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Time-Series Analysis of 
Tumorigenesis in a Murine Skin 
Carcinogenesis Model
Yoshimasa Aoto1, Kazuhiro Okumura2, Tsuyoshi Hachiya3, Sumitaka Hase1, 
Yuichi Wakabayashi2, Fuyuki Ishikawa4 & Yasubumi Sakakibara1

Recent years have witnessed substantial progress in understanding tumor heterogeneity and the 
process of tumor progression; however, the entire process of the transition of tumors from a benign 
to metastatic state remains poorly understood. In the present study, we performed a prospective 
cancer genome-sequencing analysis by employing an experimental carcinogenesis mouse model 
of squamous cell carcinoma to systematically understand the evolutionary process of tumors. We 
surgically collected a part of a lesion of each tumor and followed the progression of these tumors in 
vivo over time. Comparative time-series analysis of the genomes of tumors with different fates, i.e., 
those that eventually metastasized and regressed, suggested that these tumors acquired and inherited 
different mutations. These findings suggest that despite the occurrence of an intra-tumor selection 
event for malignant alteration during the transformation from early- to late-stage papilloma, the fate 
determination of tumors might be determined at an even earlier stage.

Cancer is a result of genomic disorders represented by DNA mutations that typically lead to loss of DNA repair 
function and gain of abnormal proliferation function. Numerous reports on the process of malignant alterations 
suggest that benign tumors progress in a stepwise fashion while acquiring driver and passenger mutations, which 
eventually invade surrounding tissues to finally migrate to distant tissues1–6. The consortium projects represented 
by The Cancer Genome Atlas (TCGA) have catalogued the main cancer driver mutations and identified diverse 
driver genes from an identical cancer type as well as from more than 60 primary sites5. Since these driver genes 
promote cancer progression by conferring cells with abnormal biological functions such as limitless proliferation 
and neo-angiogenesis3,4, they are regarded as candidate therapeutic targets. However, the high variation of driver 
genes within an identical cancer type reflects not only the inter-tumor heterogeneity but also the difficulty of cancer 
therapy3,7. Moreover, recent studies focusing on the intra-tumor environment have suggested a polyclonal structure 
of tumors due to genomic instability6–8. Although tumors initially form from a single cell type, as each tumor cell 
randomly acquires somatic mutations and then proliferates, the polyclonal cell population is formed based on the 
different genetic backgrounds among tumor cells6–8. This genetic diversity of tumor cells generates the physiolog-
ical diversity and differences in therapeutic sensitivity among tumor cells. Accordingly, the polyclonal structure of 
tumors is considered to be the most critical cause of treatment resistance and the recurrence of cancer6–8.

More recently, the polyclonal structure of tumors has been addressed under the field termed “intra-tumor 
heterogeneity”, which has emerged as an essential aspect required for disclosing the entire landscape of tumor 
progression and delineating the specific causes of resistance to cancer treatment. To best understand the full spec-
trum of intra-tumor heterogeneity, evolutionary analysis has been performed using multi-region samples, which 
are obtained from multiple sites of a single malignant tumor, and/or the primary and metastatic tumors from the 
same individual; accordingly, several models have been proposed to explain the process of tumor progression 
and the origin of tumors9–12. An adaptive (Darwinian) tumor progression model was suggested by which only 
certain sub-groups (i.e., sub-clones) that could gain advantageous traits to survive would remain in the tumor 
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environment. In the process of stepwise cancer progression, tumors have to overcome several barriers such as the 
lack of nutrients, immune response from the surrounding tissues, and lack of growth space, among others4. These 
barriers impose a type of selection pressure for tumor cells so that only those that are best adapted to the given 
tumor environment will survive to proliferate, and will thus acquire various mutations in the process to lead to 
intra-tumor heterogeneity that contributes to the diversity in treatment sensitivity and sustainable progression of 
tumors6–8,11. In contrast, the neutral evolution theory of tumor progression proposes that tumor cells are derived 
from an initial malignant cell such as a cancer stem cell that neutrally expands with random mutations, thereby 
resulting in intra-tumor heterogeneity11,13.

Moreover, several hypotheses have been proposed to explain the origin of tumors, including a founder can-
cer stem cell that already possesses multiple driver mutations and then rapidly grows and forms a tumor via the 
acquisition of new driver (trigger) mutations, or development of an initial driver mutation that causes an unde-
tectable tumor, which gradually grows in size owing to the acquisition of new driver mutations12. Despite these 
advances in the general understanding of inter-/intra-tumor heterogeneity and the process of tumor progression, 
the entire evolutionary process of tumors, from a benign to metastatic state, is still poorly understood. Gaining a 
detailed understanding the process of tumor evolution over time is expected to improve the confidence of early 
diagnostics and prognostic predictions. However, to date, the majority of cancer studies use specimens that have 
already transitioned to malignancy, and research based on tracking the transitions from an early benign tumor to 
a metastatic tumor is relatively limited.

