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Abstract

Background: Tuberculosis (TB) and Human Immunodeficiency Virus (HIV) diseases are globally acknowledged as a
public health challenge that exhibits adverse bidirectional relations due to the co-epidemic overlap. To understand
the co-infection burden we used the case notification data to generate spatiotemporal maps that described the
distribution and exposure hypotheses for further epidemiologic investigations in areas with unusual case
notification levels.

Methods: We analyzed the TB and TB-HIV case notification data from the Kenya national TB control program
aggregated for forty-seven counties over a seven-year period (2012–2018). Using spatiotemporal poisson regression
models within the Integrated Nested Laplace Approach (INLA) paradygm, we modeled the risk of TB-HIV co-
infection. Six competing models with varying space-time formulations were compared to determine the best fit
model. We then assessed the geographic patterns and temporal trends of coinfection risk by mapping the posterior
marginal from the best fit model.

Results: Of the total 608,312 TB case notifications, 194,129 were HIV co-infected. The proportion of TB-HIV co-
infection was higher in females (39.7%) than in males (27.0%). A significant share of the co-infection was among
adults aged 35 to 44 years (46.7%) and 45 to 54 years (42.1%). Based on the Bayesian Defiance Information (DIC)
and the effective number of parameters (pD) comparisons, the spatiotemporal model allowing space-time
interaction was the best in explaining the geographical variations in TB-HIV coinfection. The model results
suggested that the risk of TB-HIV coinfection was influenced by infrastructure index (Relative risk (RR) = 5.75,
Credible Interval (Cr.I) = (1.65, 19.89)) and gender ratio (RR = 5.81e−04, Cr. I = (1.06e−04, 3.18e−03). The lowest and
highest temporal relative risks were in the years 2016 at 0.9 and 2012 at 1.07 respectively. The spatial pattern
presented an increased co-infection risk in a number of counties. For the spatiotemporal interaction, only a few
counties had a relative risk greater than 1 that varied in different years.

Conclusions: We identified elevated risk areas for TB/HIV co-infection and fluctuating temporal trends which could
be because of improved TB case detection or surveillance bias caused by spatial heterogeneity in the co-infection
dynamics. Focused interventions and continuous TB-HIV surveillance will ensure adequate resource allocation and
significant reduction of HIV burden amongst TB patients.

Keywords: Bayesian modeling, TB-HIV co-infection, co-epidemic burden, Kenya

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: otiende.verrah@students.jkuat.ac.ke;
verrahodhiambo@gmail.com
1Department of Mathematical Sciences, Pan African University Institute of
Basic Sciences Technology and Innovation, Nairobi, Kenya
Full list of author information is available at the end of the article

Otiende et al. BMC Infectious Diseases          (2019) 19:902 
https://doi.org/10.1186/s12879-019-4540-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-019-4540-z&domain=pdf
http://orcid.org/0000-0001-6147-3547
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:otiende.verrah@students.jkuat.ac.ke
mailto:verrahodhiambo@gmail.com


Background
Tuberculosis (TB) and Human Immunodeficiency Virus
(HIV) diseases have a co-epidemic relation such that the
chronic immune prompt arising from TB disease hastens
HIV disease advancement [1, 2]. Both the TB and HIV
pathogens interact collectively, accelerating the progress
of illness thereby increasing the chances of death [3].
Globally, TB and HIV exhibit an adverse bidirectional
interaction because of the co-epidemic overlap. The risk
of TB infection developing into TB disease is between 16
and 27 times higher in HIV infected persons [4]. TB can
occur both in the early stages and through all stages of
HIV infection although the risk intensifies soon after in-
fection with HIV [5].
Under the same degree of exposure, there exists no ir-

refutable evidence that HIV positive persons are more
likely to acquire TB infection than HIV negative persons
[6]. However, the risk of rapid progression once TB in-
fection occurs is greater among persons living with HIV
infection [7, 8]. The lifetime risk for HIV negative indi-
viduals to develop active TB from latent TB is about 5
to 10%, whereas, for persons living with HIV, the same
percentage holds but annually opposed to a lifetime [9].
Studies by [10] and [11] in various outbreak settings
confirm that HIV co-infection does intensify the pro-
gression of latent TB to active TB disease. The diagnosis
of TB in the HIV epidemic remains extremely challen-
ging because of the difficulty in differentiating between
reactivation and recent infections [12]. The risk of infec-
tion or reinfection is dependent on the source case num-
bers in various congregate settings including households
and health-care facilities [5].
The disparity for TB infections between persons with

