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ABSTRACT: The World Health Organization (WHO) declared the
Omicron variant (B.1.1.529) of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), the pathogen responsible for the Coronavirus
disease 2019 (COVID-19) pandemic, as a variant of concern on 26
November 2021. By this time, 42% of the world’s population had received
at least one dose of the vaccine against COVID-19. As on 1 October 2022,
only 68% of the world population got the first dose of the vaccine. Although
the vaccination is incredibly protective against severe complications of the
disease and death, the highly contagious Omicron variant, compared to the
Delta variant (B.1.617.2), has led the whole world into more chaotic
situations. Furthermore, the virus has a high mutation rate, and hence, the
possibility of a new variant of concern in the future cannot be ruled out. To
face such a challenging situation, paramount importance should be given to
rapid diagnosis and isolation of the infected patient. Current diagnosis methods, including reverse transcription-polymerase chain
reaction and rapid antigen tests, face significant burdens during a COVID-19 wave. However, studies reported ultrarapid, reagent-
free, cost-efficient, and non-destructive diagnosis methods based on chemometrics for COVID-19 and COVID-19 severity diagnosis.
These studies used a smaller sample cohort to construct the diagnosis model and failed to discuss the robustness of the model. The
current study systematically evaluated the robustness of the diagnosis models trained using smaller (real and augmented spectra) and
larger (augmented spectra) datasets. The Monte Carlo cross-validation and permutation test results suggest that diagnosis using
models trained by larger datasets was accurate and statistically significant (Q2 > 99% and AUROC = 100%).

■ INTRODUCTION
In December 2019, China reported an outbreak of
Coronavirus Disease 2019 (COVID-19), a typical viral
pneumonia caused by Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2).1 Although studies reported
similar viral pneumonia caused by SARS-CoV and the Middle
East respiratory syndrome coronavirus (MERS-CoV) with a
higher mortality rate than that of COVID-19, SARS-CoV-2
spreads significantly faster than MERS-CoV and SARS-CoV,2

leading the World Health Organization (WHO) to declare
COVID-19 as a global pandemic on 11 March 2020.3 Also,
coronaviruses were genetically prone to a high rate of
mutations mainly because of their RNA polymerase with a
restricted proofreading mechanism.4 Therefore, the chances of
a new variant of SARS-CoV-2 with a high transmission rate
than that of the Delta or the Omicron variants responsible for
the previous COVID-19 waves cannot be ruled out. In that
case, rapid diagnosis and isolation of the COVID-19-positive
(+ve) patients are pivotal to preventing transmission of
infection.

The nucleotide-based reverse transcription-polymerase chain
reaction (RT-PCR) is a globally accepted diagnosis method.5

RT-PCR is the best method for diagnosis, but it is time-
consuming and can only be performed in a certified laboratory

with trained health professionals. Also, the paramount demand
is the costly equipment, reagents, primers, and probes.5

Moreover, the primers and probes used for the process were
vulnerable to mutations in the target genes, leading to more
false-positive and false-negative diagnoses.6 Similarly, getting
an RT-PCR result may take approximately 24 h or longer,7

increasing the chance of viral spread. However, most of the
challenges faced by RT-PCR were reduced significantly after
introducing the immunoassay-based rapid detection kits that
were more accessible to the general public.7,8 Still, during a
COVID-19 wave, the shortage of health professionals, RT-
PCR reagents, and rapid detection kits worsens the scenario.

To overcome these problems in diagnosis, Barauna et al.
(2021) proposed an ultrarapid, reagent-free, and non-
destructive diagnosis method using Fourier-transform infrared
(FTIR) spectroscopy coupled with chemometrics.9 The
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authors successfully developed a genetic algorithm-linear
discriminant analysis (GA-LDA) classifier trained using the
FTIR spectra acquired from the pharyngeal swab to screen
COVID-19-positive (+ve) and COVID-19-negative (−ve)
patients.9 Later, Wood et al. (2021) developed a similar
high-throughput diagnosis model using the partial least
squares-discriminant analysis (PLS-DA) model. Here, authors
used FTIR spectra of saliva samples collected from COVID-19
+ve and COVID-19 −ve patients, later determined using RT-
PCR to train the PLS-DA model. The model achieved a
sensitivity of 93% and a specificity of 82%.10 Also, Banerjee et
al. (2021) showed that FTIR-based PLS-DA models were
paramount in diagnosing COVID-19 severe and non-severe
patients. These models trained using the FTIR spectra of blood

plasma samples and clinical information demonstrated an area
under the receiver operating characteristic (AUROC) of
85.7%.11 Moreover, several other studies discussed the
advantage of the rapid diagnosis using chemometrics and
machine learning models trained using the FTIR spectra of
biofluids.12−15

All these studies used a small set of sample cohorts
(approximately less than 200 samples) to construct the
diagnosis model, and the models demonstrated significant
efficiency. Still, a limitation is that these studies failed to
explain the robustness of the diagnosis models, that is,
determining the overfitting trend, estimating the best models,
and, importantly, identifying the statistical significance of the
models.16−18 Since PLS-DA models were prone to overfitting

Figure 1. MCCV performance plot. a(i), b(i), and c(i) show the performance plots for the PLS-DA model using three real datasets DS1, DS2, and
DS3, respectively. a(ii), b(ii), and c(ii) represent the performance of the PLS-DA models using the Savitzky−Golay second derivative (SGSD)
spectra of DS1, DS2, and DS3, respectively. Similarly, a(iii), b(iii), and c(iii) represent the performance for the models using standard normal
variate (SNV)-transformed DS1, DS2, and DS3, respectively. The vertical bar shows the standard deviation value of the 50 iterations during
MCCV. In a(i), a(ii), and a(iii), standard deviation for Q2 is not shown because larger values make the plot difficult to interpret. R ,2 AUROCc, and
accuracyc show the calibration matrics. Q ,2 AUROCcv, and accuracycv represent the CV metrics.
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and producing over-optimistic results,19 the current study
systematically evaluated the robustness of models trained using
real and augmented datasets. Augmented datasets contain
artificial spectra calculated using extended multiplicative scatter
augmentation (EMSA).20 The advantage of using EMSA is
that the n number of new spectra similar to the original
spectrum could be augmented. Also, augmented spectra
constitute only the physical variations (baseline shift, multi-
plicative effect, and instrumental and scattering effect)
associated with the original spectra.20 For biochemical
variations in the spectra, spectra of new samples have to be
added. However, this study exploited EMSA to generate
varying-sized augmented datasets to investigate the influence
of sample size on the prediction efficiency of the diagnosis
models. Also, the robustness analysis was carried out for each
of these models. For robustness analysis, the study was divided
into two sections. First, the overfitting trend and the best
classification models were estimated using Monte Carlo cross-
validation (MCCV),21 and then, the statistical significance of
the best models was evaluated using a permutation test.22,23

■ RESULTS AND DISCUSSION
Significance of COVID-19 Diagnosis Models Using

Real Datasets. The overfitting trend and the best diagnosis
models were identified using the MCCV performance plot.
The advantage of MCCV is that the n number of random
unbiased splits of the datasets was possible and hence reduces
the risk of overfitting.17,21 Also, Xu and Liang (2001) showed
that MCCV is a good approach when dealing with a larger
dataset.21 Similarly, Wood et al., 2021 adopted the MCCV
approach to evaluate the COVID-19 diagnosis models trained
using a smaller dataset.10 Thus, it is evident that MCCV could
be used for smaller and larger datasets to estimate the best

models.10,17,21 Hence, the MCCV performance metrics of the
best model describe the most robust and unbiased estimates of
a model to diagnose a new patient.10

