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Several efforts have been made to completely automate cephalometric analysis by automatic landmark search. However, accuracy
obtained was worse than manual identification in every study. The analogue-to-digital conversion of X-ray has been claimed
to be the main problem. Therefore the aim of this investigation was to evaluate the accuracy of the Cellular Neural Networks
approach for automatic location of cephalometric landmarks on softcopy of direct digital cephalometric X-rays. Forty-one, direct-
digital lateral cephalometric radiographs were obtained by a Siemens Orthophos DS Ceph and were used in this study and 10
landmarks (N, A Point, Ba, Po, Pt, B Point, Pg, PM, UIE, LIE) were the object of automatic landmark identification. The mean
errors and standard deviations from the best estimate of cephalometric points were calculated for each landmark. Differences in
the mean errors of automatic and manual landmarking were compared with a 1-way analysis of variance. The analyses indicated
that the differences were very small, and they were found at most within 0.59 mm. Furthermore, only few of these differences
were statistically significant, but differences were so small to be in most instances clinically meaningless. Therefore the use of X-
ray files with respect to scanned X-ray improved landmark accuracy of automatic detection. Investigations on softcopy of digital
cephalometric X-rays, to search more landmarks in order to enable a complete automatic cephalometric analysis, are strongly
encouraged.

Copyright © 2009 Rosalia Leonardi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Since the introduction of the cephalometer in 1931 [1],
cephalometric analysis has become an important clinical tool
in diagnosis, treatment planning, evaluation of growth, or
treatment results and research [2, 3].

Recently, due to the affordability of digital radiographic
imaging, the demand for the medical profession to com-
pletely automate analysis and diagnostic tasks has increased.
In this respect, automatic cephalometric analysis is one of the
main goals, to be reached in orthodontics in the near future.
Accordingly, several efforts have been made to automate
cephalometric analysis [4].

The main problem, in automated cephalometric anal-
ysis, is landmark detection, given that the measurement

process has already been automated successfully. Different
approaches that involved computer vision and artificial intel-
ligence techniques have been used to detect cephalometric
landmarks [5–22], but in any case accuracy was the same or
worse than the one of manual identification; for a review see
Leonardi et al. [4]. None of the proposed approaches solves
the problem completely, that is, locating all the landmarks
requested by a complete cephalometric analysis and with
accuracy suitable to clinical practice.

It should be emphasized that reliability in the detection
of landmarks is mandatory for any automatic approach, in
order to be employed for any clinical use. As previously stated
[4], among the possible factors that reduce reliability the loss
of image quality, inherent to digital image conversion and
compression in comparison with the original radiograph,
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has been claimed [3, 23, 24]. In fact, this analogue-to-digital
conversion (ADC) results in the loss and alteration of infor-
mation due to the partial volume averaging; consequently
many edges are lost or distorted.

To the best of our knowledge, every study on auto-
matic landmarking has been carried out on scanned lateral
cephalograms transformed into digital images [4], and this
could explain in some way the inaccuracies of automatic
location compared to the manual identification of land-
marks. Recently, a new hybrid approach, which is based on
Cellular Neural Networks (CNNs), has been proposed for
automatic detection of some landmarks [21, 22]. Results of
evaluation of the method’s performance on scanned cephalo-
grams were promising; nevertheless, for some landmarks the
error in the location was often greater than the one of manual
location.

Due to the promising results already obtained with CNNs
[21, 22], the aim of this study was to evaluate the accuracy
of the CCNs-based approach for the automatic location
of cephalometric landmarks on direct digital cephalometric
X-rays. Thus the method proposed in [21, 22] has been
extended in two respects: by improving the algorithms
employed to detect 7 landmarks and by developing the
algorithms needed to locate 3 additional landmarks (Porion,
Basion, and Pterygoid point); of these latter, two especially
difficult landmarks (Basion and Pterygoid point) that are
used in the most common cephalometric analysis were
located for the first time in literature. For an overall
evaluation of the clinical viability of automated landmarking
of this extended method, in this investigation the following
null hypothesis was tested: there is no statistically significant
difference in accuracy between the 10 landmarks automati-
cally located by this approach and the “true” location of every
landmark.

2. Materials and Methods

2.1. Image Sample. Forty-one lateral cephalometric radio-
graph files taken at the Orthodontic Department of Poli-
clinico, University Hospital of Catania, Italy, were used in
this study. A written informed consent to participate in the
study, approved by the Ethical Committees of the relevant
institution, was obtained from all subjects.

