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Cancer vaccines have gradually attracted attention for their tremendous preclinical and
clinical performance. With the development of next-generation sequencing technologies
and related algorithms, pipelines based on sequencing and machine learning methods
have becomemainstream in cancer antigen prediction; of particular focus are neoantigens,
mutation peptides that only exist in tumor cells that lack central tolerance and have fewer
side effects. The rapid prediction and filtering of neoantigen peptides are crucial to the
development of neoantigen-based cancer vaccines. However, due to the lack of verified
neoantigen datasets and insufficient research on the properties of neoantigens,
neoantigen prediction algorithms still need to be improved. Here, we recruited verified
cancer antigen peptides and collected as much relevant peptide information as possible.
Then, we discussed the role of each dataset for algorithm improvement in cancer antigen
research, especially neoantigen prediction. A platform, Cancer Antigens Database (CAD,
http://cad.bio-it.cn/), was designed to facilitate users to perform a complete exploration of
cancer antigens online.

Keywords: tumor-associated antigens (TAAs), tumor-specific antigens (TSAs), prediction model, cancer antigen,
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INTRODUCTION

Colev (189) was the first to attempt to leverage patient immune systems to fight against cancer. Since
then, immunotherapy has made great progress, especially in immune checkpoint blockades of
cytotoxic T-lymphocyte-associated protein 4 and programmed cell death protein 1 (PD-1) in
melanoma (Hodi et al., 2010; Robert et al., 2015) and other cancers (Zou et al., 2016). However, not
all patients benefit from immune checkpoint inhibitors, which may cause immune-related adverse
events. Therefore, additional immunotherapies need to be developed.

Recently, cancer vaccines have attracted increasing attention with promising results in preclinical
studies (Castle et al., 2012; Gubin et al., 2014) and clinical outcomes (Li et al., 2017; Ott et al., 2017;
Sahin et al., 2017) in individual or combination therapies. Cancer antigens are peptides in tumor cells

Edited by:
Venkata Yellapantula,

Memorial Sloan Kettering Cancer
Center, United States

Reviewed by:
Guideng Li,

Chinese Academy of Medical
Sciences, China

Muzamil Yaqub Want,
Roswell Park Comprehensive Cancer

Center, United States

*Correspondence:
Xiaochen Bo

boxc@bmi.ac.cn
Jiannan Feng

fengjiannan1970@qq.com

Specialty section:
This article was submitted to

Nanobiotechnology,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 25 January 2022
Accepted: 06 April 2022
Published: 12 May 2022

Citation:
Yu J, Wang L, Kong X, Cao Y,

Zhang M, Sun Z, Liu Y, Wang J,
Shen B, Bo X and Feng J (2022) CAD

v1.0: Cancer Antigens Database
Platform for Cancer Antigen Algorithm

Development and
Information Exploration.

Front. Bioeng. Biotechnol. 10:819583.
doi: 10.3389/fbioe.2022.819583

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8195831

PERSPECTIVE
published: 12 May 2022

doi: 10.3389/fbioe.2022.819583

http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2022.819583&domain=pdf&date_stamp=2022-05-12
https://www.frontiersin.org/articles/10.3389/fbioe.2022.819583/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.819583/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.819583/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.819583/full
http://cad.bio-it.cn/
http://creativecommons.org/licenses/by/4.0/
mailto:boxc@bmi.ac.cn
mailto:fengjiannan1970@qq.com
https://doi.org/10.3389/fbioe.2022.819583
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2022.819583


present in antigen-presenting cells, which then provoke T-cell
activation to kill tumor cells. The process of immune tumor
killing is displayed in Supplementary Figure S1A. Ehx and
Perreault (2019) suggested classifying cancer antigens into the
following three categories based on specificity and mutation
situations: tumor-associated antigens (TAAs), aberrantly
expressed tumor-specific antigens (aeTSAs), and mutated
tumor-specific antigens (mTSAs). TAAs are typically proteins
that are overexpressed in tumor cells but also exist in normal
tissues. aeTSAs drive the majority of epigenetic changes in
atypical translation events, which are widely expressed in
various cancers and could be shared among patients (Probst
et al., 2017; Schuster et al., 2017; Gee et al., 2018; Laumont et al.,
2018). mTSAs, also known as neoantigens, are patient-specific
mutation peptides that only exist in tumor cells. The classification
method was also used to organize recruited cancer antigens in the
current study.

