
met, in part, with the aid of cross-linking by 
fimbrin.

Simulations of the one-zone models with 
the numbers of NPFs and initial conditions 
used for the two-zone model also produced 
drag on the invagination. The budding 
yeast model with the NPFs remaining at the 
base of the invagination generated forces 
close to those in the two-ring model. This 
result underscores the importance of the 
cell wall, which provides support necessary 
for the actin filament network to generate a 
traction force. In the two-ring model, mutual 
repulsion of the two zones of actin filaments 
compensates for the partial loss of support 
from the cell wall. The model with the NPFs 
moving at the tip generated significantly 

weaker forces, resulting in a much shorter invagination than the two 
other models.

The general model allowed us to simulate the forces required to 
elongate an endocytic tubule, although we used the simplifying as-
sumption that the invagination is a spherocylinder with a fixed ra-
dius. We also assumed that, once the generated force overcomes 
the turgor threshold, all the points on the invagination move with 
the same (but time-dependent) speed = −u t f t f( ) ( ( ) )push cµ . Some-
what counterintuitively, the speed and the length attained by the 
invagination is virtually insensitive to the mobility coefficient μ, but 
rather depends on how early during patch assembly the force pro-
duced by actin assembly fpush(t) overcomes the opposing force from 
turgor pressure fc. For fc corresponding to ∼7-atm turgor pressure, 
the simulations yielded a maximum tubule length somewhat shorter 
than experimental patch sizes.

We discovered that expansion of the actin filament network 
produces radial forces normal to the tubule. The distribution of 
these radial forces along the tubule would tend to squeeze the 
invagination near its opening and stretch the middle, producing 
a shape like a flask, as observed by electron microscopy in bud-
ding yeast (Kukulski et al., 2012). Without reliable information 
about elastic properties of endocytic invaginations, we could not 
solve for shape of the invagination. However, a small pore 
between the exterior and the lumen of the invagination reduces 
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fc as actin assembles. We approximated the effect of this shape 
change by using a threshold fc(t) decreasing over time to show 
that reducing the size of the pore favors the formation of longer 
tubules.

ACKNOWLEDGMENTS
Research reported in this publication was supported by National 
Institute of General Medical Sciences of the National Institutes 
of Health (NIH) under award numbers R01GM026338, 
P41GM103313, and R01GM115636 and by the National Science 
Foundation (NSF) under award number MCB171605. The con-
tent is solely the responsibility of the authors and does not nec-
essarily represent the official views of the NIH or the NSF. 
We thank Rajesh Arasada for advice and superresolution 
measurements of actin patch dynamics. M.N. and B.M.S. thank 
Leslie Loew for continuing support and helpful discussions. The 
research presented in this paper was supported by the systems, 
services, and capabilities provided by the University of Connecti-
cut High Performance Computing facility.

REFERENCES
Aghamohammadzadeh S, Ayscough KR (2009). Differential requirements 

for actin during yeast and mammalian endocytosis. Nat Cell Biol 11, 
1039–1042.

Arasada R, Pollard TD (2011). Distinct roles for F-BAR proteins Cdc15p and 
Bzz1p in actin polymerization at sites of endocytosis in fission yeast. Curr 
Biol 21, 1450–1459

Arasada R, Sayyad WA, Berro J, Pollard TD (2018). High-speed superresolu-
tion imaging of the proteins in fission yeast clathrin-mediated endocytic 
actin patches. Mol Biol Cell 29, 295–303.

Basu R, Munteanu EL, Chang F (2014). Role of turgor pressure in endocyto-
sis in fission yeast. Mol Biol Cell 25, 679–687.

Berro J, Pollard TD (2014). Synergies between Aip1p and capping protein 
subunits (Acp1p and Acp2p) in clathrin-mediated endocytosis and cell 
polarization in fission yeast. Mol Biol Cell 25, 3515–3527.

Berro J, Sirotkin V, Pollard TD (2010). Mathematical modeling of endocytic 
actin patch kinetics in fission yeast: disassembly requires release of actin 
filament fragments. Mol Biol Cell 21, 2905–2915.

Broedersz CP, MacKintosh FC (2014). Modeling semiflexible polymer net-
works. Rev Mod Phys 86, 995–1036.

Buxbaum RE, Dennerll T, Weiss S, Heidemann SR (1987). F-actin and micro-
tubule suspensions as indeterminate fluids. Science 235, 1511–1514.

Carlsson AE (2018). Membrane bending by actin polymerization. Curr Opin 
Cell Biol 50, 1–7.

Carlsson AE, Bayly PV (2014). Force generation by endocytic actin patches 
in budding yeast. Biophys J 106, 1596–1606.

Chen Q, Pollard TD (2013). Actin filament severing by cofilin dismantles 
actin patches and produces mother filaments for new patches. Curr Biol 
23, 1154–1162.

Cox WP, Merz EH (1958). Correlation of dynamic and steady-flow viscosities. 
J Polym Sci 28, 619–622.

Doi M, Edwards S (1998). The Theory of Polymer Dynamics, New York: 
Oxford University Press.

Footer MJ, Kerssemakers JWJ, Theriot JA, Dogterom M (2007). Direct 
measurement of force generation by actin filament polymerization using 
an optical trap. Proc Natl Acad Sci USA 104, 2181–2186.