The radiograph files were randomly selected, disregard-
ing the quality, from the patients currently undergoing
orthodontic treatment within the department. Males and
females were equally distributed in the sample. The type
of occlusion and the skeletal pattern were, deliberately, not
taken into consideration in the study design. The subjects
were aged between 10 and 17 (mean age 14.8 years). Exclu-
sion criteria were the following: obvious malpositioning of
the head in the cephalostat, unerupted or missing incisors,
no unerupted or partially erupted teeth that would have
hindered landmark identification, patients with severe cranio
facial deviations, and posterior teeth not in maximum
intercuspation. X-ray files collection was approved by the
Local Research Ethics Committee, and informed written
consent was obtained from each subject.

The direct-digital cephalometric radiographs were obtai-
ned by a Siemens Orthophos DS Ceph (Sirona Dental, Ben-
sheim, Germany).

This radiographic system uses a CCD sensor chip as an
image receptor. The signals are acquired at a bit depth of
12 bit (4096 grey levels), but this is subsequently reduced
in the default preprocessing procedure to 8 bits (256 grey
levels). The resulting image is saved as TIFF file at 300 dpi;
thus the pixel size in the image was 0.085 mm and the
resolution was 11.8 pixels per mm. The exposure parameters
for the digital cephalographs were 73 kV, 15 mA, and 15.8
seconds. According to the manufacturer’s specifications, the
machines provide focus-to-receptor distances of 1660 mm.

The digital images were stored on a Personal Computer
with Intel Pentium IV, 3.2 GH with 2 GB RAM, 300 GB Hard
Disk (ASUSTeK Computer Incorporated) with Microsoft
Windows XP Professional Service Pack 2 as operating system
and were displayed on a 19-inch flat TFT screen (Samsung
SyncMaster 913 V), set to an average resolution of 1280 ×
1024-pixel, with bandwidths between 60 and 75 HZ, and
a dot pitch of 0.294 mm, with standard setting: 80% for
contrast and 20% for brightness), at first to find the
best estimate for each landmark and thereafter to obtain
the cephalometric points automatically located. The TFT
monitor was selected to prevent parallax errors.

2.2. Best Estimate for Cephalometric Landmarks. A software
tool was designed and implemented in Borland C++ version
5.0 produced by Borland Software Corporation (Austin,
Texas, USA). This software tool allowed the digitization of
landmarks by experienced orthodontists directly on the X-
ray shown on the monitor as well as their recording on an x-
y system. Prior to the study the apparatus was checked for its
accuracy by repeated recording of an image of known exact
dimensions and by measuring known distances.

The 41 cephalograms were landmarked directly on the
computer monitor, by experienced orthodontists to provide
the best estimate. Five orthodontists with at least 6 years
of clinical experience from the Orthodontic Department
of Catania University evaluated the images. Their working
experiences were 6 to 11 years (median 8 years). The
observers were briefed on the procedure before image
evaluation. An agreement was reached on the definitions
of landmarks before carrying out this study, and these
written definitions for each landmark were reviewed with
and provided to the 5 evaluating participants (Table 1). All
work was conducted in accordance with the Declaration of
Helsinki (1964). A written consensus was obtained by all the
participants.

10 landmarks (Table 1) were target of automatic land-
mark identification; the observers were asked to identify
them. Complete anonymity of the 41 films was maintained
with image code names and random assignment of the
images to study participants. Landmarks were pointed by
using a mouse controlled cursor (empty arrow) linked to the
tracing software in a dark room, the only illumination being
from the PC-monitor itself. No more than 10 radiographs
were traced in a single session to minimize errors due to the
examiner’s fatigue [25].
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Table 1: Definitions of landmarks.

Landmarks

Name Abbreviation Definition

Nasion N Anterior limit of sutura nasofrontalis

Subspinale A Point

Deepest point on contour of alveolar
projection between spinal point and
prosthion

Basion Ba

The most inferior point on the anterior
border of the foramen magnum in the
midsagital plane

Porion Po
The most superiorly positioned point of the
external auditory meatus

Pterygoid point Pt

The intersection of the inferior border of the
foramen rotundum with the posterior wall
of the pterygomaxillary fissure

Supramentale B Point

Deepest point on contour of alveolar
projection between infradentale and
pogonion

Pogonion Pg The most anterior point of symphysis

Protuberance menti- or suprapogonion PM

A point selected where the curvature of
anterior border of the symphysis changes
from concave toconvex

Upper incisor edge UIE
Incisal edge of the most anterior upper
incisor

Lower incisor edge LIE Incisal edge of the most anterior lower
incisor

Every landmark was expressed as x (horizontal plane)
and y (vertical plane) coordinates with an origin fixed to a
given pixel. The “true” location of every landmark or best
estimate was defined as the mean of these five records from
the five observers. The mean clinicians’ estimate was then
used as a baseline to be compared with the cephalometric
points detected by the automated system.