Given this background, we have begun to address this issue with a prospective cancer study with the goal of sys-
tematically understanding the evolutionary process of tumors. Toward this end, we have employed an experimental 
carcinogenesis mouse model, which promotes the formation of squamous cell carcinoma (SCC) on the back skin of 
the mice. We performed a classical two-stage carcinogenesis protocol to chemically induce the SCCs for mice using 
7,12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetone (TPA). In essence, we sur-
gically collected a part of a lesion of each papilloma that formed, and followed the progression of each of these 
tumors in vivo over time. These tumors of the same descent were repeatedly sampled at different growth stages 
to implement a time-series analysis from a benign to metastatic state. During this sampling process, we observed 
various fates of the tumors: some became malignant, others remained benign, whereas others regressed. Therefore, 
we decided to focus on these intra-tumor changes over time as well as on the inter-tumor differences according to 
comparison of tumors with different fates. To achieve a mechanistic understanding of these differences, we per-
formed high-throughput deep-targeted genome sequencing for two tumor series that were collected from the same 
mouse, one that eventually became malignant and another that regressed, and conducted comparative time-series 
analysis to understand the evolutionary process of tumors and the factors that determine tumor fates.

SCC is one of the most common cancers in Caucasian populations, and the prognosis of metastatic SCC is 
extremely poor14. The DMBA-induced SCC model is one of the most commonly used in vivo models and is widely 
used for studying the mechanisms of metastasis15, which can be applied to both human and mouse cancers14,16. 
High-throughput genome sequencing analysis has previously been conducted for DMBA-induced mouse skin 
SCCs17,18. Nassar et al.17 investigated the mutational landscape of DMBA-induced SCCs to reveal the substitution 
patterns of the DMBA-induced somatic mutations and the genes recurrently mutated in this experimental model. 
McCreery et al.18 performed phylogenetic analysis for the benign, malignant, and metastatic tumors obtained 
from the same mouse to reveal the origins of metastases and to indirectly predict the process of tumor evolu-
tion. Although these studies reported significant results, almost all of the DMBA-induced SCCs were harvested 
from metastatic tumors and premalignant tumors at the same time when the mice were sacrificed. Although this 
sampling method still enabled analyzing tumors at different malignant stages and associating the primary SCC 
samples with metastatic samples, associations of the premalignant samples could not be determined because their 
origins are different from those of the SCC samples. Therefore, these previous studies could not eliminate the 
influence of inter-tumor heterogeneity and could not follow the tumorigenesis process of the same tumor over 
time. In addition, these previous studies performed whole-exome sequencing and obtained approximately 50× 
mean coverage sequencing data, whereas Shin et al.19 indicated that approximately 100× sequencing coverage is 
required to detect mutations possessed by ~10% of cells in a tumor from clinical samples. Moreover, the known 
cancer-related gene mutations have been detected with low penetrance in tumor samples due to the influence of 
intra-tumor heterogeneity2,9 and low tumor content19. Thus, deep sequencing coverage is necessary for compre-
hensive mutation analyses; however, the previous data are insufficient to detect low-penetrance variants and to 
estimate the penetrance in a tumor precisely. With regard to these limitations, our approach, involving partial 
surgery and targeted deep sequencing, can contribute to gaining a more comprehensive understanding of the 
tumorigenesis process in different aspects from those obtained in previous research.

Results and Discussion
Mutational landscape of two tumor series with different fates.  We established the experimental 
carcinogenesis model using 35 mice for sample collection. One of the main features of the chemical induction 
mouse skin cancer model is that a large number of benign tumors are formed in the early term, only a few tum-
ors ultimately become malignant20. We previously reported that DMBA-TPA carcinogenesis induction forms 
approximately 30 papillomas on the back skin of each mouse21. In the present study, we selected 5–10 DMBA-
induced papillomas for each mouse to follow the progression over time. The size and position of each papilloma 
was recorded during the carcinogenesis experiment, and a part of the papilloma lesion was surgically collected 
to monitor the progress of the same tumor over time. This partial tumor sampling was performed from the 
early stage of tumor formation at the ninth week after starting the carcinogenesis experiment. By the time all of 
the mice were sacrificed, a total of 113 tumors were collected at multiple time points: 8 (7.1%) tumors became 
malignant, 68 (60.2%) tumors were still benign, and the other 37 (32.7%) tumors had eventually regressed. To 
understand the differences between the tumors that eventually metastasized and those that eventually regressed, 
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we performed a comparative time-series analysis for two prospectively sampled tumor series obtained from the 
same mouse: one was sampled at four time points and had eventually metastasized (hereafter “malignant series”), 
and the other was sampled at two time points and eventually regressed (hereafter “regressed series”). Conceptual 
figure of tumor samples is shown in Fig. 1a (Supplementary Fig. S1 for photographic images). For simplicity, 
each sample was named as described in the respective images shown in Fig. 1a. We collected axillary lymph node 
metastases as metastatic tumor samples, and a matched tail sample was used as a control tissue.