Figure 1 shows the MCCV performance plot for the models
constructed using the three real datasets, dataset 1 (DS1),
dataset 2 (DS2), and dataset 3 (DS3), and the corresponding
preprocessed datasets. Models constructed using DS1 and DS2
were used to diagnose COVID-19 +ve or COVID-19 −ve
patients, while models using DS3 were used to diagnose severe
or non-severe COVID-19 +ve patients. From Figure 1a(i−
iii),b(i−iii),c(i−iii), it is evident that the prediction error for
calibration (R2) (the ability of the model to diagnose a known
patient) increases with the addition of latent variables (LVs) to
construct the model, while prediction error for cross-validation
(Q2) (the model’s capability to diagnose a new similar sample)
first increases and then decreases with the addition of LVs; that
is, the diagnosis efficiency of the model decreases when the
number of LVs increases. This observation indicates that the
classification model is overfitting the data.24,25 Therefore, the
number of LVs to construct the best model (models without
overfitting) was optimized such that R Q2 2. For instance,
consider Figure 1a(i). A minimum error between R2 and Q2

was observed for the model constructed using the first six LVs
(optimal LVs), which was considered the best diagnosis model.
A similar trend could be observed for AUROC from calibration
(AUROCc) versus AUROC from MCCV (AUROCcv) curves.
The same observation holds with accuracy from calibration
(accuracyc) versus accuracy from MCCV (accuracycv) curves.

Furthermore, the performance metrics were evaluated for
the best models trained using DS1, DS2, and DS3 and the
corresponding preprocessed datasets. Table 1 represents the
MCCV performance metrics of the best diagnosis models. The

Table 1. MCCV Performance Metrics (Mean ± Standard Deviation) for the Best Diagnosis Models Trained Using Real
Datasets

dataset/preprocessed dataset LV Q2 (%) MCR (%) AUROC (%) MCC (%)

PLS-DA using DS1
DS1 6 25.24 ± 17.08 26.90 ± 12.43 82.52 ± 9.91 47.88 ± 25.49
DS1 + SGSD 2 26.37 ± 14.82 27.25 ± 11.11 82.62 ± 9.18 47.05 ± 23.60
DS1 + SNV 3 20.78 ± 21.33 27.25 ± 10.35 77.83 ± 10.53 48.83 ± 20.37
DS1 + EMSC 6 26.44 ± 55.37 18.75 ± 10.57 91.36 ± 7.20 63.96 ± 20.43

PLS-DA using DS2
DS2 3 6.34 ± 12.50 36.82 ± 6.18 65.62 ± 10.78 18.01 ± 14.34
DS2 + SGSD 2 15.43 ± 8.18 29.10 ± 7.10 77.39 ± 8.64 37.13 ± 16.63
DS2 + SNV 3 15.67 ± 10.38 33.84 ± 6.99 73.78 ± 7.40 27.59 ± 15.19
DS2 + EMSC 4 19.27 ± 7.16 32.13 ± 6.63 76.90 ± 6.52 34.55 ± 14.00

PLS-DA using DS3
DS3 3 24.35 ± 10.36 30.08 ± 5.83 79.64 ± 5.85 38.94 ± 12.35
DS3 + SGSD 3 20.01 ± 10.38 33.25 ± 7.26 76.37 ± 7.62 32.28 ± 15.64
DS3 + SNV 3 25.93 ± 11.13 28.56 ± 6.09 81.05 ± 6.38 42.07 ± 12.78
DS3 + EMSC 2 24.29 ± 11.09 28.61 ± 6.54 80.08 ± 6.55 41.87 ± 13.68

PLS-DA using DS2-FR
DS2-FR 4 17.65 ± 9.13 29.69 ± 7.3 78.42 ± 8.01 38.82 ± 15.97
DS2-FR + SGSD 2 15.21 ± 8.10 29.10 ± 7.4 77.25 ± 8.48 37.11 ± 17.36
DS2-FR + SNV 4 18.24 ± 7.17 34.28 ± 7.38 74.95 ± 7.14 30.98 ± 16.28
DS2-FR + EMSC 3 20.13 ± 8.31 31.79 ± 8.45 77.73 ± 7.51 35.21 ± 18.18

PLS-DA using DS3-FR
DS3-FR 3 26.88 ± 9.84 27.44 ± 6.16 81.05 ± 6.05 44.29 ± 12.95
DS3-FR + SGSD 3 19.81 ± 10.32 32.86 ± 7.29 76.37 ± 7.49 32.98 ± 15.72
DS3-FR + SNV 3 23.12 ± 11.32 28.32 ± 5.24 79.54 ± 6.70 42.48 ± 10.97
DS3-FR + EMSC 3 21.67 ± 12.29 29.25 ± 6.49 78.27 ± 7.01 40.60 ± 13.55
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table shows that the model trained using DS1 acquired an
AUROC of 82.52 ± 9.91%. Also, for the models trained using
extended multiplicative scatter correction (EMSC)-corrected
DS1 (DS1 + EMSC), one could observe an AUROC of 91.36
± 7.20%, a misclassification rate (MCR) of 18.75 ± 10.57%,
and a Mathews correlation coefficient (MCC) of 63.96 ±
20.43%. Similarly, models trained using Savitzky−Golay
second derivative (SGSD)- and EMSC-corrected DS2 show
similar performance with an AUROC of 77.39 ± 8.64% and
76.90 ± 6.52%. Likewise, the COVID-19 severity diagnosis
models trained using standard normal variate (SNV)-trans-
formed DS3 and EMSC-corrected DS3 show similar perform-
ance with an AUROC of 81.05 ± 6.38 and 80.08 ± 6.55%,
respectively.

For a small sample cohort, the performance of the COVID-
19 and the severity diagnosis models was exceptional. Notably,
the models trained using EMSA spectra of DS1 outperformed
the DS2- and DS3-trained models. This finding was interesting

because DS1 uses only the fingerprint region (FR) from 800 to
1300 cm−1 for training the models. DS2 and DS3 use the
complete spectral range (CSR) from 650 to 4000 cm−1.
Therefore, to understand the influence of the FR on model
performance, the FR (650−1800 cm−1) of DS2 (DS2-FR)-
and DS3 (DS3-FR)-trained models was constructed, as shown
in Table 1. As seen from Table 1, the models using DS2-FR
showed an AUROC of 78.42 ± 8.01%, which was significantly
improved compared to that of the models trained using DS2
(65.62%). Also, the models using DS3-FR showed an AUROC
of 81.05 ± 6.05%. The results demonstrate a significant
performance improvement between the models trained using
the CSR and FR. Here, one could conclude that for the smaller
dataset, the models constructed using the FR (DS1, DS2-FR,
and DS3-FR) show improved performance. However, all the
models show a high standard deviation and low Q2 values. A
Low Q2 values indicates the poor class prediction capability of

