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Abstract: Nanoindentation was utilized as a non-destructive technique to identify Portland Cement
hydration phases. Artificial Intelligence (AI) and semi-supervised Machine Learning (ML) were used
for knowledge gain on the effect of carbon nanotubes to nanomechanics in novel cement formulations.
Data labelling is performed with unsupervised ML with k-means clustering. Supervised ML
classification is used in order to predict the hydration products composition and 97.6% accuracy was
achieved. Analysis included multiple nanoindentation raw data variables, and required less time to
execute than conventional single component probability density analysis (PDA). Also, PDA was less
informative than ML regarding information exchange and re-usability of input in design predictions.
In principle, ML is the appropriate science for predictive modeling, such as cement phase identification
and facilitates the acquisition of precise results. This study introduces unbiased structure-property
relations with ML to monitor cement durability based on cement phases nanomechanics compared to
PDA, which offers a solution based on local optima of a multidimensional space solution. Evaluation
of nanomaterials inclusion in composite reinforcement using semi-supervised ML was proved feasible.
This methodology is expected to contribute to design informatics due to the high prediction metrics,
which holds promise for the transfer learning potential of these models for studying other novel
cement formulations.

Keywords: artificial Intelligence; machine learning; carbon nanotubes; cement microstructure;
materials characterisation; nanoanalysis; nanomechanics

1. Introduction

Cement is considered as the most important hydraulic material in the modern construction
field [1–4]. “Smart” sensing, self-healing, and self-sealing properties are in the spotlight and are
engineered by nanomaterials addition [1,5], contributing also to materials design revolution for
key industrial applications [1]. Since concrete is extensively studied [4], the design parameters
are well-known in order to deliver suitable mechanical properties in the relevant application field.
A plethora of new data are generated by characterization of novel cement formulations [6]; however,
sufficient technology transfer to industry is scarce [1]. Except for the technology growth, synthesis of new
materials and hybrid composite structures, the need to involve emerging evaluation methodologies
is highlighted [1,7] to assist and accelerate developments [8,9]. Artificial Intelligence (AI) is a
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promising candidate to bridge the gap between Research and Development (R&D) and industry by
establishing unbiased relations of microstructure to properties [4,6–11]. This is majorly appreciated
in case of Safe-by-Design requirements regarding mechanical performance [8,12], and real-time
characterization [9]. Being representative, k-means, Random Forrest (RF), Support Vector Machines
(SVM), k-Nearest Neighbors (KNN) are common Machine Learning (ML) algorithms used in multiclass
classification problems [4] for automated classification of microstructures [8,13]; however, these
algorithms often require lot of data to train the predictive models [14]. Also, density functional theory
(DFT) has been established for predicting the structure and behavior of organic (such as proteins) and
inorganic (i.e., most common are calcium carbonates, oxalates, metal sulfides, etc.) crystals, which
has enabled the development of ontology databases; the calculated properties of known systems and
the predicted properties of hypothetical systems are included [10,14]. Similar efforts have been put in
practice with experimental materials characterization (CHADA, Nanoindentation—documentation
structure for characterisation data) [11].

Grid nanoindentation is a highly localized and non-destructive technique with high spatial
resolution [6,7]. It is a method that is suitable for fast and precise characterization of construction
materials as concrete, metal alloys, coatings, and composites reinforced with micro- and nano-
materials [3,6,7,9,13,15,16], being one of the few techniques that can directly assess the mechanical
properties at micro- and nano- level by a single experiment [6,17]. Nanomechanical properties,
and especially reduced Elastic modulus (Er), are involved in materials design and various set-ups [18,19].
These applications are very sensible in regards to the applied loads and are closely related to human
and environmental safety. This input can be obtained in a representative manner, since statistical
nanoindentation is able to characterize a surface via a multitude of indentation events [15]. Also, the
contact surface is in the same scale of the characterized phases as in case of heterogeneous cement
interface [20]. Grid size is usually sufficiently large, for instance when testing concrete, to encompass
the various cement phases [6]. Quantification of the constituent volume fractions provides insight of the
composite as a whole entity [6,19]. Thus, the generated data are suitable for statistical representation
of nanomechanical properties of the tested material [6].

Focusing on the case of cement composites, a lot of effort is put in regards to nanoindentation [7].
Nanoindentation technique is gaining widespread attention due to the ability to both identify and
quantify cement phases [6,17,21]. In detail, pores Er and hardness (H) are derived by interfacial
interaction with the low density (LD) boundary phases [22], and Er of hydrated phases is connected
to degree of hydration [4,23]. Hardness is related to the yield strength of the hydrated cement
phases, which are considered to behave as rigid cohesive plastic solids, granted that the size of
interaction volume is smaller than indentation imprint. As part of this procedure, individual hydrated
cement phases have been tested and processed via statistical analysis to determine Er and H of these
phases [23,24], in order to provide the ability to connect mechanical properties to structure (density,
crystallinity degree).

Portland Cement is used in every-day applications due to the low-cost, and workability. Calcium
Aluminate Cements (CAC) facilitate protection from corrosion, temperature resistance, high strength,
but are available at higher cost [25]. The main difference with ordinary Portland Cement lies in the
active phase that is responsible for hardening due to the high aluminum content (up to 80 wt.%) [26];
monocalcium aluminate (up to 46%) is the active phase in CAC and yields into calcium aluminate
hydrates (CAHs) formation instead of C–S–H [25]. In the present study, CEM I 52.5 N Portland Cement
was used, which consists of 4.75 wt.% Al2O3, 19.47 wt.% SiO2, and 63.16 wt.% CaO; the absence of
aluminate hydrates is expected, considering the phase diagram of CaO-Al2O3-SiO2 [26], thus C–S–H
and CaOH (Portlandite) dominate [27]. Ettringite phase exists in the matrix phase mixed with
Portlandite, at significantly lower ratios considering the sulfur role in ettringite formation and in
the initial composition of CEM I 52.5 N [27,28]; it is expected to comprise up to ~5% combined
with CAHs in the cement paste. The dominance of C–S–H is also reported in mixtures of Portland
Cement and <20 wt.% of CAC, while alumina presence is restricted in the form of ettringite, calcium
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aluminomonosulfate, or C4AHx [26]. A short summary of material parameters determined by
nanoindentation and correlation to cement phases is provided in Table 1.

Table 1. Material parameters determined by nanoindentation of hydrated cement phases.