Gardel ML, Valentine MT, Crocker JC, Bausch AR, Weitz DA (2003). 
Microrheology of entangled F-actin solutions. Phys Rev Lett 91, 158302.

Jin AJ, Prasad K, Smith PD, Lafer EM, Nossal R (2006). Measuring the elas-
ticity of clathrin-coated vesicles via atomic force microscopy. Biophys J 
90, 3333–3344.

Kaksonen M, Roux A (2018). Mechanisms of clathrin-mediated endocytosis. 
Nat Rev Mol Cell Biol 19, 313–326.

Kasza KE, Broedersz CP, Koenderink GH, Lin YC, Messner W, Millman EA, 
Nakamura F, Stossel TP, MacKintosh FC, Weitz DA (2010). Actin filament 
length tunes elasticity of flexibly cross-linked actin networks. Biophys J 
99, 1091–1100.

Kruse K, Joanny J-F, Jülicher F, Prost J, Sekimoto K (2005). Generic theory 
of active polar gels: a paradigm for cytoskeletal dynamics. Eur Phys J E: 
Soft Matter 16, 5–16.

Kukulski W, Schorb M, Kaksonen M, Briggs JA (2012). Plasma membrane 
reshaping during endocytosis is revealed by time-resolved electron 
tomography. Cell 150, 508–520.

Lacy MM, Ma R, Ravindra NG, Berro J (2018). Molecular mechanisms of 
force production in clathrin- mediated endocytosis. FEBS Lett 592, 
3586–3605.

Landau LD, Lifshitz EM (1987). Fluid Mechanics, Vol. 6, Course of 
Theoretical Physics, New York: Pergamon Press.

MacKintosh FC, Käs J, Janmey PA (1995). Elasticity of semiflexible 
biopolymer networks. Phys Rev Lett 75, 4425.

McFadden WM, McCall PM, Gardel ML, Munro EM (2017). Filament turn-
over tunes both force generation and dissipation to control long-range 
flows in a model actomyosin cortex. PLoS Comp Biol 13, e1005811.

Mullins RD, Kelleher JF, Xu J, Pollard TD (1998). Arp2/3 complex from 
Acanthamoeba binds profilin and cross-links actin filaments. Mol Biol 
Cell 9, 841–852.

Mund M, van der Beek JA, Deschamps J, Dmitrieff S, Hoess P, Monster J-L, 
Picco A, Nédélec F, Kaksonen M, Ries J (2018). Systematic nanoscale 
analysis of endocytosis links efficient vesicle formation to patterned 
actin nucleation. Cell 174, 884–896.

Nickaeen M, Novak IL, Pulford S, Rumack A, Brandon J, Slepchenko BM, 
Mogilner A (2017). A free-boundary model of a motile cell explains turn-
ing behavior. PLoS Comp Biol 13, e1005862.

Novak IL, Gao F, Kraikivski P, Slepchenko BM (2011). Diffusion amid random 
overlapping obstacles: similarities, invariants, approximations. J Chem 
Phys 134, 154104.

Novak IL, Kraikivski P, Slepchenko BM (2009). Diffusion in cytoplasm: effects 
of excluded volume due to internal membranes and cytoskeletal struc-
tures. Biophys J 97, 758–767.

Peskin CS, Odell GM, Oster GF (1993). Cellular motions and thermal fluc-
tuations: the Brownian ratchet. Biophys J 65, 316–324.

Picco A, Mund M, Ries J, Nédélec F, Kaksonen M (2015). Visualizing the 
functional architecture of the endocytic machinery. eLife 4, e04535.

Prost J, Jülicher F, Joanny J-F (2015). Active gel physics. Nat Phys 11, 
111–117.

Satcher RL Jr, Dewey CF Jr (1996). Theoretical estimates of mechanical 
properties of the endothelial cell cytoskeleton. Biophys J 71, 109–118.

Sato M, Schwarz WH, Pollard TD (1987). Dependence of the mechanical 
properties of actin/α-actinin gels on deformation rate. Nature 325, 
828–830.

Scher-Zagier JK, Carlsson AE (2016). Local turgor pressure reduction via 
channel clustering. Biophys J 111, 2747–2756.

Schmit JD, Kamber E, Kondev J (2009). Lattice model of diffusion-limited 
bimolecular chemical reactions in confined environments. Phys Rev Lett 
102, 218308.

Sirotkin V, Berro J, Macmillan K, Zhao L, Pollard TD (2010). Quantitative 
analysis of the mechanism of endocytic actin patch assembly and disas-
sembly in fission yeast. Mol Biol Cell 21, 2894–2904.

Sun Y, Leong NT, Jiang T, Tangara A, Darzacq X, Drubin DG (2017). 
Switch-like Arp2/3 activation upon WASP and WIP recruitment to an 
apparent threshold level by multivalent linker proteins in vivo. eLife 6, 
e29140.

Tseng Y, Wirtz D (2004). Dendritic branching and homogenization of actin 
networks mediated by Arp2/3 complex. Phys Rev Lett 93, 258104.

Wachsstock DH, Schwarz WH, Pollard TD (1994). Cross-linker dynam-
ics determine the mechanical properties of actin gels. Biophys J 66, 
801–809.

Wirtz D (2009). Particle-tracking microrheology of living cells: principles and 
applications. Annu Rev Biophys 38, 301–326.

Zaner KS, Stossel TP (1983). Physical basis of the rheologic properties of 
F-actin. J Biol Chem 258, 11004–11009.