Figure 2. MCCV performance plot of the PLS-DA diagnosis model trained using SNV-transformed augmented datasets DS1, DS2, and DS3. (a)
(i), (b) (i), and (c) (i) show the performance of the model using the augmented datasets with 100 spectra in each class. Similarly, (a) (ii), (b) (ii),
and (c) (ii) represent the performance of the model using the augmented datasets with 750 spectra in each class. Likewise, (a) (iii), (b) (iii), and
(c) (iii) show the performance of the model using the augmented datasets with 2500 spectra in each class. R ,2 AUROCc, and accuracyc show the
calibration matrics. Q ,2 AUROCcv, and accuracycv represent the CV metrics.
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the PLS-DA diagnosis models. However, a Q2 value for a good
model is unknown.18

Increasing Dataset Size Reduces the Overfitting of
Diagnosis Models. Conventionally, PLS-DA classification
was adopted for colinear datasets with fewer samples and many
variables.26,27 Also, it is challenging to provide an appropriate
sample size criterion to construct an accurate PLS-DA
classification model.18 Another major weakness of PLS-DA is
the trend of overfitting.16,18 At this juncture, the study
discusses the influence of dataset size on the overfitting
trend of models. Therefore, augmented datasets with varying
sizes, EMSA(50, 2) (represent an EMSA dataset with 50
spectra in each class), EMSA(100, 2), EMSA(250, 2),
EMSA(500, 2), EMSA(750, 2), EMSA(1000, 2), and EMSA-
(2500, 2), and the corresponding SGSD- and SNV-trans-
formed datasets were used to construct PLS-DA models.
Furthermore, the MCCV performance plot of models using
augmented datasets was used to understand the overfitting
trend. The EMSC preprocessing of the datasets was not
considered because EMSC is an intermediate step to generate
the augmented spectra and therefore influences these spectra.20

The performance plots for all the models are shown in
Figures 2 and S1−S6. For instance, consider Figure 2a(i),b-
(i),b(i),c(i), the performance of the model using SNV-
transformed EMSA(100, 2) of DS1, DS2, and DS3. Here,
the trend of R2 versus Q2 demonstrates overfitting, which is
comparable to the observations from the real datasets DS1,
DS2, and DS3 (Figure 1). However, as seen in Figure
2(ii),b(ii),c(ii), models trained using SNV-transformed EMSA-
(750, 2) of DS1, DS2, and DS3, the overfitting trend starts
diminishing or is absent. Furthermore, if one observes R2

versus Q2 for models using an extensive dataset, EMSA(2500,
2), shown in Figure 2a(iii),b(iii),c(iii), overfitting is absent.

Here, one could argue that the number of samples was greater
for EMSA (2500, 2) than the number of variables, hence no
overfitting. However, overfitting is absent for models trained
using the SNV-transformed EMSA(500, 2), where the number
of samples is less than the number of variables [Figure
S3a(iv),b(iv),c(iv)]. Also, from Figures 2a(i),b(i),c(i), S1, and
S2, it could be observed that models constructed using a
smaller dataset (≈< 500 spectra in each class) show trends of
overfitting. Conversely, as seen from Figures 2a(ii,iii),b(ii,iii),c-
ii,iii),c(ii,iii) and S3−S6, increasing the dataset size (≈≥ 500
spectra in each class) reduces overfitting and improves the
performance of the models.
Increasing Dataset Size Eliminates the Need for

Variable Selection. Studies showed that for smaller datasets,
variable selection improves COVID-19 diagnosis model
performance,10,12−14 which is evident in Table 1. However,
the performance of models using a larger dataset contradicts
this observation. As seen from Figure 2a(ii), for the
performance of models using the SNV-transformed EMSA
(750, 2) of DS1, which contains only the FR as variables
(selected variables), the Q2 curve approaches ≈85% and then
flattens. Also, for the models using SNV-transformed EMSA
(750, 2) of DS2 and DS3, which contain the whole spectral
region (complete variables) shown in Figure 2b(ii),c(ii), Q2

reaches ≈99.9% and flattens. Similar patterns were observed
for models using the remaining datasets (Figures S1−S6).
Therefore, models constructed using the entire spectral region
outperform the models using selected variables. Thus, it was
evident that variable selection was inessential for modes
constructed using large datasets, and PLS-DA inherently
identifies the variables of utmost importance.
Increasing Dataset Size Improves Model Perform-

ance. The best diagnosis models constructed using the
augmented datasets were identified, and the performance of

Table 2. MCCV Performance Metrics for the Best Diagnosis Models Trained Using the SNV-Transformed Augmented
Datasets

dataset LV Q2 (%) MCR (%) AUROC (%) MCC (%)

PLS-DA using augmented spectra from DS1
EMSA (50, 2) + SNV 7 27.47 ± 20.14 24.90 ± 7.84 85.06 ± 8.44 51.86 ± 15.88
EMSA (100, 2) + SNV 7 31.13 ± 12.06 23.54 ± 7.40 86.33 ± 6.75 53.66 ± 14.90
EMSA (250, 2) + SNV 10 56.45 ± 4.69 10.60 ± 2.73 95.21 ± 1.73 78.96 ± 5.41
EMSA (500, 2) + SNV 40 82.71 ± 1.64 1.37 ± 0.87 99.95 ± 0.05 97.31 ± 1.73
EMSA (750, 2) + SNV 40 83.64 ± 1.13 0.83 ± 0.41 100.0 ± 0.02 98.34 ± 0.81
EMSA (1000, 2) + SNV 40 83.84 ± 1.32 1.07 ± 0.52 100.0 ± 0.02 97.85 ± 1.02
EMSA (2500, 2) + SNV 40 83.15 ± 0.77 1.12 ± 0.34 99.95 ± 0.02 97.80 ± 0.68

PLS-DA using augmented spectra from DS2
EMSA (50, 2) + SNV 2 −11.21 ± 14.45 53.59 ± 8.89 45.34 ± 10.18 −7.57 ± 18.73
EMSA (100, 2) + SNV 5 16.77 ± 10.61 29.30 ± 6.33 74.90 ± 7.36 43.50 ± 12.79
EMSA (250, 2) + SNV 5 24.94 ± 5.28 26.71 ± 4.33 77.93 ± 4.18 49.29 ± 8.78
EMSA (500, 2) + SNV 40 99.22 ± 1.09 0.05 ± 0.28 100.0 ± 0.02 99.90 ± 0.55
EMSA (750, 2) + SNV 40 99.32 ± 0.42 0.13 ± 0.23 100.0 ± 0.00 99.76 ± 0.46
EMSA (1000, 2) + SNV 40 99.46 ± 0.23 0.04 ± 0.10 100.0 ± 0.00 99.90 ± 0.21
EMSA (2500, 2) + SNV 40 99.56 ± 0.09 0.00 ± 0.00 100.0 ± 0.00 100.0 ± 0.00