Cement Phase Er (GPa) H (GPa) Reference

Low stiffness phase 0–13 <0.4 [22,29–32]
Low density C–S–H 7–34 0.4–0.8 [2,3,15,18,19,22,23,29–41]
High density C–S–H 25-39 0.8–1.25 [3,15,18,19,22,23,29–32,36–38,40,42]

Portlandite (CH) <35 1.31–1.66 [2,29–33,35–37,40,42]
Anisotropic Portlandite (CH) ≥99 ≥2.8 [21,23,31,41,43]

Clinker 93–160 3–10 [3,17,21,22,30,31,37,40,41]

The main target of this work is to identify each cement phase nucleation dependence on
nano-reinforcement by carbon nanotubes (CNTs) by clustering material parameters determined by
nanoindentation initially and by identifying the hydrated cement phases with k-nearest neighbors,
support vector machines, and classification tree algorithms further on. Nanoindentation data analysis
is used to train models for prediction of hydrated cement phases by using raw data as input. This step
is essential to overcome exhaustive probability distribution fitting approach, in order to reach unbiased
conclusions about phase composition. Till now, this approach involved the use of error minimization
procedures, due to the non-uniqueness of the solution [44] and depends on the selection of initial
values [6], i.e., when fitting five phases with five Gaussians, a 15-dimensional (3 Gaussian parameters
× 5 phases) is created and the solution represents one of the local optima [43]. Also, skewness of
fitting is usually omitted by nullifying the third and fourth statistical moments in order to simplify
analysis [38]. This is a task of predictive modeling, which was performed using statistics in the past
decades due to insufficient computational power. Predictive modeling is rapidly growing, due to
the availability of computational resources, and better results are obtained with implementation of
ML [45]. Consequently, structure-property relations will enhance objectivity and knowledge-gain for
decision making by the incorporation of ML.

The matrix area of Portland Cement was selected for characterization, considering the fact
that C–S–H is the major contributor in the final properties and durability of hardened cement [27];
measure nanomechanical properties in the interface transition zone to monitor phases nucleation.
To our knowledge, this is the first time that cement mechanical properties are processed with
ML to monitor the microstructure evolution and establish unbiased structure-property relations.
Except for image classification (i.e., from Scanning Electron Microscopy, X-ray Tomography) and
elemental analysis (i.e., from Energy Dispersive X-Ray Spectroscopy–EDX) no other data have been
processed with ML algorithms to date, in order determine the cement and concrete hydrated phases
quantitatively [4,17,31,46]. Specifically, the spatial deconvolution of Calcium(-Silicate)-Hydrates
(C–S–H) of lower and higher density is not yet envisioned with AI, while there is no feedback for the
interface effect induced by the neighboring clinker regions; image analysis of these regions is restricted
by the color definition, which is the same for C–S–H and interfacial effect of clinker may be considered
as Portlandite (pixels attributed to clusters) [31]. This fact hinders any straightforward connection of
hydration progress and hydrated cement phases; this challenge is met by involving nanomechanics
and supported further by the prediction metrics, which are exceeding relevant reported values for
identification of individual phases of cement matrix using nanoindentation compared to image data
analysis. The methodology implementation for phase identification in cement is expected to enhance
analysis of testing ordinary Portland Cement by the transfer learning potential of the developed models.
It is also expected to contribute to testing other formulations or concrete; similar principles are involved,
along with data preprocessing, the use of classification algorithms by making several adaptations.
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2. Materials and Methods

2.1. Nanocomposite Manufacturing

Specimens received, were formulated using Portland Cement (CEM I 52.5N, Lafarge Beton S.A.,
Paiania, ATH, Greece), CEN Standard sand (Normensand GmbH, Beckum, Germany), and distilled
water (EN 196 standard). Carbon nanotubes were synthesized through Chemical Vapor Deposition
method (CVD); synthesis and chemical modification process is described in detail in previous
work [5,47]. The wet-mixing method was used for nanocomposites molding with 0.02%, 0.05%, 0.1%,
0.2%, 0.5%, and 1% CNTs by weight of cement (bwoc), and water to cement fraction was w/c equal to
0.5. The sand/cement ratio in mortar specimens was 3:1, while curing was performed in saturated
atmosphere of 95% humidity, which was controlled by using saturated KNO3 aqueous solution. All the
aspects of manufacturing, and hardening of nanocomposites are described in the relevant work of
Karaxi et al. [5].

2.2. Grid Nanoindentation

The nanoindentation tests were performed using a Hysitron (Minneapolis, MN, USA) TriboLab®

Nanomechanical Test Instrument equipped with a Berkovich diamond indenter (average radius 100 nm),
which allows the application of loads from 1 to 30,000 µN and records the displacement as a function of
applied loads with a high load resolution (1 nN) and a high displacement resolution (0.04 nm). Details
about the instrument and the experimental setup have been presented elsewhere [16]. Maximum
indentation depth was set at 200 nm in accordance to restrictions to satisfy the separability scale
condition (d/10 << hmax <<D/10, d and D stand for the characteristic sizes of the largest heterogeneity) of
cement phases [17,29,32,38]. Prior to indentation, the area function of the indenter tip was calibrated in
a fused silica, a standard material for this purpose. All nanoindentation tests were conducted in a clean
area environment with 45% humidity and 23 ◦C ambient temperature with displacement feedback
control closed loop. All the aforementioned details comply with all nano range testing specifications as
reported in ISO 14577-1:2015 for instrumented indentation. The volume of interest included the matrix
region of cement (C–S–H, CH, and interface) similarly to Figure 1.
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Specimen preparation follows flat surface requirements for testing; a smooth surface was obtained
by a wet polishing procedure using ethanol [48]. The used granulometry was a sequence of 400,
1000, 1200, 2000, and 4000 SiC grinding papers for 10 min each, by Struers LaboPol-2 grinding,
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lapping, and polishing apparatus. The specimens were dried before testing at 125 ◦C to prevent
further progress of hydration reactions, in order to remove humidity and water captured within
crystal lattice [49]. Nanoindentation testing was performed with adequate spacing of 5 µm to avoid
any indentation-to-indentation interaction [7] and characterize individual cement phases [35,41].
The indenter was selected to probe at 200 nm of displacement. Material parameters determined by
nanoindentation were measured via fitting with Oliver–Pharr model using the elastic response within
the region of maximum load of unload curves [50].