For sensitive detection of mutant alleles from the heterogeneous tumor samples and for accurate estimation of 
the penetrance of each mutation in the tumors, a capture sequencing approach was adopted, which can achieve 
deep-sequencing coverage for targeted genes (see Supplementary Table S1 for the list of targeted genes and see 
Supplementary Table S2 for sequencing statistics). The single-nucleotide variants (SNVs) were detected using 
three variant callers and then filtered according to several criteria to minimize false positives. We defined candi-
date mutation positions as the positions at which SNVs were detected in at least one tumor sample, and focused 
on the 83 candidate mutation positions with >50× coverage in all seven samples (see Supplementary Table S3 for 
the sequencing depth of these positions). Next, the variant allele frequencies (VAFs) were calculated for each of 
the 83 candidate mutation positions in each tumor sample. The VAF is a percentage of variant alleles in the short 
reads that are mapped to a certain genomic position; therefore, it can be considered as an index of the penetrance 
of a mutation in a tumor, and can serve as a clue to infer the intra-tumor heterogeneity and sub-clonal structure 
in tumors2,13. The VAFs of the positions with less than three reads supporting the mutation were filtered out (set 
to 0), and were used to estimate the tumor purity for each tumor sample.

The heterozygous Q61L Hras mutation (chr7:141192550) is known as an initiator of the DMBA-TPA experi-
mental carcinogenesis protocol we employed17,18,22; therefore, the tumor purity was estimated based on the VAF 
of the Hras mutation (Supplementary Table S4). Correspondingly, the raw VAFs were normalized to the esti-
mated tumor purities for proper estimation of the penetrance of the mutations in the tumors while excluding the 

Figure 1.  Individual mouse of interest and landscape of the mutational status. (a) The mouse developed two 
tumor series: one eventually regressed and the other eventually metastasized, designated “regressed series” and 
“malignant series”, respectively. For simplicity, each sample was named as shown near the respective images. (b) 
The overall mutational status of 83 genomic positions for each tumor sample. The bar plot shows the number 
of positions for which mutant alleles were detected. In the tables on the right, each column corresponds to a 
certain position. The upper table shows the heatmap of the VAFs with the hierarchical tree color-coded by the 
mutation groups; “m” denotes that the position was detected by the mutation callers as an SNV. The lower table 
shows the annotation of the mutations: the first line indicates whether the mutated position is included in a 
gene listed in the COSMIC: Cancer Gene Census26, and the second line indicates the gene name, including the 
mutated position and the effect of the mutation.
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influence of normal cell-derived reads. Finally, the candidate mutation positions with a normalized VAF ≠ 0 were 
presumed to be the mutated positions for each tumor sample.

Figure 1b shows the overall mutational status for the 83 candidate mutation positions in each tumor: the anno-
tation of mutations, heatmap of the normalized VAFs with the hierarchical tree, and number of mutated posi-
tions are shown (see Supplementary Table S5 for more details). First, the number of mutated positions tended to 
increase during the benign stages in both tumor series, but decreased during the malignant stages. This indicates 
that the cells in the tumor acquired new mutations during the benign state, whereas the cells with several private 
mutations could not survive after malignancy, suggesting a selective process of malignant alteration.

Next, we evaluated the commonality of the mutations detected between the tumor types to better understand 
the nature of the inter-tumor heterogeneity. From the heatmap with a hierarchical tree shown in Fig. 1b, 9/83 
(10.84%) mutations were observed in all tumor samples, and the other 74/83 (89.16%) mutations were privately 
observed or sparsely shared among tumors. There were mutation groups inherited in each tumor series; in par-
ticular, two mutation groups were mutually exclusively detected in each tumor series (groups A and B): the muta-
tions belonging to group A were observed after 14 weeks in the malignant tumor series, whereas the mutations 
belonging to group B were observed only in the regressed tumor series. These mutation groups might reflect the 
sub-clonal structure in the tumors. Specifically, an intronic mutation of Cyld and a nonsense mutation of Ptprc 
were included in mutation group A. The Cyld gene is known as a deubiquitinase whose deubiquitination activ-
ity negatively regulates the NF-κB pathway and suppresses epidermal tumor progression23,24. In addition, Ptprc 
encodes CD45, which regulates the phosphorylation of SRC and JAK family members25, and nonsense mutations 
in this gene have been recurrently reported in human epithelial and blood cancers (http://cancer.sanger.ac.uk/
cosmic). Moreover, both of these genes are listed in the COSMIC: Cancer Gene Census (CGC)26, a catalogue 
of cancer-related genes. These two genes showed a high penetrance rate in the tumor samples of the malignant 
tumor series at the later stages (Fig. 1b), suggesting that inactivation of these genes caused by mutations could 
have driven the tumor progression.

Moreover, a synonymous mutation in Mll2 and a missense mutation in Trp53 were included in mutation 
group B. Mutations of these genes have been reported to promote cancer progression26, especially mutation of 
the Trp53 tumor suppressor gene, which has been widely reported as a driver mutation in several cancer types3,27. 
Trp53 is a well-known tumor suppresser gene that plays an important role for DNA repair function, cell cycle 
arrest, and apoptosis28. Mll2 is a histone methyltransferase and its mutants provoke the genomic instability in 
tumors29. There are reports that the Trp53 mutations induce not only abnormal proliferation in tumors but also 
anti-tumor effects28,30, and these reports had also discussed the influence of the Trp53-independent apoptosis. 
Therefore, we considered the possibility that these mutations, in Trp53 and Mll2 genes, which are related to 
genomic instability, could have induced the Trp53-independent apoptosis, which in turn resulting in the eventual 
regression of the tumor.