PLS-DA using augmented spectra from DS3
EMSA (50, 2) + SNV 2 14.00 ± 17.29 39.31 ± 10.44 72.22 ± 11.83 21.83 ± 21.28
EMSA (100, 2) + SNV 2 15.41 ± 10.86 33.20 ± 7.10 73.68 ± 7.46 34.06 ± 14.23
EMSA (250, 2) + SNV 8 41.21 ± 6.73 17.14 ± 4.17 89.06 ± 2.93 66.02 ± 8.29
EMSA (500, 2) + SNV 40 99.95 ± 0.03 0.00 ± 00.00 100.0 ± 0.00 100.0 ± 0.00
EMSA (750, 2) + SNV 40 99.95 ± 0.01 0.00 ± 00.00 100.0 ± 0.00 100.0 ± 0.00
EMSA (1000, 2) + SNV 40 99.95 ± 0.00 0.00 ± 00.00 100.0 ± 0.00 100.0 ± 0.00
EMSA (2500, 2) + SNV 40 99.95 ± 0.00 0.00 ± 00.00 100.0 ± 0.00 100.0 ± 0.00
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each model was computed. Table 2 shows the performance of
models trained using the SNV-transformed augmented datasets
of DS1, DS2, and DS3. Similarly, models trained using all the
augmented datasets and the preprocessed augmented datasets
of DS1, DS2, and DS3 are shown in Tables S1−S3. From
Tables 2 and S1−S3, one could observe a low Q2 value for the
models trained using small augmented datasets EMSA(50, 2),
EMSA(100, 2), and EMSA(250, 2) of DS1, DS2, and DS3 and
the corresponding preprocessed datasets. Interestingly, this
observation correlates with the Q2 values obtained for the real
datasets DS1, DS2, and DS3 (Table 1). Also, if one compares
the trend of the Q2 value for models trained using smaller and
larger datasets, models using larger datasets show promising
performance. More precisely, models using the SNV-trans-
formed larger augmented datasets were the best.

For instance, consider Table 2; the diagnosis model using
the SNV-transformed smaller dataset EMSA(50, 2) of DS1
shows a Q2 of 27.47% with a major deviation of ±20.14%.
Furthermore, one could observe an increase in the Q2 value
and a reduction in the deviation with an increase in the size of
the dataset. Also, from the diagnosis model using SNV-
transformed larger datasets of DS1, one could notice a
fractional change in the Q2 value (≈83%) and negligible
deviations. A similar pattern could be seen in the models using
the SNV-transformed larger datasets of DS2 and DS3 with a
Q2 value greater than 99% with negligible deviation. However,
one could observe a difference in the Q2 value between models
using DS1 (≈83%) and the other two datasets (≈99%). The
difference is due to the dissimilarity in the spectral region used

to train the models. DS1 used the FR from 800 to 1300 cm−1.
DS2 and DS3 used the CSR from 650 to 4000 cm−1. High Q2

indicates that the classifier predicts class labels precisely with a
minor variation from the original label. For example, if Q2 is
high (≈99%), then the classifier predicts the actual label of 1 as
≈0.99 or ≈1.01. Since the PLS-DA classifier predicts the class
label based on PLS regression, attaining a Q2 of 100%
(predicting the same class label) was challenging.28

Contrary to Q2, all three models show an AUROC of 100%
with negligible or no deviation. Therefore, AUROC suggests
that the models constructed using the larger datasets were
exceptional. A similar pattern was observed for the MCR and
MCC in the three models. For models trained using a larger
dataset, the MCR ≈ 0%. The MCR indicates the fraction of the
wrongly classified. Also, studies pointed out that too few
misclassifications were achieved when the cross-validation
method was implemented wrongly or the model had a poor
quality.18 Therefore, it is essential to check the quality of the
model using a permutation test.18,29

Quality Assessment of the Best PLS-DA Diagnosis
Models. A permutation test was adopted from refs 181923,
and 30 to validate the best diagnosis models. Figure S7 shows
the distribution of test statistics Q2, AUROC, and the MCR for
the permutation models and the actual model (bold down
arrow) based on the MCCV for the real dataset. Similarly,
Figures S8 and S9 show the distribution for the permutation
models for smaller augment datasets EMSA (50, 2) and EMSA
(100, 2) of DS1, DS2, and DS3. In Figure S9a(i), the actual
diagnosis model shows a Q2 of 31.13 ± 12.06%. Here, out of

Figure 3. Quality assessment of the best PLS-DA diagnosis model based on MCCV using a permutation test. (a−c) represent the distribution for
the test statistics Q2, AUROC, and the MCR from the permuted model compared to that from the actual model (bold down arrow) trained using
the SNV-transformed EMSA (1000, 2) of DS1, DS2, and DS3.
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the 2000 permutation models, none had Q2 higher than
31.13% leading to a P-value of < 0.0005.29 Similar results could
be observed in the Q2 distributions for SNV-transformed
EMSA (100, 2) of DS2 [Figure S9b(i)] and DS3 [Figure
S9c(i)].

Comparable results were observed in the distribution of the
MCR. The MCR was employed as a metric because of its
known expected value in the randomly permuted scenario. The
average number of misclassifications for a randomly permuted
two-class problem should be half of the samples; that is, the
average MCR equals 0.5 (50%),18 which is evident from the
distribution of the MCR, shown in Figure S9a(ii). As seen
from the figure, none of the permutation models shows an
MCR lower than 23.54 ± 7.40% leading to a significant P-value
of <0.0005. Similarly, the models trained using the SNV-
transformed EMSA(100, 2) of DS2 [Figure S9b(ii)] and DS3
[Figure S9c(ii)] provide a similar P-value of <0.0005, showing
that these models are significant. Furthermore, consistent
results were observed while comparing the permuted
distribution for the metric AUROC.

All these findings were in correlation with the real dataset
(Figure S7) and the smaller augmented datasets EMSA(50, 2)
(Figure S8). Thus, it is crucial to note that models using

smaller datasets (real and augmented) are of good quality.
However, the drawback is that these models have low
performance. Conversely, if one investigates the distribution
of the permuted models for larger augmented datasets, shown
in Figures 3 and S10−S12, all these models show a significant
P-value of <0.0005 for Q2, the MCR, and AUROC. The
findings suggest that these models were of good quality. Also,
the results were predominant because the COVID-19 diagnosis
model and the COVID-19 severity diagnosis models using
larger datasets demonstrated excellent performance (Q2 >
99%).
VIP Scores Highlight the Most Relevant Spectral

Variables. Variable importance in projection (VIP) scores11,31

were employed to identify the spectral variables of utmost
importance. It describes the relative influence of the X variable
(wavenumber) on the dependent variables (Y ) and the LVs.
On the other hand, some studies used regression coefficients
for the same purpose.29 However, VIP scores are advantageous
compared to regression coefficients because vital spectral
variables contributing to inter-class variations could be
efficiently determined for models trained using preprocessed
spectra.31 Thus, the importance of X could be evaluated using
the VIP score. Variables with a VIP score equal to 1

Figure 4. VIP score plots for COVID-19 diagnosis model (a) and COVID-19 severity diagnosis model (b) using SNV-transformed EMSA (1000,
2) of DS2 and DS3.

Table 3. MCCV Performance Metrics for the Best Diagnosis Models Trained Using the FR (650−1800 cm−1) of Augmented
Spectra

dataset LV Q2 (%) MCR (%) AUROC (%) MCC (%)

PLS-DA using augmented spectra from DS2-FR
EMSA (1000, 2) 40 90.19 ± 0.86 0.05 ± 0.17 100.0 ± 0.00 99.95 ± 0.35
EMSA (1000, 2) + SGSD 40 89.21 ± 0.87 0.10 ± 0.32 100.0 ± 0.00 99.80 ± 0.64
EMSA (1000, 2) + SNV 40 93.21 ± 0.65 0.05 ± 0.22 100.0 ± 0.00 99.90 ± 0.44

PLS-DA using augmented spectra from DS3-FR
EMSA (1000, 2) 40 92.53 ± 0.83 0.10 ± 0.30 100.0 ± 0.00 99.85 ± 0.59
EMSA (1000, 2) + SGSD 40 86.28 ± 1.31 0.59 ± 0.81 100.0 ± 0.06 98.88 ± 1.59
EMSA (1000, 2) + SNV 40 93.75 ± 0.75 0.10 ± 0.32 100.0 ± 0.00 99.80 ± 0.63
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correspond to an equal contribution of these variables, and a
score greater than 1 demonstrates a higher significance to
those variables.