2.3. R Language

R Language was implemented in R studio. R (version 3.6.0, R Core Team (2019). R: A language
and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
URL https://www.R-project.org/) is an open-source software to use and provides a coherent, flexible
system for data analysis. k-means algorithm was used for unsupervised data clustering. This was
implemented as a labeling step to prepare data for classification. Phase correlation to material
parameters determined by nanoindentation is usually a part of statistical PDA analysis, which is also
performed via R for comparison. Then, the labeled data were used as a library to train classification
models of RF, SVM, and KNN in order to evaluate the best predictive performance. All statistical
calculations were performed using 64-bit Windows 10 Home (Intel ® Core™ i5-8250U CPU @ 1.60 GHz,
1801Mhz 4 Cores, 8 Logical Processors and 8.00 GB RAM). Computational time did not exceed a few
seconds in each case. The session info and the R-packages are summarized in Table A1.

2.4. Statistical Metrics

In order to evaluate the prediction efficiency of the trained models, statistical metrics are involved.
Accuracy, Precision, Recall, F1 were exported in each case [4,51–53], after tuning each model to the
optimum in regard to accuracy by performing grid parameterization. Accuracy accounts for overall
model accuracy. These metrics are maximized when the model does not generate false positive or false
negative predictions as can be observed below:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1 Score = 2×
Precision×Recall
Precision + Recall

(4)

True positives (TP) denote correct classifications of Portland Cement phases (positive sample),
true negatives (TN) denote correct classifications of negative samples, false positives (FP) denote the
incorrect classifications of negative samples into positive samples, and false negatives (FN) denote
the positive samples incorrectly classified into negative samples. Recall is the percentage of positive
samples which are correctly classified. Precision is the percentage of positive samples out of the sum
of positive observations. F1 score is a metric to evaluate the model ability to classify (best value: 1).
Micro-metrics are expected to obtain the same value because there is only one class associated with
each instance [52]. MacroAvgPrecision, MacroAvgRecall, MacroAvgF1 are mean values for overall
model metrics. MicroAvgPrecision, MicroAvgRecall, MicroAvgF1 are metrics derived by the sum of
the individual true positives, false positives, and false negatives of the system for different sets.

https://www.R-project.org/
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3. Results: Prediction of Portland Cement Composition

3.1. Data Preprocessing

Nanoindentation raw data obtained from eight different Portland Cement specimens (reference
and reinforced with CNTs) were merged using R language to a total of 790 indentations. Data were
normalized in order to export the correlation matrix between the total nine variables. The recorded
variables are:

• hc: is the contact depth,
• Pmax: is the peak load during a single nanoindentation event,
• S: is a continuous variable and represents the stiffness of a material,
• A: is the contact area
• Er: is the reduced elastic modulus after fitting the Oliver–Pharr model
• H: is the hardness after fitting the Oliver–Pharr model
• A, hf, m: are the power law coefficients

hc (nm) ranged between 11 and 20, Pmax (µN) ranged between 0 and 11, S (µN/nm) between
0 and 7, A (nm2) ranged between 3 and 11, Er (GPa) between 0 and 6.5, H (GPa) between 0 and
10, hf (nm) between 0 and 6, A between 0 and 11, and m between 1 and 7.5. The use of variables
without strong correlation is necessary to avoid overfitting during training the classification models,
and thus optimize computational time requirement. Thus, variables with positive or negative Pearson
correlation exceeding the value of R2 =±0.90 were excluded from analysis due to very strong correlation
(Figure 2) [54]. A very strong correlation (>0.90) of variables means that the model based on training
data provides a very accurate fit, which also complicates the patterns behind the fitting (termed as
overfitting) and this usually hinders prediction of unknown testing datasets.
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All the other variables were retained as special features of each cement phase will contribute to
the identification problem during training of classification models. Then data were split to 80% train
and 20% test datasets for classification models training and testing similar to [55].

3.2. Data Labeling

K-means algorithm was used to perform unsupervised ML and correlate material parameters
(determined by nanoindentation) to Portland Cement phases. The number of clusters should be
selected with pure probabilistic basis [46]. Thus, a multitude of criteria were incorporated. By applying
the elbow method, the Bayesian inference criterion, and the Humbert criterion, the optimal number
of clusters was estimated (Figure 3) [46,56]. Knowledge about the physical problem (Table 1) is still
necessary since the aforementioned criteria demonstrate a different optimum number of clusters.
The background of cement microstructure that is expected to be present within the characterized
region (Figure 1) is solid. Taking into account that clustering within this study is performed for
assigning labels on nanoindentation data in the framework of semi-supervised Machine Learning [57],
the expected number of phases is 5 in the interface region of Portland Cement.

As depicted in Figure 3, it is proposed that optimum number of clusters is 4 (Figure 3a), but this is
not confirmed by Bayesian inference criterion (BIC, Figure 3b) [46]. The maximum BIC value provides
evidence for the number of existent constitutive phases in the dataset [2,6,58], which is number 5.
The Humbert criterion correlates the highest frequency to the optimum number of clusters. Since 4
clusters are not sufficient to describe the number of cement phases, the next acceptable candidate is
5 clusters as indicated by the physical problem (Table 1). These clusters are attributed to LD C-S-H,
including their presence in (gel) pores network (with lower stiffness), high density (HD) C-S-H, CH
and its anisotropic configurations, and clinker interface (Figure 3e). At high w/c ratios (typically
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50:50 similar to the present study), UHD C–S–H is absent and CH phase is formed (only), since their
nucleation mechanism is antagonistic [24,42].Nanomaterials 2020, 10, x FOR PEER REVIEW 8 of 27 
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3.3. Probability Distribution Analysis-PDA

The most common approach to analyze nanoindentation data, especially in case of multiphase
materials, is the application of Probability Density Function (PDF) that is intuitive regarding the
identified histogram of material parameters (determined by nanoindentation) and the density plot.
As a result, individual phases can be distinguished in the graph. In order to allocate the data in cement
phases, a mixture model fit was selected based on Fraser–Suzuki function. The gain compared to
conventional Gaussian-type normal distribution used in PDA is that the Fraser–Suzuki function allows
for asymmetry [59], and that it is possible to provide a more appropriate fitting considering that neither
measurement or the material are perfect [38,60]. The equation that describes the phase contribution to
the overall PDF is presented below [59]:

PDF = pi exp (−
ln2
s2

i

ln2
(
1 + 2si

Er − Em, i

di

)
) (5)

where Er is the reduced elastic modulus in GPa, pi is the peak value of probability for each individual
phase, si is the skew of the fitting curve, Em,i is the mean reduced elastic modulus value of each
individual phase, and di is the width, an input value correlated to deviation from the mean value for
each phase.