2.3. Cellular Neural Networks and Automatic Landmark
Identification. The automatic analysis was undertaken once
on each of the 41 images to detect the same 10 landmarks
(Table 1). The approach used for automated identification of
cephalometric points is based on Cellular Neural Networks
(CNNs). CNNs [26–28] are a new paradigm for image
processing. A CNN is an analog dynamic processor, where
dynamics can be described either in a continuous manner
(Continuous Time CNN or CT-CNN) or in a discrete
manner (Discrete Time CNN or DT-CNN). CNNs are
formed by a set of processing elements, called neurons,
usually but not necessarily arranged along a matrix in two
or more dimensions. Communication is allowed between
elements inside a neighborhood, whose size is defined by the
user. Feedback connections are allowed, but not recurrent
ones. The dynamics of each neuron depends on the set of

inputs on its state and produces one output (there are also
CNN variations with multiple outputs).

In general, the state of a computational element is a linear
combination of inputs and outputs. In this case we have
linear CNN, the type used in this work. Since every neuron
implements the same processing function, the use of CNN
is suitable for image processing algorithms. In this work we
deal with a 2D matrix topology. In this framework a cell in a
matrix of M × N is indicated by C(i, j). The neighborhood
of the interacting cells is defined as follows:

Nr
(
i, j
) = {C(k, l) : max

(|k − i|,∣∣i− j
∣
∣) ≤ r,

1 ≤ k ≤M; 1 ≤ k ≤ N}.
(1)

CNN dynamics is determined by the following equations,
where x is the state, y the output, and I the input:
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A compact representation of the CNN is by means of a string
called “gene” that contains all the information needed for its
simulation; for a 5×5 neighborhood this gene is represented
by 51 real numbers: the threshold I , twenty five control (feed
forward) coefficients for the B matrix (bi, j), and twenty five
feedback coefficient for the A matrix.

The values in the A and B matrices correspond to the
synaptic weights of a neural network structure. Matrices
A and B are known, respectively, as feedback and control
“templates,” and the way each CNN processes its input
is determined by the values of these two “templates” and
by the number of cycles of computation. Changing these
parameters amounts to a different algorithm performed on
the input matrix. CNNs are especially suitable for image
processing tasks because they allow pixel by pixel elaboration
taking into account the pixel neighborhood. Libraries of
known templates for typical image processing operations are
available [27, 29] and the sequential application of different
templates can be used to implement complicated image
processing algorithms.

To completely define the previous equations the bound-
ary conditions for those cells whose neighborhood extends
outside the input matrix must be specified. Typical boundary
conditions are the Dirichlet (Fixed) boundary condition, in
which a fixed (zero) constant value is assigned to the state xi, j
to all cells that lie outside the input matrix, and the Neuman
(zero flux) condition, in which the state xi, j of corresponding
cells perpendicular to the boundaries is constrained to be
equal to each other. Finally, equation (2) is fully defined if
we specify the initial state xi, j(0) for all the cells. Frequent
choices for this initial state matrix are all zero or equal to the
input image.

Various CNN models have been proposed for medical
image processing. In [30] the 128 × 128 CNN-UM chip
has been applied to process X-rays, Computer Tomography,
and Magnetic Resonance Image of the brain, by applying
different CNN templates. Aizenberg et al. [28] discuss two
classes of CNN, in particular binary CNN and Multivalued
CNN, and their use for image filtering and enhancement. In
[31] Gacsádi et al. presents image enhancement techniques
such as noise reduction and contrast enhancement with
CNN and discuss the implementation on chips.