The VIP score for the best models trained using SNV-
transformed EMSA(1000, 2) of DS2 and DS3 is shown in
Figure 4a,b. From the figures, one could observe that the (FR)
(650−1800 cm−1) accounts for the most significant vibrations
(VIP ≥ 1) in both models. Furthermore, models were
constructed using the FR to investigate the influence of this
region on the model performance. Table 3 shows the
performance of the models constructed using the FR of
EMSA(1000, 2). The table suggests that the class prediction
capability of the model in terms of Q2 was less (≈93%)
compared to that of the models using the complete region of
spectra (Q2 ≈ 99%, shown in Table 2). Therefore, it is evident
that the variation in the spectral regions other than the FR, that
is, the regions 2845−2860, 2900−2950, and 3200−3370 cm−1

in Figure 4a and the region 2900−2960 cm−1 in Figure 4b,
influences the class prediction efficiency. However, both the
models constructed using the FR show an AUROC of 100%
and a less than 0.1% MCR.

Furthermore, closely observing spectral regions in Figure 4a
(labeled 1, 2, ..., 7 in blue circles) shows that region 1 from 650
to 900 cm−1 provides significant variation to the COVID-19
diagnosis model. However, in the region 1 (red circle) in
Figure 4b, the VIP plot for the COVID-19 severity model was
influenced only by 650 to 740 cm−1. These observations show
that the fundamental vibrations influencing the performance of
COVID-19 diagnosis and severity diagnosis models were not
similar. Also, these observations were valid for the remaining
regions. However, to understand the biochemical explanation,
an extensive database comprising the spectral band assign-
ments of FTIR spectra of biological and viral samples from 600
to 4000 cm−1 was constructed based on a literature
survey10,13−15,32−42 and is available in Table S4. The following
discusses the biomolecules responsible for the significant
vibrations.
650−750 cm−1. Amide V vibrations of proteins; vibrations

of protein secondary structures α-helix, β-sheets, β-turns, 310
helices.
750−900 cm−1. DNA or RNA conformational-related

vibrations, including nucleotide vibrations; ring, C−C and
C−O vibrations of ribose and deoxyribose sugar. Phosphate
and sugar-phosphate vibrations; C−C and C−O vibrations of
carbohydrates and fatty acids.
900−1000 cm−1. Mainly, DNA, RNA, and DNA-RNA

hybrid vibrations; P−OH bending and symmetrical stretching
(νs) of PO4

2− in phosphorylated proteins and nucleic acids.
1000−1100 cm−1. This region was majorly influenced by νs

of PO4
2− present in DNA, RNA, phosphorylated proteins, and

molecules in energy metabolism and membrane phospholipids;
C−C and C−O vibrations of polysaccharides; ν(C−N) and
C−H deformation (δ) vibrations of amino acids histidine and
tryptophan, CH2 vibration of proline, and C−O vibration of
threonine.
1100−1200 cm−1. Includes ν(P−O−C), ν(C−O), ν(C−

OH), and ν (C�O) vibrations of the ribose sugar;
asymmetrical stretching vibrations (νas) of CO−O−C in
DNA, RNA, and glycans; ν(C−O), ν(C−C), and ν(C−O−
C) vibrations of polysaccharide rings, phospholipids, trigly-
cerides, and cholesterol esters; ν(C−N) and δ(C−H)
vibrations of deprotonated and protonated histidine; ν(C−

O) and ν(C−OH) groups of serine, threonine, and tyrosine in
proteins.

1200−1300 cm−1. νas(PO4
2−) of the phosphodiester linkage

in A-DNA, B-DNA, RNA, and phospholipids; νas(P�O) of
the phosphorylated molecule; ring C−O−C, C−O vibrations
of polysaccharides; amide III vibrations of nucleic acids and
proteins; ν(C−C), ν(C−O) tryptophan, tyrosine; δ(C−H),
ν(C−N), δ(N−H) of histidine, tryptophan; δ(C−OH)
vibrations of tyrosine, aspartate, glutamate; protein secondary
structure vibrations of α-helix, β-sheets, β-turns, and 310
helices.

1300−1400 cm−1. δ(C−H) in polysaccharide rings; amide
III vibrations of proteins and nucleic acids; wagging(ω) and
twisting (τ) vibrations of CH2 in proteins; νs(COO−)
vibrations of fatty acids and amino acid side chains. δs(CH3)
and δs(CH2) of lipids and proteins.

1400−1500 cm−1. ν(C−N), δ(N−H), δ(C−H) in proteins;
νs(COO−) of lipids, polysaccharides, and proteins; δ(C−H) of
DNA, amino acids, and proteins; δ(CH2) of amino acids,
lipids, fatty acids, and polysaccharides; δas(CH3) of proteins;
scissoring vibrations of (σ) CH2 in phospholipids.

1500−1600 cm−1. Mainly, amide II vibrations of nucleic
acids, proteins, α-helix, β-sheets, β-turns, and 310 helices;
δ(C�N), NH2 of nucleic acids; δ(C−H), δ(C−C) ring, ν(C−
C), ring-OH, δ(C�N), δ(C�C), ν(C�C), νs(COO−) of
amino acids and proteins; δs(NH3

+) of lysine; δ(−NH2) of N-
terminal.

1600−1700 cm−1. Mainly, amide I vibrations of nucleic
acids, proteins, α-helix, β-sheets, β-turns, and 310 helices; C�
C ring, ν(C�O), ν(C�N), ν(C�C), ν(N−H), and NH2 of
nucleobases in single-stranded (ss) and double-stranded (ds)
DNA and RNA; ν(C�O) of nucleic acids, lipids, fatty acids,
and proteins; νas(CN3H5

+), δas(−NH3
+), ν(C−C), and δ(C−

H), δ(C−C ring), δ(C−H), and δs(−NH2) in amino acids and
proteins.

1700−1750 cm−1. Amide I vibrations; νs(C�O) and
νs(C−N) of proteins; ν(C�O) of nucleotides, amino acids,
DNA, RNA, fatty acid, lipids, phospholipids, and carbonyl
esters of lipids.