and without HIV infection remains a global concern es-
pecially because of the high incidence rate among HIV
infected persons [13]. A study by [14] observed that the
prevalence of HIV infections for persons reporting prior
TB disease was 33.2% compared to 5.1% in persons with-
out prior TB. Another study by [13] confirmed that TB
disease incidence among HIV infected persons was still
eight times higher than in persons without HIV. In the
year 2015, the global estimation of TB disease was 10.4
million of which 11% were HIV positive [15]. Approxi-
mately 60% of the TB/HIV co-infected patients received
neither diagnosis nor treatment leading to 390,000 TB
related deaths [16].
Globally, sub-Saharan Africa accounts for the largest

percentage of the dual epidemic with co-morbidity from
TB-HIV remaining a critical public health challenge
[14]. In essence, more people die from TB than HIV as-
sociated infections [17]. In 2016 alone, the SSA region
accounted for an estimated 86% of HIV-linked TB
deaths [18]. Kenya is one of the countries in SSA se-
verely hit by the dual epidemic and appears among the

WHO high TB and TB-HIV burden countries ranking
13 out of the 22 countries globally [19, 20]. The impact
of TB-HIV co-infection in Kenya is evident mainly be-
cause of the complications in diagnosis and manage-
ment. Equally, the HIV surveillance on TB patients and
the TB surveillance on HIV patients in Kenya relies pri-
marily on the self-reported cases from health facilities as
a surrogate measure of the actual co-endemic. The two
surveillance systems are not integrated making it a chal-
lenge to profile the actual co-infection burden. There-
fore, the feasibility of using case notifications instead of
population-based studies to capture the valid spatiotem-
poral co-infection incidence estimates of the co-
epidemic is unknown.
Against this background, we investigate the geograph-

ical variation and co-infection burden using the case no-
tification data for a 7-year period and characterize the
areas with unusually high relative risks. We utilize the
space-time disease mapping models which allow for the
concurrent study of persistent and unusual co-infection
trends, thus offering additional benefits over purely
spatial disease mapping models [21, 22]. These model-
maps describe new exposure hypotheses that warrant
further epidemiologic investigations in areas with un-
usual case notification levels and ultimately inform rele-
vant geographically based interventions and resource
allocation towards suppressing further infections.

Methods
Data sources
We conducted this study through extensive analysis of
TB case notification data from the Kenya national TB
control program database. The database is an elaborate
and robust surveillance system that captures case notifi-
cation data from the health facilities in every county and
updates the records on the national grid. For the process
of data capture into the surveillance system, the National
TB program adapted both the recording and reporting
tools from WHO. The WHO recommends systematic
screening for HIV among TB patients; our dataset cap-
tures the HIV status of all the TB case notifications. We
analyze the data aggregated at the county level.

Model description
For the county s in the year t, we modeled the TB-HIV
cases notification yst as

yst � Poisson λstð Þ

We assumed our count data follows the Poisson distri-
bution where the log of the relative risks was the focus
of modeling. We defined the mean λst in terms of the
unknown relative risk and expected number of co-
infection cases. That is, λst = ρstEst.
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We defined the population at risk of TB-HIV co-
infection are the TB cases. We computed the expected
counts of co-infection cases Est per county per year.
These counts represent the number of cases one would
expect if the population of county s has similar behavior
to the standard population. Our statistical consideration
for the standard population N was the average of the
pooled TB cases, that is, N ¼ P

Y , where P is the total
number of TB cases at risk of co-infection and Y is the
number of years, which is seven for this study. We cal-

culated the crude rate as Rst ¼
P

Xst

Pst
where ∑Xst and Pst

are the number of co-infection cases and the number of
TB cases in county s, year t respectively. We then multi-
plied the crude rate by the standard population to obtain
the expected number of co-infection cases

Est ¼ Rst �N

We expressed the linear predictor on the logarithmic
scale, ηst = log(ρst) which is the recommended invertible
link function for the Poisson family of distributions. We
compared the spatiotemporal disease models discussed
by [23]. The models differed in their formulation of the
space-time structure and the inclusion or not of the co-
variates. Model 1a applied the classical parametric for-
mulation of [24] on the linear predictor, which we
expressed as