Giordano et al. [21] applied CNN techniques to Cephalo-
metric analysis. By choosing appropriate templates, chosen
to take into account different X-ray qualities (in terms of
brightness and contrast), all filtering task can be performed
in a more robust and precise way. Then-edge based, region-
based, and knowledge based tracking algorithms are used to
find the different landmarks. This technique has also been
used to find landmarks in partially hidden regions, such as
Sella and Orbitale [22]. These studies have demonstrated that
CNNs are versatile enough to be used also for the detection of
landmarks that are not located on edges, but on low-contrast
regions with overlapping structure. With respect to other
image filters, such as the one obtained by applying to the
image the Laplace, the Prewitt, or the Sobel operators, binary
CNNs can obtain a more precise edge detection, especially in
case of a small difference between brightness of the neighbor
objects.

Check of
anatomical
constraints

Resize of
digital X-ray

Noise removal

For each landmark:
initial setting of CNN

parameters based
on assessment of

relevant region in 
input image    

Image processing by 
CNN templates

Landmark search by
knowledge-based

algorithms  

Output:
 landmark coordinates

Change CNN
parameters

Yes

No

Figure 1: Flow chart describing the steps of automatic detection of
cephalometric points.

In this work, to locate the new landmarks Porion, Basion,
and Pterygoid point an adaptive approach is proposed, by
which the CNN parameters are chosen adaptively based
on the type of landmark to be located and on the X-ray
quality, this is followed by the application of algorithms for
landmark location that encode knowledge about anatomical
constraints and perform an adaptive search strategy.

The software that performs the automated landmarking
has two main processing modules: a CNN simulator that
suitably preprocesses the digital X-ray accordingly to the
landmark being sought, and a module containing a set of
algorithms that apply anatomical knowledge (morphological
constraints) to locate each landmark on the preprocessed
image. The flow of computation is shown in Figure 1. A first
image preprocessing step is applied in order to eliminate
noise, and enhance brightness and image contrast. Then
the method proceeds with a sequence of steps in which
identification of the landmarks coordinates is done, for
each point, by appropriate CNN templates followed by the
application of landmark-specific search algorithms.

The CNN simulator has been developed in Borland C++
version 5.0 and proceeds with a sequence of steps in which
the landmarks of Table 1 are identified in their x and y
coordinates. A detailed description of the simulator and of
the interface of the landmarking tool has been previously
reported [21, 32]; in this work we use a new version that
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Figure 2: The CNN simulator interface.

allows the landmarking of the three new points and also has
additional facilities, such as allowing the user to define an
arbitrary portion of the image to be processed, an adaptative
brightness improvement algorithm, a contrast enhancement
function, possibility to store the CNN output as initial state
or as initial input value or both, and to allow the execution
of an algorithm specified as a sequence of templates.

The simulator treats images of arbitrary dimension with
256 grey levels. The image is mapped to a CNN of the same
size. The grey level of each image pixel is normalized in
the interval (−1, 1) where −1 corresponds to white and 1
to black. The interface (Figure 2) allows to set the template
parameters, the boundary conditions (Dirichlet the default,
or zero-flux), the initial state X(0), and the input value U for
each network cell. In the present work we use CNN output
not necessarily in the steady state.

For this investigation new “knowledge-based” algorithms
have been implemented, to locate new landmarks (Porion,
Basion and Pterygoid point) and to improve landmark
identification accuracy for the previously detected ones
(Nasion, A point, B Point, Protuberance Menti, Pogonion,
Upper Incisor Edge, and Lower Incisor Edge) [21, 22, 33, 34].
The feedback and control templates used by the software

have been designed based on knowledge of CNN templates’
behavior and subsequent fine-tuning. The search algorithms
are based on a laterolateral head orientation but do not
require a head calibration procedure or a fixed head position.
A detailed description of each algorithm is given in the
following.

2.4. Landmark Identification Algorithms. The CNNs are
simulated, if not otherwise stated, under the following
conditions: (1) initial state: every cell has a state variable
equal to zero (xi j = 0); (2) boundary condition: ui j = 0
(Dirichlet contour). The majority of the feedback templates
(A) used in this work are symmetrical, which ensures that
operations reach a steady state, although in our approach
we exploit the transient solutions provided by the CNNs.
For these reasons number of cycles and integration steps
become important information for point identifications. If
not mentioned otherwise, we consider bias = 0; integration
steps = 0.1; cycle 60. In the following we exemplify the
methodology that has been used.