The phases have been identified by the use of nanoindentation to plot histograms of material
parameters as for instance Er or H [3,7,15,17,29,31,37–39,43] and by using the number of peaks in
the density plot to manually select the number of phases to deconvolute (Figure 4a) [3,29,32,43].
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All parameters of bin size, volume fraction, and initial mean values are all determined by the analyst
prior to using PDF for fitting the data (Figure 4a) [3,38,39]. Nanoindentation data are preprocessed by
the analyst to clean the error values, such as indentations that overcame the predefined maximum
depth of 200 nm. The model estimated a total of 20 (4 × 5) parameters in order to describe the 5
components of Portland Cement phases. Then minimization of PDF is evaluated whether the results
of mean values, standard deviation, and volume fraction are descriptive for the analysis. If not,
then initial values are readjusted and analysis is performed again [2,24,31]. In order to minimize
the deviation between theoretical and empirical PDF, two approaches are adopted: least squares
estimation (LSE) and maximum likelihood estimation (MLE–bin size is not selected manually) [2,24,61].
Starting values were selected based on nanoindentation studies on cement phase deconvolution [41].
For this purpose, an application for quick PDF was developed within this work [62]. The optimum
parameters were selected based on the theoretical PDF, analyst decisions, and are presented in Figure 4.
The probability distribution was measured by the integral of Equation (5). The respective fitting
of cumulative distribution function is presented in Figure 4 for completeness. It was considered
purposeful to compare phase identification using PDF to k-means clustering result. k-means clustering
is unbiased by the analyst choices since the physical problem is well studied, and accepts input from
multiple variables (in this case Er and H).

Table 2. Descriptive statistics of Portland Cement phases by implementing Probability Density Function
(PDF) and k-means analysis.

PDF
Probability

Peak

PDF
skew

PDF
Er

(GPa)

Deviation
(± GPa)

PDF
Volume
Fraction

k-Means
H (GPa)

k-Means
Deviation
(± GPa)

k-Means
Er (GPa)

k-Means
Deviation
(± GPa)

Counts
k-Means
Volume
Fraction

LD C-S-H 0.0190 −0.10 4 15 0.224 0.20 0.16 7.22 4.75 272 0.344

HD C-S-H 0.0240 −0.04 20 16 0.426 0.71 0.28 23.04 5.01 281 0.356

CH 0.0150 0.47 33 18 0.320 1.40 0.39 26.99 8.02 183 0.232

Anisotropic
CH 0.0010 −0.33 61 13 0.014 2.67 0.61 54.16 11.53 43 0.054

Clinker
Interface 0.0007 −0.44 90 20 0.016 5.86 1.66 88.35 10.11 11 0.014
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Figure 4. (a) Deconvolution of Portland Cement phases using Fraser–Suzuki function to fit
nanoindentation data. The parameters are presented in Table 2. (b) the respective cumulative
distribution fitting. Colors represent: blue: low density (LD) Calcium(-Silicate)-Hydrates (C–S–H.)
green: high density (HD) C–S–H, light green: CH, orange: anisotropic CH, red: clinker interface.

By using the Shiny app, which was developed within this work [62], and by performing the PDA,
it is evidenced that the probabilities of Portland Cement phases deviate among individuals’ judgements.
Thereby, the authors recommend an alternative route than the PDF deconvolution procedure itself as a
method for estimation of cement phases. The foundation is to create a database with labelled data,
unbiased by the analyst, and use this source to classify new unlabeled data. The statistical summary
is presented in Table 2. The mean values for Er are acceptable (Table 1) by both analyses; however,
the variation of the mean values is minimized only in case of k-means. Also, high stiffness phases
can be determined almost identically by using these two approaches. This fact may be attributed
in high stiffness contrast between CH and clinker interface, that allows sufficient separation of data.
The lower stiffness phases in cement matrix demonstrate a dense scattering of values, and the range of
Er to describe individual phases contains data that could be attributed to a different chemical structure.
Thus, it can be understood that phase identification of cement phases is not a one-dimensional problem.
As a result, the correlation of chemical structure to material parameters is more reliable when using the
k-means approach.

3.4. K-Nearest Neighbors-KNN

K-Nearest Neighbors (KNN) algorithm was utilized since it is possible to perform multiclass
classification of data. It is based on the simple principle of distance calculation between data points [14],
based on Euclidean distance in the present case, and recognition of classes based on similarity.
The probability of a data point to be classified in a specific group of points is solely dependent on
minimization of distance between the reference data points [4]. Thus, the result of KNN classification
is highly related to the selection of the integer parameter “k”, which accounts for the number of nearest
neighbors [14]. Tuning was performed as presented in (Table A2, Figure 5), in order to minimize error
value. Dispersion value accounts for the radius of the largest Euclidean ball containing no points.
A graphical representation using KNN approach is presented in Figure 6. The variables importance
that were involved from nanoindentation raw data demonstrate that predictions are mainly dependent
on material parameters Er and H.
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Since the analysis is performed in the whole data entity, the majority data representation by LD
C–S–H class provides sufficient information for predictive performance, resulting in an F1 score of 0.975.
However, KNN algorithm is highly affected by the imbalance in the dataset classes, as can be envisioned



Nanomaterials 2020, 10, 645 13 of 26

in Table 3. Although the prediction of HD C–S–H phase is acceptable, the F1 scores (maximum value is
1 for excellent prediction) for clinker interface and anisotropic CH phases demonstrate some drawbacks.
This is also attributed to lack of data in these classes as demonstrated in the confusion matrix (Table A3),
and also the imbalance in the training set deteriorates the prediction-ability. Moreover, even though
micro and macro metrics overcome the random guess predictive ability of the proposed KNN model,
still three classes suffer by inaccurate predictions. This is attributed to contribution from the majority
of data, which are allocated in LD and HD C–S–H phases (imbalance) and increase the average of each
equally weighted metric in case of micro, and in a lesser extend in macro. This is connected with total
number of TP, TN, FP, FN. Large classes significantly affect the micro-metric values, and thus these
values are closer to the metrics of LD and HD C–S–H phases.

Table 3. Statistic Metrics about KNN model.