2900−2960 cm−1. ν(C−H) and ν(N−H) vibrations;
νas(CH2) and νas(CH3) of lipid acyl chains.
Validation of the Best Diagnosis Models. The best

diagnosis model constructed using the SNV-transformed larger
augmented datasets was validated using an independent
validation dataset which was not used for calibrating the
models. The validation dataset was constructed using the
EMSA approach with 50 spectra each in COVID-19 +ve and
COVID-19 −ve cases. Table 4 represents the performance
metrics obtained during the validation process. The results
show that increasing the number of samples after a certain
threshold does not improve prediction efficiency. For example,
the models constructed using the SNV-transformed larger
dataset EMSA(1000, 2) of DS1 show a prediction error for
validation (V )2 value of 87.23%, and the models constructed
using a more extensive set, that is, the SNV-transformed
EMSA(2500, 2) of DS1, show a V2 value of 86.91%. Also, the
models constructed using the SNV-transformed larger dataset
of DS3 show the same V2 value of 99.97%. Furthermore, the
PLS-DA model constructed using SNV-transformed EMSA-
(1000, 2) of DS1, DS2, and DS3 shows an MCR of 0%, an
AUROC of 100%, and an MCC of 100%. Therefore, the
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validation results suggest that the models constructed using
larger datasets accurately diagnose COVID-19 and its severity.

■ CONCLUSIONS
The study critically evaluated the robustness of the FTIR-
based COVID-19-infected and COVID-19 severity diagnosis
model trained using real datasets (for a smaller cohort) and
smaller augmented, larger augmented, and the corresponding
preprocessed datasets. The MCCV performance plot of models
trained using the real and the smaller augmented dataset shows
a trend of overfitting. Furthermore, the best diagnosis models
were identified, and a permutation test was conducted for each
of these models using the test statistics Q2, the MCR, and
AUROC. The permutation test shows a P-value of less than
0.0005 for Q2, the MCR, and AUROC, demonstrating that the
models were significant. However, all these models show a low
Q2 value, indicating a poor class prediction capability.
Moreover, a positive correlation between the MCCV perform-
ances of the models trained using real and smaller augmented
datasets could be observed.

Furthermore, the study investigated the robustness of
models trained using larger augmented datasets. Interestingly,
the trend of overfitting is absent for these models, which is
validated via MCCV. Also, the best diagnosis models show Q2

and V2 greater than 99%, an AUROC of 100%, and an MCR of
less than 0.1%, indicating that the diagnosis is accurate. Also,
the permutation test shows a P-value of less than 0.0005,
implying that the models were significant, and the results
suggest that variable selection is unimportant for models
trained using a larger dataset. PLS-DA inherently identifies the
variables of utmost importance.

Moreover, the VIP score plot obtained from these models
shows that variables corresponding to the fundamental
vibrations associated with phosphate, nucleotide, DNA,
RNA, polysaccharide, lipid, protein, and amide I to V
vibrations of these biomolecules predominantly contribute to
the performance of the diagnosis model. Still, the relative
contribution of these molecules in COVID-19 and COVID-19
severity diagnosis models was not the same. Therefore, by
considering these results, it could be concluded that the PLS-
DA diagnosis model trained using larger datasets opens up new
prospects for rapid, accurate, significant, and cost-effective

clinical diagnosis of COVID-19-infected and COVID-19
severe patients. However, the study used only artificial spectra
computed using EMSA by introducing physical variations for
models trained using larger datasets. Incorporating chemical
variation into the model requires spectra from a real extensive
cohort. Also, since the model only depends on the difference
between the molecular signatures of healthy individuals and
infected patients, similar models could be implemented to
rapidly diagnose new variants or even for an unknown viral
outbreak in the future.

■ METHODS
COVID-19 FTIR Spectroscopy Dataset 1 (DS1). DS1

was obtained from ref 10. For the study, Wood et al. (2021)
collected the saliva of the patients admitted to the Royal
Melbourne Hospital with COVID-19-like symptoms using a
viral transport medium (VTM). Furthermore, these patients
were determined to be COVID-19 +ve or COVID-19 −ve
using RT-quantitative (q)PCR. Later, a PerkinElmer Spectrum
Two spectrometer with a customized reflecting accessory
designed for transflection slides was used to collect the FTIR
spectra of these saliva samples. The phosphodiester region
(800 cm−1 to 1300 cm−1) of the FTIR spectra was publicly
available, which includes the data for 30 COVID-19 −ve and
31 COVID-19 +ve patients. The phosphodiester region is
crucial for the bands associated with many essential RNA and
glycoprotein markers, and these regions were less affected by
the interference from VTM. The FTIR spectra of the COVID-
19 −ve and COVID-19 +ve patients are shown in Figure S13a.
COVID-19 FTIR Spectroscopy Dataset 2 (DS2). DS2

contains the FTIR dataset obtained from ref 9. Barauna et al.
(2021) collected samples from six hospitals that participated in
the study. All the individuals were first identified as COVID-19
−ve or COVID-19 +ve using RT-qPCR following the standard
protocols using a nasopharyngeal swab collected and stored in
a VTM. Later, a pharyngeal swab from the same participants
was collected and stored in ice for FTIR data acquisition.
Furthermore, the attenuated total reflection (ATR)-FTIR
spectra were acquired using a portable Agilent Cary 630
FTIR spectrometer equipped with an ATR ZnSe crystal from
650 to 4000 cm−1 with a spectral resolution of 1.86 cm−1.
Thus, DS2 contains the ATR-FTIR spectra from 111 COVID-
19 −ve and 70 COVID-19 +ve patients.
COVID-19 FTIR Spectroscopy Dataset 3 (DS3). DS3,

collected from ref 11, includes the ATR-FTIR spectra of severe
and non-severe COVID-19 +ve patients. Blood samples from
patients admitted to Kasturba Hospital, Bombay, were
collected by following the standard protocols for infection
control provided by the WHO. Air-dried, ethanol-treated
plasma isolated from the blood samples was used for spectral
acquisition. A portable Agilent Cary 630 FTIR spectrometer
equipped with a diamond crystal was used for spectral
acquisition from 650 to 4000 cm−1. Thus, DS3 contains
FTIR data of 69 severe and 91 non-severe patients. The
severity for a patient was determined primarily based on an O2
saturation level of less than 90% and other clinical
complications.
Spectral Derivatives. Derivatives of each spectrum were

computed using the SG method.43 The advantage of a
derivative spectrum is that it can remove additive effects,
enhance signal properties, resolve overlapping signals, and
suppress unwanted spectral features that arise from samples
and instruments. The SG first derivative (SGFD) and second

Table 4. Validation of the Best Diagnosis Models

dataset LV V2 (%)
MCR
(%)

AUROC
(%)

MCC
(%)

PLS-DA using augmented spectra from DS1
EMSA (500, 2) + SNV 40 86.37 0.00 100.00 100.00
EMSA (750, 2) + SNV 40 86.81 0.00 100.00 100.00
EMSA (1000, 2) + SNV 40 87.23 0.00 100.00 100.00
EMSA (2500, 2) + SNV 40 86.91 0.00 100.00 100.00

PLS-DA using augmented spectra from DS2
EMSA (500, 2) + SNV 40 99.14 0.00 100.00 100.00
EMSA (750, 2) + SNV 40 98.82 1.00 98.02 100.00
EMSA (1000, 2) + SNV 40 99.21 0.00 100.00 100.00
EMSA (2500, 2) + SNV 40 99.03 0.00 100.00 100.00

PLS-DA using augmented spectra from DS3
EMSA (500, 2) + SNV 40 99.97 0.00 100.00 100.00
EMSA (750, 2) + SNV 40 99.97 0.00 100.00 100.00
EMSA (1000, 2) + SNV 40 99.97 0.00 100.00 100.00
EMSA (2500, 2) + SNV 40 99.97 0.00 100.00 100.00
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derivative (SGSD) of the spectrum were computed using a
second-order polynomial and 19 smoothing points.44 A first
derivative and second derivative spectrum for COVID-19 −ve
and COVID-19 +ve spectra from DS1 can be observed in
Figure S13b,c.
Standard Normal Variate Transformation. SNV was

used because of its effectiveness in excluding the multiplicative
effects of scattering and particle size.45 SNV for an FTIR

spectrum xi could be defined using the formula xi
x x

,SNV
( )i=

, where xi, SNV is the SNV-transformed spectra; xi, absorbance

for the ith wavenumber; x , the average of x ;i and , the
standard deviation of the spectrum. A visualization of the SNV-

transformed spectra for COVID-19 −ve and COVID-19 +ve
patients from DS1 is shown in Figure S13d.
Extended Multiplicative Scatter Correction (EMSC).