Since the incisors configuration variability is high, in this
work a configuration where the up incisor is protruding with
respect to the inferior one has been hypothesized. After noise
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Figure 3: First control template for incisors and CNN output.
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Figure 4: Second control template for incisors and CNN output.

removal and preprocessing, two steps are performed: the first
one uses the control template reported in Figure 3, and the
second one uses the control template reported in Figure 4. In
both cases bias = −0.1; integration step = 0.2 and 60 cycles.
With these templates both incisors are light up.

From the CNN output we search for the more protruding
tooth and hence find its tip. From this point we proceed
for searching the tip of the second incisor that, under our
hypothesis, is located downward. A simple extension will be
to remove the hypothesis and find the tip in an ROI going
upward or downward.

In order to find the points A and B we apply the template
shown in Figure 5, with bias 0 and 25 cycles. The resulting
image is shown in Figure 5.

The landmark search starts from the upper incisor,
for which only a rough approximation of the landmark
coordinates is needed, since the algorithm is robust even for
error greater than 5 millimeters in up incisor location (error
never experienced by our method in the processed X-rays).
The A point is searched going up following the bone profile
and stopping when the bone profile column stops decreasing
(going to the left) and starts increasing (going to the right) or
when a jump in the column coordinate of the profile is found.
Differences in the luminosity level in the X-ray that produce
a different output level in the CNN are taken into account
by using a dynamic threshold to find the bone profile: a
threshold of −0.99 that corresponds to a white normalized
color is used to start; if there is not a pixel whit this level in
the considered row, the threshold is increased by 0.01, until
a bone pixel is found. The process is repeated for every row.
Then the coordinates of the candidate A point are checked: if
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Figure 5: Control template for A and B points and CNN output.

Figure 6: Binarized image for Nasion identification.

the point is too much to the left compared to the up incisor
or too much up or near the up incisor the search is repeated
by a more aggressive saturation: in the previous template the
±1 values are replaced with ±2 and the result is checked
against the soft tissue profile, since a greater saturation also
highlights the soft tissue profile.

For B point a similar procedure is used, but instead of
going upward the bone profile is followed going downward
from the up incisor; also in this case the checking procedure
may lead to repeat the process with a more aggressive
saturation. Soft tissue identification is avoided by comparing
the column of the candidate with the column of the incisor: if
the column of the candidate is too near or to the right to the
incisor column, we have found a point in the soft tissue. The
result is corrected by finding the first highlighted point in the
same row but to the left (the bone). Soft tissue information
could be used to overcome problems in finding the B point
for symphysis of type B and D that present a flat or almost flat
profile. In this case the soft tissue profile can guide the search
in order to find the row and then from the located row search
the column corresponding to the bone profile.

In order to find the Nasion two steps are needed: first the
most anterior point in the frontal bone profile is located, and
then from this point the bone profile is followed searching
for the posterior point at the intersection with the nose bone
profile. In order to find the most anterior point of the frontal
bone after noise removal the image is binarized as shown in
Figure 6.

In the binarized X-ray we find the most anterior point
of the frontal bone. Since binarization could lead to bone
removal (as shown in Figure 6), the point is double checked
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Figure 7: Control template for Nasion and CNN output.
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Figure 8: Control Template for Pogonion and Protuberance Menti
and CNN output.

by applying a similar search in the X-ray after applying the
template in Figure 7 with bias = 0 and 25 cycles. The result is
shown in Figure 7.

The posterior point in some cases could erroneously be
located in the soft tissue. Thus a search for other highlighted
pixels to the left is performed, and if a point to the left
with a column value greater than the value found in the
binarized image is found, this is taken as the posterior point
in the frontal bone. As is shown in Figure 7, the template
has highlighted the frontal bone profile and the nose profile.
By following this profile, we search for the anterior point
and the intersection between the frontal bone profile and the
nose bone profile, that is, the Nasion. The found coordinates
are checked: if Nasion coordinates are equal or too close
to the posterior point of the frontal bone, we are dealing
with an X-ray with a flat bone profile. In this case the
search is repeated starting from few rows downward or by
a less aggressive saturation (by replacing ±3 with ±2 in the
previous template) since a greater saturation tends to flatten
all the bone profiles.

In order to find Pogonion and Protuberance Menti, first
the jaw profile is highlighted by applying the template of
Figure 8, with bias = 0 and 25 cycles, and is used as starting
point for the search. The Pogonion and Protuberance Menti
are found by following the bone up in the front profile. This
profile is highlighted by a vertical derivate template, such as
the one reported in Figure 5, with parameters depending on
the luminosity level in the region of interest (ROI).