The efficacies of many TAAs and aeTSAs have been
investigated in clinical trials to date, but global clinical
outcomes have not been encouraging. However, many
neoantigen-based cancer vaccines have generated effective
antitumor responses in multiple preclinical studies (Gubin
et al., 2014; Li et al., 2017). For example, Castle et al. (2012)
identified 16 candidate neoantigens confirmed to be
immunogenic using IFN-gamma enzyme-linked immunospot
assay. Peptide immunization has conferred in vivo tumor
control in protective and therapeutic settings. Apart from
allograft transplantation models, the establishment of
immunodeficient nude and NOD.scid.gamma mice make it
possible to study human cancer cells in mice. Zhang et al.
(2017) found that two neoantigens, ROBO3 A1265V and
PALB2 H198D, with adoptive transfer of autologous
peripheral blood mononuclear cells stimulated in vitro with
mutant peptides decreased tumor growth. In addition, many
recent preclinical studies have achieved a broad immune
response, such as increased cytotoxic T-lymphocyte response
and decrease in the tumor growth rate in mouse models (Ahn
et al., 2015; Chen et al., 2015; Rekoske et al., 2015; Lambricht et al.,
2016; Lopes et al., 2017, 2018; Wu et al., 2017; Zhao et al., 2017;
Gao et al., 2018).

In addition to the preclinical research mentioned earlier,
cancer neoantigen vaccines have also made great progress in
clinical research. Numerous clinical studies have confirmed the
safety and efficacy of cancer neoantigen vaccines (Ott et al.,
2017, 2020; Keskin et al., 2019; Platten et al., 2021), and the
outcomes of clinical trials on melanoma were particularly
encouraging. Ott et al. (2017) demonstrated the potential of
neoantigen vaccines in the treatment of melanoma. Of six
vaccinated patients after surgical resection, four had no
recurrence at the 20- to 32-month follow-up; the remaining
two with recurrence were treated with PD-1. After antibody
therapy, complete remission was achieved. Keskin et al. (2019)
(NC02287428) found that neoantigen-specific T cells from
peripheral blood can migrate into intracranial glioblastoma,
which provided evidence that cancer neoantigen vaccines could
enhance the immune microenvironment of glioblastoma cells.
These clinical studies have indicated that neoantigen vaccines

could play a meaningful role in different tumors. This evidence
provides great confidence for further exploration of the clinical
path of neoantigen vaccines.

In both preclinical and clinical studies, rapid and accurate
neoantigen prediction plays a key role in the development of
neoantigen vaccines. In this study, we explore the use of relevant
datasets in neoantigen prediction.

The process of neoantigen prediction includes 1) sampling of
patient tumor and adjacent tissues, 2) whole-genome sequencing
or whole-exome sequencing and RNA-seq sequencing, 3)
identifying somatic mutations and calculating the expression
levels and HLA subtypes, 4) calculating the binding affinity of
potential neoantigens to HLA subtypes, and 5) screening
candidate neoantigen. A flowchart of neoantigen prediction is
displayed in Supplementary Figure S1B.

Currently, multiple software programs and algorithms have
been developed in neoantigen prediction pipelines (Soria-Guerra
et al., 2015; Peng et al., 2019; Lancaster et al., 2020), and the most
commonly used tools are NetMHC (Lundegaard et al., 2008a)
and NetMHCpan (Reynisson et al., 2021), which use allele-
specific epitope prediction and pan-specific machine learning
methods, respectively. After affinity screening, researchers further
screen candidate neoantigens by peptide immunogenicity
prediction, such as neoantigen prediction workflows INeo-Epp
(Wang et al., 2020) and pTuneos (Chi Zhou et al., 2019). These
algorithms are based on the immunogenicity-related
characteristics of T-cell epitope peptides combined with
machine learning algorithms.