KNN Metrics CH Anisotropic CH Clinker
Interface HD C–S–H LD C–S–H

Support
(Counts–Test dataset) 26 27 7 44 62

Precision 0.500000 0.583333 0.333333 0.727273 1.000000

Recall 0.730769 0.259259 0.125000 0.909091 0.951613

F1 0.593750 0.358974 0.181818 0.808081 0.975207

Accuracy 0.754491

MacroAvgPrecision 0.628788

MacroAvgRecall 0.595147

MacroAvgF1 0.583566

MicroAvgPrecision 0.754491

MicroAvgRecall 0.754491

MicroAvgF1 0.754491

3.5. Random Forrest-RF

Random Forest (RF) is a decision tree-based algorithm, which can perform both regression and
classification [4]. It is a multifaceted algorithm that is usually used when there is uncertainty whether
algorithm may be a more appropriate fit for the classification problem [4]. By the application of the
algorithm, a tree is structured to correlate consecutive choices or outcomes, with branches indicating
that each option is mutually exclusive [14]. RFs are sensitive to the training dataset in their predictions;
thus, sampling method is important in reproducibility of results. Bagging method was adopted
in present case, which maintained the same bin size of data points within each tree formation by
replacement, and consequently the results are not dependent on the gradual reduction in the sampling
size. Finally, data are classified based on the majority of votes by the classification tree [4]. The graphical
representation of RF is summarized in Figure 7.

RF model demonstrated higher adaptivity on the training dataset and provided sufficient
classification metrics. Phase identification is mainly dependent on Er and secondarily on H, while
the other variables minorly affect the prediction accuracy as depicted in Figure 8. RF model lead to
F1 scores that exceeded 0.909 in all occasions (Table 4), namely LD and HD C–S–H phase, CH phase
and its anisotropic configuration, and the interface to clinker. The overall model accuracy exceeded
97.5%, and holds promise for successful identification of unlabeled data. The weakness of the RF
model is identified in Precision metric—in order to improve precision another algorithm should be
used, in order to generate less false negatives during prediction in test dataset. High recall is the
reason why the MacroAvgRecall is higher than MicroAvgRecall. The rest of macro- and micro-metrics
follow the expected trend; therefore, macro-metrics are closer to minority classes and micro-metrics are
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closer to majority classes. No bias was observed in the confusion matrix (Table A4) in the prediction of
majority class.
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Figure 8. Random Forest (RF) model: (a) error plot vs. number of trees. Colors in figure account
for; red is the LD C–S–H phase, magenta is the HD C–S–H phase, with light blue is the CH phase,
with green is the anisotropic CH phase, and blue is the clinker interface, and (b) variables importance.
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Table 4. Statistic Metrics about Random Forest model.

RF Metrics CH Anisotropic CH Clinker
Interface HD C–S–H LD C–S–H

Support
(Counts–Test dataset) 42 10 3 53 59

Precision 1.000000 0.833333 1.000000 0.963636 1.000000

Recall 0.904762 1.000000 1.000000 1.000000 1.000000

F1 0.950000 0.909091 1.000000 0.981482 1.000000

Accuracy 0.976048

MacroAvgPrecision 0.959394

MacroAvgRecall 0.980952

MacroAvgF1 0.968115

MicroAvgPrecision 0.976048

MicroAvgRecall 0.976048

MicroAvgF1 0.976048

3.6. Support Vector Machine-SVM

Support Vector Machine (SVM) is based on statistical learning theory and consists of heuristic
algorithms [4]. Multi-dimensional data are fitted using a kernel function to provide an analogous
representation, which simplifies the classification process. The kernel suitability is determined by
the similarity of the kernel function to the representation of data in a high-dimensional space [14].
The hyperplane function is the boundary that separates the data for classification [8]. The implementation
of SVM is summarized in Figure 9.
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Support Vector Machine classification was first applied using a simple radial kernel function
(Table 5). Hyperparameter tuning (Table A5) was performed to find optimum values for kernel
complexity by cost hyperparameter adjustment. Similarly, optimum gamma value was selected, which
is correlated to the retention of “bad” data points during training of the model (the higher the gamma
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value, the “bad” values are disregarded). However, even after tuning, the precision in anisotropic
CH still suffered, and thus a lowered F1 was observed comparatively to other phases. Consequently,
another kernel function should be considered to separate effectively the data into correct classes.

Table 5. Statistic Metrics about Radial Support Vector Classification (SVC) model.

SVC Radial Kernel
Classification

Metrics
CH Anisotropic CH Clinker

Interface HD C–S–H LD C–S–H

Support
(Counts–Test dataset) 39 11 3 56 58

Precision 0.973684 0.833333 1.000000 1.000000 0.983051

Recall 0.948718 0.909091 1.000000 0.982143 1.000000

F1 0.961039 0.869565 1.000000 0.990991 0.991453

Accuracy 0.976048

MacroAvgPrecision 0.958014

MacroAvgRecall 0.967990

MacroAvgF1 0.962610

MicroAvgPrecision 0.976048

MicroAvgRecall 0.976048

MicroAvgF1 0.976048

To handle prediction weakness of Anisotropic CH class, Gaussian kernel function was considered
(Table 6). After several trials, the optimum values of cost and gamma were identified as 100 and
1, respectively. The kernel function change was effective, as Recall metric was higher compared to
radial kernel, but no effect was evidenced in Precision. Thus, F1 score demonstrated an increment.
The higher prediction efficiency of Anisotropic CH class was accompanied with reduction by 1 and 2%
in the F1 score of LD and HD C–S–H phase, respectively; still, F1 score is considerably high. Macro-
and micro-averaged metrics demonstrated the same trend as in case of radial kernel SVC.

Table 6. Statistic Metrics about Gaussian SVC model.

SVC Gaussian Kernel
Classification Metrics CH Anisotropic CH Clinker

Interface HD C–S–H LD C–S–H

Support (Counts–Test dataset) 41 10 3 56 57

Precision 1.000000 0.833333 1.000000 0.981818 0.966102

Recall 0.926829 1.000000 1.000000 0.964286 1.000000

F1 0.962025 0.909091 1.000000 0.972973 0.982759

Accuracy 0.970060

MacroAvgPrecision 0.956251

MacroAvgRecall 0.978223

MacroAvgF1 0.965370

MicroAvgPrecision 0.970060

MicroAvgRecall 0.970060

MicroAvgF1 0.970060

In order to find out if another kernel function could overcome the prediction efficiency of Gaussian
kernel, and also RF performance, ANOVA kernel function was considered (Table 7). Separability of
data further improved the F1 score, which overcame 95% in all categories, and F1 score was improved
by 1% for CH class, and by 4.5% for anisotropic CH. This improvement in case of Anisotropic CH
class was influenced by Precision increment by using ANOVA kernel. Thus, even though the overall
model accuracy is the same for all RF, radial SVC kernel and ANOVA SVC kernel, ANOVA approach
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could be more sensitive in the correct prediction of an unlabeled nanoindentation event (Table A6,
Table A7, Table A8). Consequently, it is considered as a model that is unbiased by the data imbalance
and favors dealing effectively with Portland Cement phases classification problem by achieving higher
individual precision compared to the aforementioned models. This conclusion is further supported by
the higher observed values of micro-metrics, with MicroAvgPrecision exceeding MacroAvgPrecision,
and by achieving a very similar F1 value for both metrics.