In order to find the landmarks Basion and Porion, the
preprocessing step aims to find the width of the spine
including the soft tissue, its axis, and a bell-shaped region
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1 0
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0

0
–1
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1

1

Figure 9: Feedback template and CNN output for the first step of
the Basion algorithm.
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Figure 10: Control Template for the spine and CNN output.

of interest (ROI) that, with high probability, will contain the
Basion and Porion. To find this ROI the template of Figure 9
with bias 1.34 and 3 cycles is applied. Then a highlighted zone
(values of the output <= threshold) is searched in the first 2/3
of the X-ray height and in the left half of X-ray width. The
threshold is dynamically changed from a starting point of
−0.99 until a region of white pixels of suitable size is found.
Then a rounding of the zone is performed by cutting the tails
of the bell-shaped area.

The process is repeated with the same templates but with
fewer cycles in order to give robustness to the algorithm and
take into consideration differences in the X-rays quality. If the
difference between the two procedures is too high, the second
result is taken, otherwise the first one is taken since Basion
lies at the bottom of the region: if the zone is too narrowed
the searched point can be lost. This zone will be the ROI for
Basion and Porion.

The width of the spinal column including the soft tissue
is found by applying the template that corresponds to a
vertical derivative that sharpens vertical edge. The template,
applied with bias = 0 for 25 cycles, and its result are shown
in Figure 10. The spine axis is used as a reference line.

The landmark Basion will be searched in the second
half of the height of the found ROI for Basion and
Porion landmarks. Its location is checked against anatomical
constraints, in particular its distance from the spine and its
upper bone, length of the occipital bone starting from the
candidate Basion, and its position with respect to the spine
axis. To locate the Basion we first apply the template in
Figure 11 with bias = 0 for 25 cycles.
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Figure 11: First Control Template for the Basion and CNN output.
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Figure 12: Second feedback template for the Basion and CNN
output.

This first CNN is able to highlight the Basion. The value
of the template could be increased until at least a point in the
ROI is highlighted. The CNN output is stored on the initial
state of the CNN, and the template of Figure 12 is applied
in order to follow the occipital bone (that must be present
and have a sufficient length) and check the Basion against
anatomical constraints. The template is applied with bias =
0.8 and 5 cycles.

In order to find Porion, starting from the same ROI used
to find Basion, the template shown in Figure 13 is applied,
with bias 1.34 and 1 cycle; then the area is binarized and the
inside is searched for black rounded shape spots resembling
the auditory conduct. For better separation of the spots from
the walls of the area the same template is re-applied with a
greater number of cycles (2 cycles), the image is binarized, the
spots are located, and the union with the black spots located
with the previous template is performed. For each spot,
parameters such as its area, its height, its width, its shape,
and the center are determined. These parameters are used
to discriminate between spots that correspond to auditory
conducts and spots that are noise.

Figure 13 shows the area binarized for the application of
the template with 1 and 2 cycles. In this case the first template
(result to the left) gives the best results. In other cases it is the
second template that gives the best results.

If the parameters of the spots do not satisfy anatomical
constraints (i.e., area, or width, or height) or the located
landmark is too far from the center of the spot where it lies
the same template with an increased bias until the spots and
the located landmark satisfy the anatomical constraints, the
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0
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0

1

1

(a) (b) (c)

Figure 13: Feedback template for the Porion (c); binarized CNN
output for one cycle (a) or 2 cycles (b).

algorithm is able to correctly find the Porion landmark even
if in the X-ray both the auditory conducts are visible. In this
case the landmark is computed as the middle point between
the two auditory conducts. Figure 14 shows the location of
the automatically detected Porion (in green) and the expert
location (in red) in three different cases.

In order to locate the Pterygoid point, first a ROI
delimited by the right side of the Basion-Porion ROI and by
the left most side of the ocular cavity is located. The ocular
cavity is highlighted by applying the feedback template of
figure 12 with bias = 1.34 and 3 cycles, followed by image
binarization. The next step consists in locating the Pterygoid
fissure; this is done in two steps: first we locate the right wall
of the fissure by the template in Figure 15, with bias = 0 and
60 cycles.