Insufficient and low-quality datasets affect the accuracy of
prediction models. Presently, many cancer antigens or
neoantigen peptides have been generated. It is necessary to
recruit and organize these datasets to facilitate the
improvement of existing algorithms or the development of
new algorithms. Existing databases help accomplish this
purpose. The Cancer–Testis Database (Almeida et al., 2009) is
a knowledge base of high-throughput and curated data on
cancer–testis antigen a. It provides an important resource for
the exploration of cancer–testis antigens. NEPdb (Xia et al.,
2021), dbPepNeo (Tan et al., 2020), and NeoPeptide (Wei-Jun
Zhou et al., 2019) contain curated neoantigens but lack any other
types of cancer antigens; TSNAdb v1.0 (Wu et al., 2018) predicts
candidate neoantigens based on The Cancer Genome Atlas and
The Cancer Immunome Atlas datasets, which are useful for
comparing candidate neoantigens in different cancers. The
Tumor T-cell Antigen Database, TANTIGEN 2.0 (Zhang et al.,
2021), contains HLA ligands and T-cell epitopes and classifies
cancer antigens. However, this database does not contain invalid
peptides and lacks clinically relevant data. The blueprint of the
Cancer Epitope Database and Analysis Resource (CEDAR)
database, proposed by Koşaloğlu-Yalçın et al. (2021), is based
on the Immune Epitope Database (IEDB) and tries to collect
more specific information and classify it in detail. The
aforementioned databases focus on online information
exploration but not on algorithm development. To fill this
gap, we built the Cancer Antigens Database (CAD), which
recruited all cancer antigen peptides and relevant datasets,
established neoantigen simulation datasets, carried out detailed
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data preprocessing, and explained the scope of application and
precautions of different datasets in algorithm development. A
user-friendly platform was concurrently established to facilitate
online exploration.

DATA COLLECTION

We recruited cancer antigens verified from published articles
(~900) and collected associated peptides from other resources,
such as the IEDB (Vita et al., 2019) for peptide binding and T-cell
epitope datasets, the SysteMHC atlas (Shao et al., 2018) for mass
spectrometry (MS) datasets, the VDJdb database (Bagaev et al.,
2020) for antigens with T-cell receptor (TCR) sequence datasets,
and the Protein Data Bank for three-dimensional structure of
peptide-major histocompatibility complex (p-MHC) or
pMHC–TCR complex. After recruiting all verified cancer
antigens, a small amount of neoantigen data were insufficient
for the development of algorithms; therefore, we also generated
simulation neopeptides, for which dbSNP datasets from the
National Center for Biotechnology Information (Sherry et al.,
2001), the reviewed SwissProt human proteins sequence from
Uniprot (Bateman et al., 2021), and verified T-cell epitopes from
IEDB were used.

Finally, more than 800 cancer antigens were recruited for our
database, which includes cancers such as skin, brain, and kidney
cancers. as well as a total of 267 verified neoantigens. Except for
verified cancer antigens, information on associated peptides,
including cleaned MHC–peptide binding (569953), T-cell
epitopes (66151), pMHC MS (509536), antigens with TCR
sequences (60267), and more than 6,000 simulated
neopeptides, was included in our datasets (only HLA-A*0201
was included; for more HLA alleles, users can generate their own

HLA alleles datasets. Refer to methods described in
Supplementary Figure S2 and code from https://github.com/
yujijun/NeoSimData).

USAGE ABOUT DATASETS

Themajority of datasets in our database are suitable for algorithm
development. For example, all curated verified cancer antigen
datasets can be used as preliminary verification for predicting
candidate antigens to test whether the same or similar cancer
antigens have been studied or reported. The simulated neopeptide
datasets have been used in feature-based neoantigen
immunogenicity algorithms (Kim et al., 2018). A large number
of neoantigen simulation datasets have greatly filled the gap of
insufficient neoantigen datasets, providing a choice for the
application of machine learning and even deep learning in the
immunogenicity prediction of neoantigens. We provided an
upgraded version to facilitate the generation of more flexible
and widely applicable simulation datasets.