Another mutation group, group C, showed an opposite pattern to that of the other two tumor series. The 
tumor of the malignant series acquired group C mutations when it was benign, but did not inherit these muta-
tions after malignant transformation. By contrast, the tumor of the regressed series acquired the mutations at 
a later stage of the benign term. The mutations of genes listed in the CGC as cancer-related genes, although in 
non-exonic regions, were enriched in group C. For instance, downstream mutation of Mtor and intronic muta-
tions of Nf1 and Jak1 were included in the group C, and these genes have a crosstalk and/or direct regulatory 
relationship with the RAS signaling pathway31–33. In comparison, group D represented a mutation group that 
was observed only in the early stages of the malignant tumor series, and none of the included gene mutations 
are listed in the CGC. This suggests that the peripheral genomic region of cancer-related genes was more actively 
mutated in the regressed tumor series. Furthermore, focusing on the malignant tumor series, the mutations show-
ing relatively high VAFs in the 9th week papilloma group (group D) were not detected at the later stages, and the 
mutations conserved after the 14th week of papilloma development (group A) were not detected in the 9th week; 
hence, it appears that the 9th to 14th week represents a period of substantial changes in the intra-tumor sub-clonal 
structure for malignant alteration. Thus, the mutational status among tumors suggests that the sub-clonal struc-
ture in the tumors continuously changes over time and also differs between tumors with different fates.

Furthermore, to evaluate the adequacy of these results, we reviewed previous studies using the same mouse 
carcinogenesis protocol. Nassar et al.17 and McCreery et al.18 performed large-scale analyses of SCC induced 
in the skin of mice with DMBA-TPA, and identified recurrent mutations among the SCCs, including exclusive 
driver mutations of the RAS family, and revealed the mutational signature of DMBA induction enriched with 
A > T base substitutions. Consistently, in our results, all of the tumors had the Q61L Hras mutation, which was 
reported as the initial driver mutation for this model17,18,22, and the substitution pattern of the 83 candidate muta-
tion positions showed enrichment for the A > T base substitution (Supplementary Fig. S2); therefore, our results 
are in line with previous studies of this model.

Of note, the previous studies identified a recurrent mutation in the Trp53 gene in the malignant SCCs, whereas 
this mutation was only detected in the early stage of the regressed tumor series in the present study. This suggests 
that a single Trp53 mutation may not promote tumor progression. By contrast, the stop-gain mutation of Ptprc, 
which belongs to the protein tyrosine phosphatase (PTP) family, was inherited in the malignant tumor series. 
Nassar et al.17 also identified another gene belonging to the PTP family, Ptprm, that showed recurrent mutations; 
hence, the PTP family appears to play a key role in the DMBA-TPA experimental carcinogenesis system.

The results highlighted thus far exhibited an increase in the number of mutations while the tumor is in the 
benign stage with a subsequent decrease in mutations after malignant alteration. The tumor series with different 
fates, i.e., becoming malignant and eventually regressing, acquired and inherited different mutations; however, 
not all mutations were inherited, and the VAFs also changed over time. These results suggest that selection pres-
sure was applied to induce the process of malignant alteration, and the sub-clonal structure not only differs 
between tumor fates but also changes over time.

http://cancer.sanger.ac.uk/cosmic
http://cancer.sanger.ac.uk/cosmic
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Degree of shared mutations between tumors within and among tumor series.  Subsequently, we 
evaluated the similarity (or dissimilarity) between tumors by applying the Jaccard similarity coefficient and the 
generalized Jaccard similarity coefficient (Fig. 2). For this analysis, we assumed that the positions with a VAF ≠ 
0 of the 83 candidate mutation positions were mutated, and defined a set of mutations for each tumor sample. 
To determine the commonality of the mutated positions between tumors, we calculated the Jaccard similarity 
coefficient between the sets of mutations. The heatmap of the Jaccard similarity coefficient (Fig. 2a) indicated that 
the similarity between tumors within the same tumor series was higher than that between tumor series; however, 
the similarity between the 9th week and later-stage papilloma samples of the malignant tumor series was only 
moderate. This result supports that different mutations are inherited in each tumor series, and confirms that the 
intra-tumor structure existing in the malignant tumor series dramatically changed between the 9th to 14th weeks, 
as proposed from the results of the mutational status analysis (Fig. 1b).

Moreover, we applied the generalized Jaccard similarity coefficient to quantitatively evaluate the inheritance 
of the mutations. We used the normalized VAF value to represent the penetrance of a mutation in a tumor, and 
defined a numeric vector constructed by the normalized VAFs of the 83 candidate mutation positions for each 
tumor sample. The generalized Jaccard similarity coefficient between these numeric vectors then corresponds to 
the commonality of the abundances of the mutations between tumors. The heatmap of the generalized Jaccard 
similarity coefficient between tumors (Fig. 2b) not only accentuates the same features represented in Fig. 2a but 
also indicates that the penetrance of the mutations was more highly conserved between tumors of the regressed 
tumor series than that between tumors of the malignant tumor series. Consistently, the scatter plot of the nor-
malized VAFs between tumors (Supplementary Fig. S3) showed that the plots between tumors with relatively low 
generalized Jaccard similarity coefficients were clearly biased toward both axes, whereas the plots between tumors 
with higher similarity coefficients, especially those between tumors within the regressed tumor series, basically 
lay on the diagonal line. These results suggest that tumors of the regressed series were relatively stable over time, 
whereas the intra-tumor structure of the malignant tumor series was crucially changed between the 9th to 14th 
weeks, and then continuously changed gradually after the 14th week.