Table 7. Statistic Metrics about ANOVA SVC model.

SVC ANOVA Kernel
Classification Metrics CH Anisotropic CH Clinker

Interface HD C–S–H LD C–S–H

Support (Counts–Test dataset) 40 11 3 56 57

Precision 1.000000 0.916667 1.000000 0.981818 0.966102

Recall 0.950000 1.000000 1.000000 0.964286 1.000000

F1 0.974359 0.956522 1.000000 0.972973 0.982759

Accuracy 0.976048

MacroAvgPrecision 0.972917

MacroAvgRecall 0.982857

MacroAvgF1 0.977323

MicroAvgPrecision 0.976048

MicroAvgRecall 0.976048

MicroAvgF1 0.976048

4. Discussion

Till now, the most common approach when studying the cement hydrated phases with
nanoindentation included Probability Distribution Analysis. This approach was based solely on
deconvolution by Gaussian fittings, which suffers from the non-uniqueness of the solution. The number
of peaks in the density plot, and thus the number of Gaussians, create a multidimensional space
when measuring the parameters of the solution, and this approach suffers by the existence of more
than one global optima. As a consequence, the analysis of the same nanoindentation data may vary
amongst individuals. Moreover, third and fourth statistical moments are nullified by assuming zero
skewness and using Gaussians to fit data, which introduces another factor for error evolution. Within
this study, a practical approach in PDA is summarized by introducing skewness by the incorporation
of Fraser–Suzuki equation for fitting. The input parameters of pi, si, Em,I, di are useful for later analysis
with integrals and calculation of the composition percentage of each individual phase.

Machine Learning came up as a more efficient route to deal with the multivariate problem
of nanoindentation raw data. Implementation of an unsupervised ML algorithm for unbiased
determination of cement phases was demonstrated using k-means clustering. Unsupervised phase
identification showed the magnitude of variation in microstructures volume fraction. This is an
introductory step for labelling the test data. Labelling is useful to perform quick evaluation of cement
composition by training supervised ML models for performing quality control of the synthesized or
nano-enforced cementitious structures. This approach known as semi-supervised Machine Learning
is also unbiased, can be reproduced, and combines multidimensional features. Inclusion of seven
variables enables establishing structure (cement phase)—property (parameters: Er, H) relations to
contribute in reinforcement identification due to possible enhanced propagation of hydration and
nucleation aided by nanomaterials. This reinforcement is envisioned especially in cement interface
(or matrix) and the compositional changes in LD, HD C–S–H, and CH phases, considering that better
interfacial properties will improve overall performance.

Cement phase identification, which was implemented using two methodologies, a PDF fitting
with skewness and unsupervised ML algorithm of k-means enabled to identify the strengths of each
approach directly. In the first case, PDF was applied based on Fraser–Suzuki function in order to
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improve fitting results as asymmetry is enabled. This implementation is also available in the shape
of Shiny app to fit Er nanoindentation data using R language [62]. Two significant aspects should be
pointed out. Firstly, the presented case required 5 PDF fittings, which means that a 20-dimensional
space (5 PDFs× 4 parameters) is created for the problem solution. Thus, the proposed fitting falls within
one of the local optima set of solutions. As a result, it can be understood that another solution may be
chosen by another individual. Secondly, the solution in PDA is about the single-parameter problem
(here: reduced elastic modulus). The deviation is high, as expected, compared to k-means clustering
approach, which incorporated more variables to provide the microstructure clusters. As demonstrated
in Figure 10a, the PDA predictions were biased to HD C–S–H and CH phases. This deviation was not
encountered for the clinker interface, as both methodologies lead to similar results in case of Er value,
possibly due to the low population of available data. In this direction, k-means correlated material
parameters to cement chemical structure using both parameters H and Er as input. Consequently,
k-means was used for unbiased labelling of the nanoindentation data in order to feed the data for
multiclass classification and perform semi-supervised Machine Learning. In conclusion, identification
of cement phases using nanoindentation data is improved when it is approached as a multivariate
problem with Machine Learning, which was expected in principle [45].
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In another case, k-means clustering has been used in order to predict the nanoindentation response
of a given location in FCC single crystals [51], with overall accuracy to reach 90%. In this work,
multiclass classification was performed using common algorithms of KNN, RF, and SVC reaching a
maximum accuracy of 97.6% (Figure 10b). In detail, KNN model was trained in order to predict the
classes in the test dataset. However, the model performance was not adequate even after tuning of
hyperparameters, especially for the high-stiffness phases identification, reaching a minimum F1 score
of 0.18 (Figure 10e). This result could be possibly correlated to the low population of data for these
cement phases and imbalance in the population amongst cement microstructure classes [53]. On the
other hand, all other algorithms (RF and Radial, Gaussian, and ANOVA SVC kernel types) after being
properly tuned were able to use all seven variables to correctly classify nanoindentation events to
Portland Cement phases. A minimum score of F1 = 0.87 in case of Radial SVC kernel was achieved
and the highest minimum-class predictive score of F1 = 0.96 was accomplished with ANOVA kernel.
Also, with ANOVA kernel the weakness of SVC in Precision metric was overcome. Although RF
demonstrated the same number of misclassifications in the test dataset as ANOVA SVC kernel, in fact,
misclassifications are not accumulated in a single category when using ANOVA, which is preferable
compared to Random Forrest. The key in finding the best possible algorithm for each scenario is
identified in testing a variety of classification algorithms in order to find the right balance between
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Precision and Recall metrics, since often it is challenging to keep both high in value (Figure 11a–c).
Even if Random Forrest provided the highest Recall in HD C–S–H and CH phases, it was preferred to
sacrifice Recall in favor of achieving higher Precision in classification of those two phases, in order to
reduce misclassification error of the trained models in future input of unseen data and achieve high
prediction metrics in all hydrated cement phases.
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5. Conclusions