Part of the MHC-binding datasets in IEDB has been used in
binding prediction algorithms; it should be noted that many
peptides from IEDB belonged to bacteria or viruses but not
humans and also were not obtained by standardized
experimental methodologies in cancer models, which may
reduce the accuracy of the algorithm prediction to a certain
extent (Jiang et al., 2019). In addition, redundant information
can also cause inaccurate model evaluation. Therefore, cleaned
and selected human origin datasets have been generated and
stored in our database. At present, tumor neoantigen prediction
and filtering are mainly based on the binding affinity of MHC and
peptides. However, peptide and MHC binding is a necessary but
not sufficient condition for T-cell activation; therefore, many

FIGURE 1 | Schematic diagram of data preprocessing and website architecture.
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peptides screened by peptide–MHC binding cannot activate
T cells to induce immune responses. T-cell epitope datasets
were a useful resource to predict peptide immunogenicity for
cancer treatment. For example, T-cell epitope datasets could be
used as prior knowledge to improve the accuracy of algorithms,
just as Balachandran et al. (2017) and Luksza et al. (2017)
developed a new approach for assessing whether a tumor is
immunogenically based on estimated likelihood of TCR
recognition for each predicted neoantigen. These estimates
were computed from sequence similarities between the
predicted neoantigens and a dataset of immunogenic epitopes.
Wang et al. (2020) developed INeo-Epp, a random forest classifier
for T-cell immunogenic HLA-I-presenting antigen epitopes and
neoantigens based on sequence-related amino acid features. Riley
et al. (2019) trained a neural network on structural features that
influence TCR and peptide-binding energies.

Several groups are interested in systematically studying the
binding of TCR to peptides/MHC. Gielis et al. (2020) developed a
web tool TCRex for the prediction of T-cell receptor sequence
epitope specificity, which allows users to upload TCR sequences
and predict interaction with multiple known epitopes;
Montemurro et al. (2021) developed NetTCR-2.0, which
enables accurate prediction of TCR–peptide binding by the
“shallow” convolutional neural network; Jokinen et al. (2021)
developed TCRGP, a novel Gaussian process method that
predicts recognition between T-cell receptors and epitopes,
which has better performance in algorithm evaluation than
existing state-of-the-art methods in epitope specificity
predictions. Some databases have been built for curating such
research; for example, the VDJdb database (Bagaev et al., 2020)
curates TCR sequences with known antigen specificities. Peptide
information of the dataset has also been integrated into our
website.

Finally, we compiled a list of benchmark datasets in our
database, which could be used for testing and verification of
neoantigen pipelines. It included the entire process from original
sequence datasets, predicted neoantigens, and experimentally
verified immunogenic peptides, which have been used for the
evaluation of several complete neoantigen prediction platforms
such as pVACtools (Hundal et al., 2020), pTuneo (Chi Zhou et al.,
2019), and neoepiscope (Wood et al., 2020). All these datasets can
also be used for cross-sectional evaluation and comparison
between different neoantigen prediction pipelines
(Supplementary Table S1). Detailed datasets statistics and
usage are shown in Supplementary Table S2, and all the
datasets mentioned before can be downloaded from our
database (http://cad.bio-it.cn/#/Download).

CONSTRUCTION OF CANCER ANTIGEN
PLATFORM

These datasets can be used in algorithm development and
exploration of cancer antigens online. After all datasets were
collected or generated, we organized the information into a
unified format, including tumor name, tissue site, gene name,
peptides, MHC alleles, and mutation information, and then, a

user-friendly retrieval mechanism was established. The HOME
page had detailed statistics about peptide information. On the
SEARCH page, multiple retrieval methods were established. To
facilitate users to perform comprehensive peptide exploration, we
provided information such as hydrophobic and hydrophilic
properties, which have been proved to have an important
influence on the immunogenicity of antigens (Chowell et al.,
2015). We also integrated the sequence alignment program of
BLAST (Zeng et al., 2007) for sequence similarity exploration and
constructed pMHC–TCR protein structure modeling tools for
structure interaction exploration. To conduct a more in-depth
analysis of cancer antigens, especially neoantigens, we introduced
and linked some of the commonly used epitopes prediction (Buus
et al., 2003; Nielsen et al., 2003, 2007a; Peters et al., 2003; Peters
and Sette, 2005; Tenzer et al., 2005; Lundegaard et al., 2006,
2008b, 2008a), affinity prediction (Sturniolo et al., 1999; Nielsen
et al., 2007b; Sidney et al., 2008; Wang et al., 2008, 2010; Nielsen
and Lund, 2009; Andreatta et al., 2015; Jensen et al., 2018;
Reynisson et al., 2021), and neoantigen prediction pipelines in
the TOOLS page; all database or software mentioned is organized
in Supplementary Table S3. The schematic diagram framework
of the web construction processes is shown in Figure 1. Cancer
antigen researchers are encouraged to use this platform to submit
relevant information about cancer antigens on the SUBMIT page
and feel free to download interesting datasets on the
DOWNLOAD page. More information about this website can
be found at http://cad.bio-it.cn/#/FAQ.