Intra-tumor heterogeneity and evolutionary process within tumors.  Next, we focused on the 
intra-tumor heterogeneity. To evaluate the degree of intra-tumor heterogeneity, we applied an entropy parameter 
for the normalized VAFs of the 83 candidate mutation positions. Entropy is often used as an index of the complex-
ity or information content of certain events. Dr. Shannon proposed an expected value of the information amount 
as “information entropy”34, and this concept has been widely applied in the fields of informatics, statistics, and 
biology35. In our study, we regarded the intra-tumor heterogeneity to reflect the complexity of the tumor, which 
was evaluated by the sum of the complexity calculated for each mutation.

As shown in Fig. 3, the spectrum of the normalized VAFs demonstrated that all normalized VAFs were below 
the 50% line (the plot on the 50% line in each of the tumor samples corresponds to the Hras mutation). The 
genomic positions with a normalized VAF of 0% indicates that the position is homozygous to that of the ref-
erence base in all tumor cells, while the positions with a normalized VAF of 50% indicates that the position is 
heterozygous in all tumor cells; in other words, these positions are homogeneous among tumor cells. Based on 
this result, we assumed that there was no copy number variation (CNV) at the 83 candidate mutation positions 
and that these mutations occurred on one side of the diploids. Moreover, the clonal structure of a tumor can be 
represented by a combination of mutations; therefore, we assumed that the mutations are independent but do not 
contradict each other. With these assumptions, we defined an entropy parameter as the degree of complexity of 
a tumor (see Materials and Methods for more details), which was calculated from the normalized VAFs of the 

Figure 2.  Heatmap of similarity between tumors. (a) Heatmap of the Jaccard similarity coefficient between 
tumor samples. (b) Heatmap of the generalized Jaccard similarity coefficient between tumor samples.
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heterogeneous positions for each tumor sample (Fig. 3, bottom). As a result, the entropy was found to be maximal 
in the 14th-week papilloma sample, and then decreased after the tumor became malignant in the malignant tumor 
series. Moreover, the entropy value of the regressed tumor series decreased over time, and was lower than that of 
the 14th-week papilloma sample of the malignant tumor series. These results suggest that the tumors of the malig-
nant series gradually acquired intra-tumor heterogeneity before developing malignancy, whereas the tumors of 
the regressed series could not sustain the heterogeneous characteristic.

Furthermore, we estimated the mutation rate to obtain insight into the process of sub-clonal evolution in 
the tumors. Under the assumption that mutations are neutrally accumulated and penetrate a tumor over time, 
the number of mutations should proportionally increase with time and the mutation rate of a tumor cell should 
be constant. Williams et al.13 proposed a regression analysis method to estimate the mutation rate from VAFs. 
According to their results, we assumed that the position with a normalized VAF of 25% or less in the 83 candi-
date mutation positions represented a sub-clonal mutation. For each tumor sample, the sub-clonal mutations 
were sorted in ascending order according to the inverse of the normalized VAFs, and the normalized VAFs were 
plotted against these sorted ranks, which were used to perform the regression analysis respectively for the ranks 
(Fig. 4). The slope of the regression line denotes the estimated apparent mutation rate (shown at the right bottom 
of each plot), and the coefficient of determination (R2) denotes the neutrality of the mutations (shown at the left 
top of each plot). When R2 ≥ 0.98, the tumor was considered to have acquired mutations neutrally; otherwise, 
the tumor was considered to have acquired mutations in a non-neutral manner (i.e., selectively). The mutation 
rates of the benign tumors were lower than those of the tumors that transitioned to a malignant status; this 
effect was particularly notable in the 9th week early-stage papilloma sample of the regressed tumor series. For the 
malignant tumor series (Fig. 4a–d), the mutations were neutrally acquired until the 9th week papilloma, but were 
then acquired in a biased manner after the 9th-week papilloma; notably, an early selection mode13 was suggested 
for carcinoma and metastasis progression, indicating that the tumor had already gained dominant (selected) 
mutations (sub-clones) before transitioning to carcinoma. In brief, the tumor was exposed to the selection pres-
sure after 9 weeks before becoming malignant. According to the mutational landscape (Fig. 1b) and the similar-
ity between tumors (Fig. 2), the intra-tumor structure of the malignant tumor series was dramatically changed 
between the 9th and 14th weeks, and then was comparatively conserved thereafter. Thus, the selection pressure that 
had been in effect from the 9th to 14th weeks might have caused the dramatic changes in the tumor. By contrast, 
for the regressed tumor-series (Fig. 4e,f), the tumor had already been acquiring the mutations selectively before 
the 9th week; however, the process of mutation acquisition after the 9th week was comparatively neutral. These 
results suggest that different tumor series undergo distinct evolutionary processes, indicating that the tumor fate 
is determined from a quite early stage.