This study aimed in the implementation of an enhanced practice for analysis of cement
microstructure with nanoindentation testing. Step-by-step methodology of data preprocessing,
labelling, and classification is summarized in order to enhance interlaboratory reproducibility of
the results. It is important to note that nanoindentation protocol for mapping majorly affects the
usability of data for phase identification and highlights the necessity for establishing good practices in
testing cement formulations. A common approach in characterization protocols is essential to enable
data exchange and further developments in characterization methods. Semi-supervised Machine
Learning was implemented due to the enhanced efficiency in predictive modeling of microstructure.
In principle, Machine Learning exceeds traditional statistics for predictive modeling. This is derived
by the inclusion of more variables, and thus data, to pattern relationships in the labeled data. The fitted
patterns become more complex and contain more information for the microstructure classes. This is a
gain compared to traditional statistics for prediction of cement phases, which in case of Probability
Distribution Analysis, uses a single parameter for identification. Increased complexity in relations
of nanoindentation data and cement microstructures enhances the level of prediction accuracy when
testing other formulations not previously used for training Machine Learning models. High values
obtained for prediction metrics demonstrate the transfer learning potential, which is performed with
extrapolation in traditional statistic and usually suffers from poor accuracy.

This work contributes to the field of cement nanocomposites design and quality control associated
with identifying the effect of low dosages of engineered nanomaterials inclusion in reinforcement
assessment; microstructure, and mechanical properties of cement-based composites can also be
correlated to the fabrication, workability, and hydration in optimization tasks. The extensive use of
statistics in the microstructure identification in the past decades was reasonable since computational
strength was limited. However, technology evolution increases the necessity of materials scientists
to adapt and improve their tools and data capacity for closing the gap of new ideas for design
and applicability evaluation with less effort and need for resources. In this direction, Artificial
Intelligence can provide a module for enabling fast, in-line, and real-time metrological characterization
of nanoindentation data. Emphasis is located on classification of newly characterized data (specimen
testing) based on a labelled database, which is promising to minimize the requirement for human effort
in quality control and life assessment of Portland Cement formulations. The proposed microstructure
analysis of Portland Cement using AI on nanoindentation data processing provided considerable
proceedings; namely, classification reached an ultimate plateau value of 97.6% model accuracy
using ANOVA SVC kernel and minimum F1 score of 95% in the five-class classification problem.
Additionally, all approaches required a few seconds of computational time for clustering, training, and
fitting. The high levels of accuracy hold promise for transfer learning potential and scalability of this
methodology to expand prior obtained knowledge on new data.
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Appendix A

Table A1. R session info and Packages (accessed date: 2019-09-30).

Package Version Sour ce Package Version Sour ce

abind 1.4-5 CRAN (R 3.6.0) pillar 1.4.1 CRAN (R 3.6.0)

assertthat 0.2.1 CRAN (R 3.6.0) pkgbuild 1.0.3 CRAN (R 3.6.0)

backports 1.1.4 CRAN (R 3.6.0) pkgconfig 2.0.2 CRAN (R 3.6.0)

broom 0.5.2 CRAN (R 3.6.0) pkgload 1.0.2 CRAN (R 3.6.0)

callr 3.2.0 CRAN (R 3.6.0) plyr 1.8.4 CRAN (R 3.6.0)

caret 6.0-84 CRAN (R 3.6.1) prettyunits 1.0.2 CRAN (R 3.6.0)

cellranger 1.1.0 CRAN (R 3.6.0) pROC 1.15.3 CRAN (R 3.6.1)

class 7.3-15 CRAN (R 3.6.1) processx 3.3.1 CRAN (R 3.6.0)

data.table 1.12.2 CRAN (R 3.6.0) prodlim 2018.04.18 CRAN (R 3.6.1)

desc 1.2.0 CRAN (R 3.6.0) ps 1.3.0 CRAN (R 3.6.0)

devtools 2.2.0 CRAN (R 3.6.1) purrr 0.3.2 CRAN (R 3.6.0)

digest 0.6.20 CRAN (R 3.6.1) R6 2.4.0 CRAN (R 3.6.0)

dplyr 0.8.3 CRAN (R 3.6.1) randomForest 4.6-14 CRAN (R 3.6.1)

DT 0.9 CRAN (R 3.6.0) Rcpp 1.0.1 CRAN (R 3.6.0)

e1071 1.7-2 CRAN (R 3.6.1) readr 1.3.1 CRAN (R 3.6.0)

ellipsis 0.2.0.1 CRAN (R 3.6.1) readxl 1.3.1 CRAN (R 3.6.1)

ggplot2 3.1.1 CRAN (R 3.6.0) reshape2 1.4.3 CRAN (R 3.6.0)

glue 1.3.1 CRAN (R 3.6.0) rJava 0.9-11 CRAN (R 3.6.0)

htmltools 0.3.6 CRAN (R 3.6.0) rlang 0.4.0 CRAN (R 3.6.1)

htmlwidgets 1.3 CRAN (R 3.6.0) scales 1.0.0 CRAN (R 3.6.0)

httr 1.4.0 CRAN (R 3.6.0) segmented 1.0-0 CRAN (R 3.6.0)

kernlab 0.9-27 CRAN (R 3.6.0) sessioninfo 1.1.1 CRAN (R 3.6.0)

labeling 0.3 CRAN (R 3.6.0) shiny 1.3.2.9001 Gith ub (rstudio/shiny@89bd7e9)

lattice 0.20-38 CRAN (R 3.6.0) sjlabelled 1.1.1 CRAN (R 3.6.1)

lava 1.6.6 CRAN (R 3.6.1) stringi 1.4.3 CRAN (R 3.6.0)

lazyeval 0.2.2 CRAN (R 3.6.0) stringr 1.4.0 CRAN (R 3.6.0)

lubridate 1.7.4 CRAN (R 3.6.0) survival 2.44-1.1 CRAN (R 3.6.0)

magic 1.5-9 CRAN (R 3.6.0) testthat 2.2.1 CRAN (R 3.6.1)

magrittr 1.5 CRAN (R 3.6.0) tibble 2.1.3 CRAN (R 3.6.0)

MASS 7.3-51.4 CRAN (R 3.6.0) tidyr 0.8.3 CRAN (R 3.6.0)