The template parameters and the number of cycles are
changed until the right wall of the Pterygoid fissure is
detected, with a search constrained by distance from the
orbital cavity. The left wall is searched by applying a CNN
with similar templates but different parameters, and by using
a dynamic threshold to differentiate between white and black
pixels and to follow it until the upper part of the Pterygoid
fissure is reached and hence the landmark is located. The
landmark coordinates are checked against the distance from
the right wall of the fissure. If the constraint is not satisfied,
a recovery procedure, that depends on the distance between
the landmark and the right wall of the fissure (too low or too
high), is implemented by changing both the templates (more
aggressive or less aggressive) and the threshold used to follow
the highlighted wall of the fissure. Figure 16 shows the final
computation with the Pterygoid fissure highlighted.

2.5. Statistical Analysis. Landmarks from the automatic
system’s estimate with the best estimate (mean clinician’s
estimate) were compared in a horizontal (x) and vertical (y)
coordinate system at first in pixels. Afterwards, the mean
differences between methods were expressed in millimeters.
The mean errors and standard deviations from the best
estimate were calculated for each landmark. Mean errors
in this study were defined as mean magnitude in distance
between the best estimate and selected landmarks for all the
41 radiographs. The data set of point coordinates obtained
from the landmarking software was screened for outliers, and
for each landmark coordinate mean substitution was used for
the missing data points.



Journal of Biomedicine and Biotechnology 9

Figure 14: Three cases of automatic location of Porion. In red is the
expert landmark, and in green is the automatic landmark.
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Figure 15: First control template for the Pterygoid fissure and CNN
output.

Differences in the absolute mean errors of automatic
landmarking and the best estimate were compared with a 1-
way analysis of variance to test the null hypothesis that the
mean errors obtained by automatic landmark detections are
the same of mean value errors obtained by manual detection.
If P < .05, the test rejects the null hypothesis at the α = 0.05
significance level.

All statistical analyses were done with the software Statis-
tical Package for Social Science (SPSS Inc, Chicago, USA).

3. Results

Landmarks automatically detected and best estimates
obtained from 41 randomly selected digital images were
available for statistical analysis. A first indication on the rate
of success of the method is provided by the analysis of the
outliers. The number of outliers was different according to
the point sought. For 4 of the points (Pogonion, Protuber-
ance Menti, Upper Incisor edge, and Lower incisor edge) the
percentage of outliers was less than 3% (0 or 1 case out of
41); for 3 points (Nasion, Basion, and Porion) it was less than
10% (3 or 4 cases out of 41); for 3 points (A Point, Pterygoid
point and B Point) it was between 15% and 20% (6 to 8
cases out of 41). Table 2 gives the measurement differences
between the 2 methods. Seven out of twenty measurements’
errors were statistically significant (P < .05).

Figure 16: CNN final output and Pterygoid fissure.

However, the magnitude of mean errors between auto-
matic identification of each landmark and the best estimate
of cephalometric points was very small; in fact every error
landmark automatically detected was found within 0.59 mm
with respect to the best estimate. Only 1 measurement (A
Point) had values above 0.5 millimeter on the X axis, and
1 measurement (Porion) above 0.5 millimeter on the Y axis
(Table 2). The total time required to automatically extract all
the ten landmarks from each individual X-ray was 4 minutes
and 17 seconds.

4. Discussion

Our investigation was carried out on 41 randomly selected X-
ray files of direct digital radiography, deliberately disregard-
ing the quality in order to simulate clinical condition.

Errors between automatic identification of each land-
mark and the best estimate of cephalometric points were
different in the horizontal (x) and vertical (y) coordinate
system. Some cephalometric points yield better results on
the horizontal (x) axis (Nasion, Pogonion, Porion, and
Protuberance Menti,); others showed less error on the
vertical (y) axis (A point and Pterygoid point). This is
in line with the statement that the distribution of errors
for many landmarks is systematic and follows a typical
pattern (noncircular envelope) [35]. In fact it has been
reported that some cephalometric landmarks are more
reliable in the horizontal dimension while others are more
reliable in the vertical dimension [35]. The reasons for these
differences in distribution of landmark identification error
are often related to the anatomical variability of the landmark
location.

For 6 landmarks out of 10, it was possible to carry
out a comparison with data on accuracy reported by a
meta-analysis study [35]. Most of the points, automatically
detected in our study, showed lower errors compared to
findings obtained for each point by meta-analysis. A few
points yielded slightly worse result. However, even if some
differences between automatic detection and best estimate
were statistically significant, the mean errors were so low to
be, in most instances, clinically meaningless.