Conclusion
In this study, we compared tumor series with different fates through analysis of a DMBA-TPA carcinogenesis 
protocol. Although the DMBA-TPA protocol is limited to the analysis of the tumors initiated by RAS family 
mutation, it is widely accepted that the mutation landscape, mutation burden, and gene expression profile of the 
SCCs formed on the mouse back skin through the DMBA-TPA protocol are largely similar to human SCCs such 
as head and neck, esophageal, lung, and cervical SCCs14,17,18,36,37. In line with these previous studies, our results 
indicated that although the carcinogenesis protocol using DMBA-TPA provides information on the initial driver 

Figure 3.  Spectrum of normalized VAFs and entropy of each tumor sample. The chart shows the spectrum 
of the normalized VAFs, where each column represents a certain sample, and the y-axis corresponds to the 
normalized VAF. Each dot corresponds to a certain candidate mutation position for a total of 83 dots plotted for 
each column. The values shown at the bottom of each column denote the entropy parameter values.
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mutations and promotes the formation of a number of papillomas on the mouse skin, further drivers are clearly 
required for the malignant alteration. In most cases, papillomas could not become carcinomas, meaning that 
further driver events did not occur, while also confirming the general difficulty of malignant transformation. 
We further presumed that there are differences in the genomic mutations and in the sub-clonal structure among 
tumors with different fates. To understand the difference between the eventually metastasized and regressed 
tumors, we performed targeted deep sequencing for these two tumor series of different destinies sampled from 
the same mouse. This comparative analysis provided an opportunity to understand the factors and timing of the 
tumor fate determination.

Previous cancer studies reported that each tumor has a different mutational status and multiple driver muta-
tions are accumulated during tumor progression3,5,12,26. To understand the evolutionary process of tumors, the 
temporal changes of the mutational trend, e.g., the order of the occurrence of driver events, have also been discus
sed1–3,10,11,38,39. These studies identified that known driver mutations were significantly biased to be clonal; hence, 
it has been considered that these driver mutations are acquired before malignant transformation, and the highly 
malignant sub-clones with these driver mutations originate to form malignant tumors6,12. Consistent with these 
previous hypotheses, our results suggest that tumors with different fates acquired different mutations, accom-
panied by changes in the intra-tumor structure over time, and also suggest that selection pressure could have 
influenced the benign tumors to select highly malignant sub-clones in the tumors.

Moreover, our results provide new insight into the timing of the selective event and fate determination of 
tumors. The selection event for malignant alteration might have occurred between the 9th and 14th weeks, corre-
sponding to the transformation from early-stage papilloma to late-stage papilloma, and the evolutionary process 
of these two tumor series differed at the time of the 9th week early-stage papilloma. Furthermore, only the tumors 
that could obtain and sustain sufficient intra-tumor heterogeneity could become malignant. The majority of can-
cer studies conducted to date have focused on malignant tumors5. Although several studies analyzed tumors at 
both the benign and malignant stages, these tumor types are typically collected from different patients10, or the 
adjacent lesions of primary tumors were collected as precursor lesions39; therefore, these studies could not follow 
the temporal changes of the same tumors respectively. Thus, our prospective approach is complementary to exist-
ing cancer studies, and offers novel insights.

Adoption of this prospective study model can provide new opportunities for gaining a detailed understand-
ing of the evolutionary process of tumors by conducting statistical analysis with increased numbers of mice and 
tumor series, and also by analyzing the whole genome rather than targeted regions. Moreover, our study can also 
be relevant to improving surgical treatment resistance and prognostic prediction40. In particular, our results and 
further statistical analysis with more mice can help to identify factors that determine the fate of tumors and the 
prognostic biomarkers for guiding a more precise treatment strategy. However, the gene signatures and the time-
line of tumor progression might vary in different tumor samples; therefore, further experiments are required to 
verify these aspects. As part of our future works, we are planning to perform whole-exome sequencing for more 
tumor series, and other omics analyses such as transcriptomics and epigenomics.

Figure 4.  Mutation rate analysis for the malignant tumor series (a–d) and the regressed tumor series (e,f). The 
apparent mutation rate is shown at the right bottom of each plot, and the coefficient of determination (R2) is 
shown at the left top of each plot.
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Methods
Mice.  This study was conducted in strict accordance with the recommendations in the Guide for the Care and 
Use of Laboratory Animals of the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The 
protocol was approved by the Committee on the Ethics of Animal Experiments of Chiba Cancer Center (Permit 
Number: 17–14). All efforts were made to minimize suffering. FVB/N mice were purchased from CLEA Japan 
(Tokyo, Japan).