USAGE OF CANCER ANTIGEN PLATFORM

A chosen peptide could be explored in this comprehensive
platform. Specific processes can refer to Supplementary
Figure S3. We also provide multiple useful tools, such as the
sequence alignment tool, which provides the opportunity to
explore and compare new cancer antigens with prior
knowledge in our database. In addition, we also facilitated
online MHC–peptide structure modeling, exploring the
peptide–MHC binding and/or pMHC–TCR structure. For
specific usage cases, refer to the description in Supplementary
Figure S4. It can also be locally run by users with an algorithmic
foundation. Users can refer to the source code at https://github.
com/yujijun/pMHC_TCR_binding.

DISCUSSION

Given the problems in the prediction of cancer antigens,
especially neoantigens, we systematically organized and
explained the usage of datasets. All these datasets and their
usage proposals will greatly promote the accuracy of tumor
neoantigen prediction, especially in machine learning or deep
learning algorithm scenarios. However, in the process of
algorithm development, developers must pay attention to
the characteristics of each dataset. For example, pMHC MS
datasets lack negative observations (peptides that do not bind),
posing challenges in creating predictive models (Villani et al.,
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2018). In the situation of immunogenicity study of antigens, the
T-cell epitope datasets may be better than peptide–MHC
binding or MS datasets because not all peptides presented
by MHC can provoke T-cell activation. Multiple datasets
and strategies can be integrated to improve overall results.
For example, combining pMHC MS datasets into MHC-
binding datasets might make prediction of peptide–MHC
binding more accurate.

Except for considering the attributes of datasets, many
methods of improving performance inherent in machine
learning or deep learning can also be considered. De-
redundancy of datasets may improve the scalability of the
algorithm and also make a more accurate evaluation. In some
of the datasets mentioned before, negative will be much larger
than positive. Many down-sampling methods could be used to
prevent model prediction bias; in the case of insufficient training
data, users can generate simulated datasets as previously
mentioned.

In addition to the detailed introduction of the data and
algorithms mentioned previously, a one-stop interaction
platform was established, which is convenient for all cancer
antigen researchers to conduct online exploration of cancer
antigen properties, such as the affinity and hydrophobicity,
pMHC or PMHC–TCR docking characteristics, and key
binding sites. This is very important for the re-excavation of
existing cancer antigen information. Information is still not detail
enough for readers to explore at a more specific. Therefore, we are
looking forward to the blueprint mentioned in the CEDAR
database (Koşaloğlu-Yalçın et al., 2021). CEDAR was built
based on IEDB (Vita et al., 2019), including all cancer-specific
epitope data from various T-cell and B-cell experiments, MHC-
binding assays, and MHC ligandomics by MS. Simultaneously,
the peptide information will be associated with biologically,
immunologically, and clinically relevant information, and a
fine-tuned classification and retrieval mechanism will be
established. For researchers without programming experience,
the information on relevant epitope terms can be accurately
investigated online, which facilitates experiments based on
prior knowledge. At the same time, it provides online
calculation and objective evaluation between different epitope
tools, which greatly reduces the difficulty of selecting epitope

prediction tools for those who have no programming experience
and are unfamiliar with algorithms.

In this study, we curated the most comprehensive datasets
of verified cancer antigens and systematically explained the
usage of the various datasets in neoantigen algorithm
development and then established the online exploration
platform for cancer antigens and integrated useful tools to
conveniently and comprehensively investigate. We believe all
these efforts will support researchers in cancer antigens with or
without programming experience. We will continue to
improve our platform to make it more informative and
convenient to use.
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