All in all, a better level of accuracy, with respect to our
previous data [21, 22] and findings reported in literature
[4] was obtained in this study. There could be at least two
reasons for this improvement, namely, the use of a softcopy
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Table 2: Mean difference between the average distance from the best estimate of landmark position of automated and manual landmarking,
standard deviation (SD) (expressed in mm), and results of 1-way ANOVA test. NS indicates no statistically significant difference and the
number of asterisks (∗) the level of significance.

Landmark coordinates Mean difference Standard deviation (SD) F-value P-value (ANOVA) S

Nasion
X 0.217 ±0.441 5.076 .027 ∗
Y 0.483 ±0.442 16.229 .000 ∗∗

A point
X 0.596 ±0.312 46.633 .000 ∗∗∗
Y 0.101 ±0.282 0.484 .489 NS

Basion
X 0.181 ±0.197 2.160 .146 NS

Y 0.225 ±0.112 2.538 .115 NS

Porion
X 0.003 ±0.145 0.000 .986 NS

Y 0.538 ±0.257 24.051 .000 ∗∗∗

Pterygoid point
X 0.157 ±0.296 1.786 .185 NS

Y 0.022 ±0.033 0.0298 .863 NS

B point
X 0.161 ±0.130 6.846 .011 ∗
Y 0.285 ±0.402 2.762 .101 NS

Pogonion
X 0.038 ±0.338 0.238 .627 NS

Y 0.166 ±0.033 1.385 .243 NS

Protuberance Menti
X 0.038 ±0.226 0.314 .577 NS

Y 0.245 ±0.139 2.457 .121 NS

Upper incisor edge
X 0.172 ±0.030 4.712 .033 ∗
Y 0.100 ±0.371 0.283 .596 NS

Lower incisor edge
X 0.226 ±0.226 4.582 .035 ∗
Y 0.283 ±0.089 3.796 .055 NS

∗
Significance level .05.

∗∗Significance level .01.
∗∗∗Significance level .001.

of the digital X-rays, (therefore, no need of analogue-to-
digital conversion and an increased resolution of the X-ray
file) and the use of improved algorithms that worked with
the CNNs technique.

In fact, before the introduction of direct digital radiogra-
phy or the indirect one through stored image transmission
technology, digital forms of cephalometric images were
obtained by indirect conversion of analogical X-rays, that
is, by scanning hard copies of radiographs or using a
video camera [25]. Every previous study on automatic
cephalometric landmarks detection [4] was limited to these
types of conversion, which not only required an additional
time consuming step but could also introduce errors that lead
to distortion [21, 23, 33].

Another issue with digital image is resolution, which
has a significant impact on the outcome of automatic
detection landmarks studies. The quality of a digital image
is strongly dependent on the spatial resolution is, the
relationship of grey level values of the pixels to the optical
density of the radiograph and image display. The minimum
resolution used by previous studies on automatic detection
of landmarks may have contributed to the larger errors
presented in their findings. The higher the resolution, the
fewer landmark identification errors, automatic analysis will

yield. The cost, however, is computation time and memory
usage, unless there are used automatic techniques like ours
that allow to the computerized systems to be implemented
in a hardware chip form as reported previously [21], without
penalizing time efficiency.

It should be underlined that these problems related to
image resolution are encountered mainly, if not only, when
an automatic search of landmarks is performed and not
when the human eye is involved, because there are available
optical systems that have higher resolution than the human
optical system.

Although our method has some limitations that actually
hinder clinical application, for example, the 10 cephalo-
metric points detected are not enough to perform a
cephalometric analysis, and errors of some of them are
very close but not better than manual identification, it
seems to have a promising future in automatic landmark
recognition. Investigations on more landmarks to enable a
complete automatic cephalometric analysis and on softcopy
of cephalometric X-rays should be strongly encouraged as
methods and techniques here presented may be of some
help for a completely automated cephalometric analysis
and if opportunely modified may be used one day in 3D
cephalometry.
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5. Conclusions

(i) An acceptable level of accuracy in automatic land-
mark detection was obtained in this study, due to the
use of a softcopy of the digital X-rays and the use
of improved algorithms that worked with the CNNs
technique.

(ii) The “null” hypothesis tested had to be rejected for
some cephalometric points, respectively, on their x-
or y-axis or both.

(iii) None of the differences in landmark identification
error between the automatically detected and manu-
ally recorded points were greater than 0.59 mm. This
indicates that any statistically significant difference
between the two methods seems unlikely to be of
clinical significance.
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