Skin carcinogenesis and tumor sampling.  DMBA was used as the carcinogen and TPA was used as 
a promoter to induce SCC on the back of the mouse skin. We treated 35 FVB/N mice according to a two-stage 
carcinogenesis protocol. At 8 weeks of age, the female mice were carefully shaved with an electric clipper, and two 
days after shaving, a single dose of DMBA (25 μg/mouse in 200 μL of acetone) was applied to the shaved dorsal 
back skin. One week after initiation, tumor growth was promoted with TPA (10 μg/mouse in 200 μL of acetone) 
twice weekly for 20 weeks. For each mouse, 5–10 papillomas were selected to follow tumor progression over time. 
The number, size (diameter in mm), and position of each papilloma were recorded as of 9, 14, and 23 weeks, 
and carcinoma development was monitored for up to 33 weeks post-TPA treatment. To obtain the prospective 
tumor samples from the same tumor, a part (approximately half) of the papilloma lesions was surgically collected 
so that the remaining part could grow toward the later stages. These collected samples were further cut in half; 
therefore, one quarter of each tumor was used for this research, and the remaining quarter was preserved for 
subsequent research. We determined benign tumors (papillomas) and malignant tumors (carcinomas) by visual 
inspection. Papillomas appear as outgrowths on the mouse back skin. Some of them become flattened on the skin 
with malignant transformation involving penetration of the deep dermis. In general, these tumors can be easily 
distinguishable from one another14,21, and we did not use any of the tumors that could not be clearly classified as 
papilloma or carcinoma, such as an intermediate type. The mice were sacrificed by cervical dislocation when car-
cinoma formed and axillary lymph node metastases were visually confirmed, or when the tumor volume reached 
10% of the mouse body weight. We collected axillary lymph node metastases as metastatic tumor samples. As a 
control tissue, we collected a tail sample from each mouse before starting the DMBA-TPA experiment. Finally, 
the time-series tumor samples that eventually became malignant and those that regressed were obtained from the 
same mouse (Fig. 1a and Supplementary Fig. S1).

Sample preparation and targeted deep sequencing.  For sensitive detection of the low-frequent 
mutant alleles and for precise estimation of the VAFs, we adopted a targeted capture-based deep-sequencing 
approach. We compiled a list of the target genes by reference to the COSMIC database (http://cancer.sanger.
ac.uk)41 to select the most frequently mutated genes in the SCC samples, and used previous reports of housekeep-
ing genes42,43 to select the genes deemed to be most crucial for cell survival. Finally, we selected 500 genes and 
designed the target capture bait library using the Agilent SureDesign program (https://earray.chem.agilent.com/
suredesign; see Supplementary Table S1 for details).

For sample preparation, the genomic DNA was extracted from the tumors and normal tissues (tail of each 
mouse) using DNAiso Reagent (9770 A; Takara, Otsu, Japan). The extracts were treated according to SureSelectXT 
Target Enrichment System for Illumina Paired-End Sequencing Protocol for 200-ng samples (Agilent Technology, 
Santa Clara, CA, USA). In this step, pre-capture polymerase chain reaction (PCR) was performed for 10 cycles, the 
incubation for library hybridization was performed for 24 h, and post-capture PCR was performed for 12 cycles. 
The products were confirmed using the Agilent 2100 bioanalyzer. The paired-end sequencing (2 × 75 bp) was per-
formed using the Illumina MiSeq system with MiSeq Reagent Kit v3 (150 cycle; Illumina, San Diego, CA, USA).

Sequence data analysis.  The sequencing adapters and low-quality ends of raw sequenced reads were 
trimmed using Trimmomatic (version-0.36)44 with the options “ILLUMINACLIP:${adapter.fa}:2:30:10 
LEADING:30 TRAILING:30 SLIDINGWINDOW:4:25 MINLEN:1”, and the low-quality reads were filtered 
using FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html) with the options “-q 30 and -p 80”. 
Next, the remaining paired reads were mapped to the mouse reference genome (GRCm38-release71.fa) using 
the BWA-MEM algorithm45 (Burrows-Wheeler Aligner; BWA; version-0.7.15-r1140). The reads with a mapping 
quality under 25 were filtered, and the others were treated according to the Genome Analysis Toolkit (GATK) 
best practices (de-duplicates, base recalibration, and local realignment) using GATK46 (version 3.6), picard tools 
(http://broadinstitute.github.io/picard; version 2.6.0), and samtools47 (version 1.3.1). The SNVs were detected by 
MuTect248 (within GATK 3.6; default settings), Strelka49 (version 1.0.14; skip depth filters to follow the recom-
mendation), and LoFreq.50 (version 2.1.2; default settings with 0.01 significance level and Bonferroni correction). 
Among these unions of detected SNVs, the SNVs corresponding to any of the following cases were excluded: 
(a) registered in the dbSNP51 (release version 3), (b) supported by <3 reads, (c) reads supporting mutant alleles 
mapped in the control sample, and (d) other SNVs detected within 10 bp on either side. We defined candidate 
mutation positions as the positions detected to be SNVs in at least one tumor sample, which clearly passed above 
the filters, and we focused on 83 candidate mutation positions whose sequence coverage was >50× in all seven 
samples. Next, we calculated the percentage of variant alleles among the mapped short reads for each candidate 
mutation position from the mapped read bases whose Phred quality score was >13. The VAFs of the positions for 
which the number of reads supporting the mutation was less than 3 were filtered out (set to 0). Moreover, we esti-
mated the tumor purity of the tumor samples according to the VAF of the Q61L Hras mutation (chr7:141192550), 
because this heterozygous mutation is known as an initiator of DMBA-TPA experimental carcinogenesis17,18,22. 
Accordingly, we estimated the proper penetrance rates of the mutations in the tumors while excluding the 
influence of the normal cell-derived reads by normalizing the raw VAFs with the estimated tumor purities. The 
normalized VAFs were used for subsequent analyses. The sequencing, read mapping, and tumor purities are sum-
marized in Supplementary Tables S2–S4.