Multiplicative scatter correction (MSC) is a model-based
method efficient in removing both additive and multiplicative
interferant effects due to scattering and particle size. The
advantage of the model is that the additive and multiplicative
effects were parameterized before being removed from the
spectra.46 However, MSC does not consider wavenumber-
dependent effects due to light scattering variation. The
wavenumber-dependent effects are unknown but considered
to be nonlinear but smooth functions of the wavenumber ( ).
The EMSC model accounts for these effects by adding a liner
and a quadratic wavenumber-dependent effect. Thus, the MSC

Figure 5. (a) Schematics of PLS-DA models for binary and multiclass classification. A(i) depicts the binary classification model. The X variables, a
matrix of size ( n m j( ) )+ × , represent the spectroscopic dataset ( j wavenumbers in each spectrum) for class 1 and class 2 samples, with n number
of spectra (X X X X1 , 1 , 1 ..., 1j j j nj1 2 3 ) in class 1 and the m number of spectra (X X X X2 , 2 , 2 ..., 2 )j j j mj1 2 3 in class 2 samples. The Y variable represents
a vector containing the corresponding class labels 1 and 0. Similarly, a(ii) shows the multiclass classification model using the k class of samples. The
X variable contains the spectroscopic dataset for the k class, a matrix of size n m p j( ... ) )+ + + × , where n m p, , ..., are the number of spectra in
the k1st, 2nd, ..., th class. Similarly, the Y variable is an array of size n m p( ... ) k)+ + + × containing the categorical values corresponding to
each class. (b) Schematic showing the MCCV with k random iterations, MCCV (k). Consider a sample dataset with n classes of samples where
each class contains 10 spectra. In the first step, 80% of the data will be randomly divided into a training set, and the remaining 20% will be assigned
as a testing set. The splitting is done in a stratified manner. Hence, in this case, each class will have eight spectra in the training set and two spectra
in the testing set. This process will be iterated k times. The calibration and cross-validation performance will be recorded in each iteration. Finally,
the average performance for the calibration (Pc) and cross-validation (Pcv) will be estimated to evaluate the performance of the model. (c)
Schematic representation of a confusion matrix for the COVID-19 classification model.
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model could be modified to the EMSC model and could be
written as x a b x d e( ) ( )i i i i i

2= + · + · + · . Next, the
parameters a b d, , and e describing the scatter effect of each
spectrum could be estimated using the ordinary least squares
regression. After estimating the parameters, each spectrum was
c o r r e c t e d u s i n g t h e f o r m u l a
x x a d e b( ) ( ) /i,EMSC

2= [ · · ] .46 EMSC models
constructed for infrared spectroscopy generally consider the
wavenumber-dependent parameters up to the second quadratic
term.20 Examples for EMSC-corrected spectra are shown in
Figure S13f.
Data Augmentation. The EMSA method proposed by

Blazhko et al. (2021)20 helps increase the number of spectral
samples in the dataset by augmenting artificial spectrums using
a measured spectrum by introducing the physical variations.
The method first estimates the physical parameters for the
scattering and instrumental effect a b d, , and e using the
EMSC model from the measured FTIR dataset and the
corresponding standard deviations for each parameter. Next, a
set of random deviations were generated for each parameter (

a b d, , and e) using a normal distribution with zero
mean and the computed standard deviation. Furthermore, new
artificial parameters a b d, , and e were obtained by adding
the random deviations to the parameters of each measured
spectrum. Thus, the augmented spectrum could be written as

ax b x d e( ) ( ) e b
b

2 ( )= + · + · + · + · , where e( ) are
the residuals. An augmented spectral dataset with n spectral
samples each in the m class is represented as EMSA(n, m). For
example, Figure S13g represents a small augmented spectral
dataset computed using DS1 with 50 COVID-19 −ve and 50
COVID-19 +ve spectral samples, EMSA(50,2). Similarly, a
more extensive set of augmented spectra computed using DS1
with 500 augmented spectra each in the COVID-19 −ve and
COVID-19 +ve case (EMSA(500,2)) are shown in Figure
S13h.

Partial Least Squares Discriminant Analysis. PLS-DA27

uses the standard partial least squares regression (PLSR)
method47 to construct both binary and multiclass classification
models. In the case of binary classification, the PLSR1 method
is used where the independent variable (X) will be the FTIR
spectroscopic data, and the dependent variables (Y) will be a
vector of class labels. Usually, the control (COVID-19 −ve)
will be assigned a class label 0, and the cases (COVID-19 +ve)
will be given 1. Figure 5a(i) shows a schematic representation
of the binary classifier. Here, the X variables X1nj and X2mj

represent the FTIR spectra with j variables (wavenumbers) of
the class 1 (n spectra) and class 2 (m spectra) sample, and the
Y variables represent the corresponding vector of class labels 0
and 1. Likewise, Figure 5a(ii) represents the schematics of a
multiclass (k classes) classifier. A multiclass PLS-DA uses the
PLSR2 method, where the Y variables will be an array of
multiple dependent categorical variables (the value one would
like to predict for a particular class or group of spectral
samples). For example, in case of a three-class classifier, the Y
variable will be an array of the categorical variables [1, 0, 0], [0,
1, 0], and [0, 0, 1] for class 1, class 2, and class 3 samples,
respectively.

The approach for binary and multiclass classification using
PLS-DA is the same. Instead of directly relating the highly
collinear X and Y variables, PLS-DA decomposed the X and Y
variables to a new set of uncorrelated variables called scores
and loadings, thus reducing the dimensionality of the original
dataset and finding a linear subspace of explanatory variables
such that the Y scores have maximum covariance with X
scores. The new subspace called LVs allows the prediction of
the class labels.27 Since PLS-DA utilizes a regression method
for predicting class labels, the predicted value y will be
continuous (real number). Therefore, y is transformed into a
class label (i.e., 0 for COVID-19 +ve or 1 for COVID-19 −ve)
using a discrimination threshold ( ). The discrimination
threshold is set to 0.5 because the two classes have similar

Table 5. Performance Metrics Used for Evaluating the Classification Modela

performance metrics formula worst value best value

accuracy, CR
TP TN

TP TN FP FN
+

+ + + 0 1

MCR
FP FN

TP TN FP FN
+

+ + + 1 0

sensitivity,
recall,

TPR
TP

TP FN+ 0 1

specificity,

TNR
TN

TN FP+ 0 1

1-specificity, fallout, FPR
FP

TN FP+ 1 0

precision, PPV
TP

TP FP+ 0 1

NPV
TN

TN FN+ 0 1

MCC
(TP TN) (FP FN)