Matrix 1.2-17 CRAN (R 3.6.0) tidyselect 0.2.5 CRAN (R 3.6.0)

mclust 5.4.5 CRAN (R 3.6.1) tidyverse 1.2.1 CRAN (R 3.6.0)

mixtools 1.1.0 CRAN (R 3.6.1) timeDate 3043.102 CRAN (R 3.6.0)

mlbench 2.1-1 CRAN (R 3.6.1) usethis 1.5.0 CRAN (R 3.6.0)

MLmetrics 1.1.1 CRAN (R 3.6.1) withr 2.1.2 CRAN (R 3.6.0)

ModelMetrics 1.2.2 CRAN (R 3.6.1) xlsx 0.6.1 CRAN (R 3.6.0)

modelr 0.1.4 CRAN (R 3.6.0) xlsxjars 0.6.1 CRAN (R 3.6.0)

pdfCluster 1.0-3 CRAN (R 3.6.1) xml2 1.2.0 CRAN (R 3.6.0)

Table A2. Detailed performance results of KNN hyperparameter tuning.

k Error Dispersion k Error dispersion k Error Dispersion

1 0.667742 0.047836 15 0.569765 0.042177 28 0.592217 0.058813

2 0.658013 0.048698 16 0.589094 0.050706 29 0.598566 0.062328

3 0.603405 0.083304 17 0.57788 0.04982 30 0.590502 0.071531

4 0.601843 0.073970 18 0.584485 0.053367 31 0.579186 0.080118

5 0.587276 0.075722 19 0.582693 0.058426 32 0.598464 0.068451

6 0.584101 0.054559 20 0.586022 0.055453 33 0.580901 0.065523
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Table A2. Cont.

k Error Dispersion k Error dispersion k Error Dispersion

7 0.569739 0.063925 21 0.605146 0.048521 34 0.57934 0.067627

8 0.592217 0.057005 22 0.579519 0.048427 35 0.574552 0.065912

9 0.581055 0.071392 23 0.608321 0.053482 36 0.593907 0.054005

10 0.577829 0.059211 24 0.582617 0.040259 37 0.58743 0.066458

11 0.576114 0.043615 25 0.608244 0.047015 38 0.587353 0.068217

12 0.558577 0.045023 26 0.606682 0.044701 39 0.59703 0.060446

13 0.577803 0.026752 27 0.595366 0.060007 40 0.585689 0.068017

14 0.58254 0.056609

Table A3. Confusion matrix of the testing dataset and the predicted Portland Cement Phases by
KNN model.

KNN Classification CH Anisotropic CH Clinker Interface HD C-S-H LD C-S-H

CH 19 1 0 6 0

Anisotropic CH 13 7 2 5 0

Clinker interface 2 4 1 1 0

HD C-S-H 4 0 0 40 0

LD C-S-H 0 0 0 3 59

Table A4. Confusion matrix of the testing dataset and the predicted Portland Cement Phases by random
forrest model.

RF Classification CH Anisotropic CH Clinker Interface HD C-S-H LD C-S-H

CH 38 2 0 2 0

Anisotropic CH 0 10 0 0 0

Clinker interface 0 0 3 0 0

HD C-S-H 0 0 0 53 0

LD C-S-H 0 0 0 0 59

Table A5. Detailed performance results of Radial Support Vector Classification (SVC) kernel
hyperparameter tuning.

# Gamma Cost Error Dispersion # Gamma Cost Error Dispersion

1 0.01 1 0.121941 0.048335 21 0.01 400 0.036918 0.02526

2 0.1 1 0.072248 0.035021 22 0.1 400 0.052970 0.036494

3 0.5 1 0.083436 0.032799 23 0.5 400 0.083410 0.036922

4 2 1 0.125166 0.049255 24 2 400 0.104327 0.047335

5 4 1 0.146032 0.042723 25 4 400 0.131618 0.034375

6 0.01 10 0.051357 0.014704 26 0.01 1000 0.040143 0.026622

7 0.1 10 0.052919 0.033045 27 0.1 1000 0.056144 0.038113

8 0.5 10 0.086610 0.034644 28 0.5 1000 0.081797 0.034984

9 2 10 0.110701 0.045551 29 2 1000 0.104327 0.047335

10 4 10 0.134793 0.036901 30 4 1000 0.131618 0.034375
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Table A5. Cont.

# Gamma Cost Error Dispersion # Gamma Cost Error Dispersion

11 0.01 50 0.040118 0.028672 31 0.01 4000 0.030492 0.028863

12 0.1 50 0.048157 0.026341 32 0.1 4000 0.049770 0.039092

13 0.5 50 0.083436 0.035396 33 0.5 4000 0.086610 0.033016

14 2 50 0.107501 0.045313 34 2 4000 0.104327 0.047335

15 4 50 0.134793 0.036901 35 4 4000 0.131618 0.034375

16 0.01 100 0.038530 0.024244 36 0.01 8000 0.033769 0.030845

17 0.1 100 0.051382 0.032078 37 0.1 8000 0.048182 0.032232

18 0.5 100 0.089836 0.033124 38 0.5 8000 0.086610 0.033016

19 2 100 0.102739 0.048516 39 2 8000 0.104327 0.047335

20 4 100 0.136380 0.034517 40 4 8000 0.131618 0.034375

Table A6. Confusion matrix of the testing dataset and the predicted Portland Cement Phases by Radial
SVC model.

SVC Radial Kernel
Classification CH Anisotropic CH Clinker Interface HD C-S-H LD C-S-H

CH 37 2 0 0 0

Anisotropic CH 1 10 0 0 0

Clinker interface 0 0 3 0 0

HD C-S-H 0 0 0 55 1

LD C-S-H 0 0 0 0 58

Table A7. Confusion matrix of the testing dataset and the predicted Portland Cement Phases by
Gaussian SVC model.

SVC Gaussian
Kernel

Classification
CH Anisotropic CH Clinker Interface HD C-S-H LD C-S-H

CH 38 2 0 1 0

Anisotropic CH 0 10 0 0 0

Clinker interface 0 0 3 0 0

HD C-S-H 0 0 0 54 2

LD C-S-H 0 0 0 0 57

Table A8. Confusion matrix of the testing dataset and the predicted Portland Cement Phases by
ANOVA SVC model.

SVC ANOVA
Kernel

Classification
CH Anisotropic CH Clinker Interface HD C-S-H LD C-S-H

CH 38 1 0 1 0

Anisotropic CH 0 11 0 0 0

Clinker interface 0 0 3 0 0

HD C-S-H 0 0 0 54 2

LD C-S-H 0 0 0 0 57
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