http://cancer.sanger.ac.uk
http://cancer.sanger.ac.uk
https://earray.chem.agilent.com/suredesign
https://earray.chem.agilent.com/suredesign
http://hannonlab.cshl.edu/fastx_toolkit/index.html
http://broadinstitute.github.io/picard
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Hierarchical clustering of candidate mutation positions.  We assigned a six-dimensional vector con-
structed by the normalized VAFs of six tumor samples for each of the 83 candidate mutation positions, and per-
formed agglomerative hierarchical clustering. We adopted a weighted Manhattan distance (Canberra distance) 
approach as the distance measure between the assigned numeric vectors and used the group mean method for 
clustering. The Canberra distance between numeric vectors x and y can be calculated as follows:

∑=
−

+
x yd

x y
x y

( , )
(1)i

i i

i i

Similarity measurements between tumors.  To evaluate the similarity between tumors, we applied the 
Jaccard similarity coefficient and generalized Jaccard similarity coefficient. The Jaccard similarity coefficient is a 
similarity measure representing the degree of commonality between two sets. The Jaccard similarity coefficient 
between sets A and B can be calculated as follows:

J A B
A B
A B

( , )
(2)

∩
∪

=

In our study, we defined a set of mutations for each tumor sample and calculated the Jaccard similarity coeffi-
cient between the sets of mutations to represent the degree of similarity between tumors52.

In addition, we defined an 83-dimensional numeric vector constructed by the VAFs of the 83 candidate muta-
tion positions, and assigned a numeric vector for each tumor sample. We calculated the generalized Jaccard simi-
larity coefficient between tumor samples using the defined numeric vectors as the similarity between the tumors. 
The generalized Jaccard similarity coefficient between numeric vectors x and y can be calculated as follows:

=
∑

∑
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Evaluation of intra-tumor heterogeneity.  To evaluate the intra-tumor heterogeneity, we applied an 
entropy parameter. We regarded the intra-tumor heterogeneity as the complexity of the tumor, which was evalu-
ated by the sum of the complexity provided by each mutation. From the spectrum of the normalized VAFs (Fig. 3), 
we assumed that there was no CNV at the 83 candidate mutation positions and that these mutations occurred 
on one side of the diploids. With this assumption, we defined the probability that a cell randomly selected from 
a tumor i has a mutation m as P(2 × nVAFm,i), and defined its self-information amount as −logP(2 × nVAFm,i), 
where nVAFm,i denotes a normalized VAF of a mutation m in a tumor Ti. Moreover, the clonal structure of a 
tumor can be represented by a combination of mutations; thus, we assumed that the mutations are independent 
but do not contradict each other. Under these assumptions, we defined an entropy parameter as the degree of the 
complexity of a tumor according to the following equation:

∑= − ×
∈

H T P( ) log (2 nVAF )
(4)

i
m M

m i,
i

where Mi denotes a set of candidate mutations in a tumor Ti.

Estimation of the mutation rate and evolutionary process.  According to a previously reported 
method13, the mutation rate and evolutionary process of the tumors were estimated from the normalized VAFs. 
On the assumption that the sub-clonal mutations were neutrally accumulated and penetrated a tumor over time, 
the number of mutations should proportionally increase with time, and thus the mutation rate of a given tumor 
should be constant. Therefore, Williams et al.13 proposed a fitting model to estimate the mutation rate of a tumor 
and to infer the neutrality of the sub-clonal mutations in a tumor as follows:

µ=





−





M f

f f
( ) 1 1

(5)
e

max

where f denotes the relative fraction of a mutation in a tumor, M(f) denotes the cumulative number of mutations, 
and µe denotes the apparent mutation rate. The f value corresponds to the VAF of a mutation, and fmax = 0.5 when 
assuming a diploid tumor. Under the same assumptions described above, the VAF of a mutation should increase 
for mutations that occur earlier; hence, the cumulative number of mutations M(f) can be estimated by sorting the 
mutations according to the VAFs. Thus, we assumed that the position with a normalized VAF that was less than 
25% in the 83 candidate mutation positions was a sub-clonal mutation. To exclude false positives, we eliminated 
the mutations whose VAFs were below 2% in this analysis. For each tumor sample, the sub-clonal mutations were 
sorted in ascending order by the inverse of the normalized VAFs, the normalized VAFs were plotted against these 
ranks, and regression analysis was performed based on equation (5). Finally, the slope of the regression line and 
the coefficient of determination were calculated, respectively.

Data Availability
All sequencing data used in this work are available from the DNA Data Bank of Japan (DDBJ) Sequence Read 
Archive (DRA) under the accession number DRA007132.
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