(TP FP) (TP FN) (TN FP) (TN FN)
× ×

+ × + × + × + −1 1

aCR-classification rate; MCR-misclassification rate; TPR-true positive rate; TNR-true negative rate; FPR-false positive rate; PPV-positive predictive
value; NPV-negative predictive value; and MCC-Mathew’s correlation coefficient.
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sizes, and Y is a vector of 0 and 1.48 Furthermore, the class
label will be assigned in such a way that

l
moo
noo

y

y
class labels

0, if

1, if
=

<
>

Next, these class labels will be compared with the actual class
labels to evaluate the model’s performance.
Monte Carlo Cross-Validation. The PLS-DA model

performance was evaluated using the MCCV method.21

During MCCV, the training dataset was split into training
(80% of data) and testing sets (the remaining 20%) at random
using the stratified split method. The stratified method ensures
that both train and test sets have a similar proportion of
samples in each target class. Furthermore, PLS-DA classifiers
were constructed using the training set (calibration) and
evaluated the model’s classification efficiency using the testing
set (cross-validation). For each classification model discussed
in this study, 50 random iterations were conducted, and an
average of the performance metrics for calibration and cross-
validation was recorded. A schematic representation of the
MCCV method is shown in Figure 5b. Xu and Liang (2001)21

suggest that if the calibration uses a fewer number of samples (
n), a greater number of iterations (k) k n2= are needed, and
the computational complexity could be reduced compared to
the leave-k-out cross-validation method. An MCCV with k
random iterations was represented as MCCV (k).
Performance Metrics for Classification. Classification

performance metrics are error measures that help distinguish
correctly and incorrectly classified labels. These measures were
derived using the number of true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN)
determined from the confusion matrix. In the context of a
COVID-19 classifier, the TP value describes the number of
COVID-19 +ve patients correctly identified as +ve by the
trained classifier. The FP describes the number of COVID-19
−ve patients incorrectly classified as +ve. The TN explains the
number of COVID-19 −ve patients correctly classified as −ve.
Similarly, the FN expounds on the number of COVID-19 +ve
patients incorrectly classified as −ve. A schematic representa-
tion of a typical confusion matrix for the COVID-19 classifier
is shown in Figure 5c, and the performance metrics discussed
in the study are explained in Table 5.

Furthermore, an ROC curve was also used. ROC is an
established method to evaluate a classification model’s
performance. An ROC curve is a two-dimensional graph
where the FPR (1-specificity) is plotted on the x-axis and the
TPR (sensitivity) on the y-axis for classification models
constructed with different thresholds, τ.49 Thus, ROC
combines the two critical measures, sensitivity and 1-
specificity. Sensitivity (TPR) describes the ratio of COVID-
19 +ve patients correctly classified by the classifier as COVID-
19 +ve out of the total COVID-19 +ve patients. Conversely, 1-
specificity (FPR) shows the ratio of COVID-19 −ve
individuals wrongly classified as COVID-19 +ve by the
classifier out of the total COVID-19 −ve individuals.
Furthermore, the quality of the classification model could be
assessed using the AUROC.18 For the best classification model,
the value of the AUROC reaches 1; for the worst classification
model, the value will be 0.5.
Performance Metrics for Prediction. Performance

metrics for prediction evaluate the prediction error measures,
which help conclude whether the predicted value of the class

label is wrong or very wrong. For example, an incorrectly
predicted class label value of 0.7 (wrong) and 1.2 (very wrong)
for an actual class label of 0 will be penalized differently. The
established prediction error metrics were the prediction error
for cross-validation (Q2), when the metric is determined in the
space of the testing set. When the metric is calculated from the
space of calibration (training set), it is termed R2. Thus, Q2

demonstrates how well the classification model predicts the
class labels for a new set of spectra, and R2 measures the
goodness of fit.24 Furthermore, one could estimate the
performance metric Q2 and R2 as follows

Q
y y

y y
1

( )

( )
2 i i i

2

i i i
2=

where yi is the original class label for a spectrum i that was not
used in the training process, yi the predicted value using the
spectra i, and yi the mean of yi.

R
y y

y y
1

( )

( )
2 k k k

2

k k k
2=

where yk is the original class label for a spectrum k used in
the training process, yk the predicted value using the spectra k ,
and yk the mean of yk . A good classifier predicts class labels

close to the reference class labels. A Q2 value close to 1 refers
to a good classification model, whereas a value close to 0
describes the worst model. A Q2 value equal to 1 is hard to
obtain because this happens only when all predicted class
labels are equal to the respective reference class labels.
However, variation among the spectra of the same class of
samples limits the classifier from predicting the exact class
labels.18

Best PLS-DA Models. The best PLS-DA classification
model could be determined by optimizing the number of latent
variables (a) and should be free from overfitting; that is, the
classifier should perform well with both known (calibration)
and unknown (cross-validation) sets of data. Hence, for the
best classifier, the error between R2 and Q2 will be less (R2 ≈
Q2). Conversely, the error will be high (R2 ≫>Q2) for an
overfitted model.24 Also, there is a direct correlation between
overfitting and the number of latent variables used to construct
a model.16 Therefore, in this study, optimal a is determined
such that the model constructed using a particular a should
have a minimum error between R2 and Q2, and the model is
considered the best model. Furthermore, the best models were
validated using a third set of data (validation set) which is not
used for calibrating the models, and the prediction error for
validation (V2) is estimated as follows

V
y y

y y
1

( )

( )
l l l

l l l

2
2

2=

where yl is the original class label for a spectrum l in the
validation set, yl the predicted value using the spectra l from
the validation set, and yl the mean of yl.
Permutation Test. A permutation test is a data-driven

approach in PLS-DA classification rather than a theoretical
approach (like a t-test or F-test). It is introduced to check the
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possibility that the performance metrics of the actual
classification models are not due to chance and thus estimates
the statistical significance for the test statistics, the p-value.22,23

An actual classifier is the one that is trained using the original
X and Y variables. Conversely, a random classification model is
constructed using the original X variables and the permuted
set of Y variables. The logic is that the random classifiers
should fail to relate the association between the X variables
and the permuted Y variables, thus failing to predict the class
labels correctly since the respective test statistic will be low
compared to the test statistic of the actual classifier.30 In this
study, during the permutation test, 2000 random classifiers
were constructed using random permutations (without
replacement), and the test statistic was computed for each of
them. The set of 2000 newly calculated test statistics associated
with the random classifiers is the distribution under the null
hypothesis (H0) that there are no significant differences
between the random and actual classifiers.17 Furthermore, the
test statistic from the actual classifier is compared using the
null distribution, and H0 is rejected if the test statistic from the
actual classifier falls outside the 95% confidence boundary of
the null distribution.18 Also, a p-value could be estimated as
the probability of observing the test statistic from the random
classifiers which is at least as extreme as the test statistics for
the actual classifier considering that H0 is true. The smaller the
p-value (close to 0), the more robust the evidence against H0,
leading to rejecting H0. Hence, to deduce the p-value using the
null distribution of the misclassification, a lower-tailed test is
used. Similarly, for the test statistics Q2 and AUROC, an
upper-tail test will be considered. A schematic representation

of the rationale behind the permutation test is shown in Figure
6.
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