ηst ¼ αþ υs þ νs þ ρþ δsð Þ � Zt ð1aÞ
The formulation included the spatially structured (υs)

and unstructured (νs) random effects, the global linear
time trend effect (ρ × Zt). The term δs × Zt is the inter-
action term between space and time defining the
difference between ρ and the area-specific time trend. It
is referred to as the differential trend of the sth area [23,
24]. The term Zt is a vector of temporal weights and the
intercept α quantifies the average co-infection rate in all
the 47 counties. Each spatial unit has its own time trend
with a spatial intercept (α + υs + νs) and a slope (ρ + δs).
This model assumes a linear time trend in each spatial
unit. We estimated the parameters θ = {α, ρ, ν, υ, δ} and
the hyper-parameters ψ = {τν, τυ, τδ}.
The model 1b included the covariates to the model 1a

thereby estimating θ = {α, β, ρ, ν, υ, δ} and ψ = {τν, τυ, τδ}.
The model expression was

ηst ¼ αþ
X

βixi þ υs þ νs þ ρþ δsð Þ � Zt ð1bÞ

The model 2a used the dynamic non-parametric for-
mulation on the linear predictor

ηst ¼ αþ υs þ νs þ γt þ ϕt ð2aÞ
The terms α, υs and νs are similar to the formulation

in the first model, additionally, the terms γt and ϕt

represents the temporally structured and unstructured
random effect respectively. The model assumes a non-
parametric time trend. In this formulation, θ = {α, ν, υ, γ,
ϕ} and ψ = {τν, τυ, τγ, τϕ}.
The model 2b incorporated the covariates to the

model 2a to estimate θ = {α, β, ν, υ, γ, ϕ} and ψ = {τν, τυ,
τγ, τϕ}. We expressed model 2b as

ηst ¼ αþ
X

βixi þ υs þ νs þ γt þ ϕt ð2bÞ

Our model 3a expanded the model 2a by allowing a
space-time interaction to explain for the difference in
the time trend of TB-HIV coinfection for the diverse
counties.

ηst ¼ αþ υs þ νs þ γt þ ϕt þ δst ð3aÞ
For this model, θ = {α, ν, υ, γ, ϕ, δ} and ψ = {τν, τυ, τγ, τϕ,

τδ}. We defined δst as the interaction between νs and ϕt

consequently assuming no interaction between υs and γt
therefore δst~N(0, τδ).
The final model 3b incorporated the covariates to the

model 3a to estimate θ = {α, β, ν, υ, γ, ϕ, δ} and ψ = {τν, τυ,
τγ, τϕ, τδ}. We formulated the model as

ηst ¼ αþ
X

βixi þ υs þ νs þ γt þ ϕt þ δst ð3bÞ

To assess the performance of these six models, we
used the DIC taking into consideration the complexity
of the models. We selected the model with the lowest
DIC as the best-fit model.

Baseline predictor variables
The set of baseline predictors were poverty index, infra-
structure index, health index, education index, gender
ratio, dependency ratio, and Gini coefficient. These pre-
dictors are standard indices used to establish the com-
parative level of development of different counties in
Kenya. The computation of these indices is further elab-
orated in the reports from [25] and [26]. All these pre-
dictor variables were fitted in the models 1b, 2b and 3b
but only the significant ones were considered in the
discussion.
The poverty index provides a measure of the inad-

equate consumption of is services and fundamental
rights. In other words, it estimates the disparities in re-
source expenditures for each county. The infrastructure
index captures access to natural resources, economic
growth, and innovative planning. The health index mea-
sures access to medical services, adequate medical work-
force, and improved medical productivity. The education
index captures the literacy attainment, completion and
dropout rate. The gender inequality index reflects the
bias in reproductive health, empowerment and labor
market between men and women. The dependency ratio
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gives an indication of the burden of the working popula-
tion and government to support the non-working popu-
lation who are either too young or too old. The Gini
coefficient compares the distribution of income in the
entire population of any given county. It is based on the
Lorenz curve and varies between 0 (complete equality)
and 1 (complete inequality).

Statistical analysis
For the demographic characterization of the case notifi-
cations, we compared the summaries of TB cases with
and without HIV infections. We stratified the data based
on HIV status and performed the chi-square test to de-
termine the association between HIV status and each of
the demographic variables TB-type, age, gender, and pa-
tient type. All the p-values were two-tailed with values
less than 0.05 considered being statistically significant.
The TB type classification was either pulmonary TB or
extra-pulmonary TB. Pulmonary TB referring to a pa-
tient with TB disease involving the lung parenchyma
whereas the extra-pulmonary TB involves any organ
other than the lungs. For the patient type, we had five
categories; the first was the default category for patients
who defaulted the TB therapy then experienced recur-
rence. The second was the failed category for patients
previously diagnosed with TB but never took on the
therapy. The third category was for newly diagnosed pa-
tients without previous TB diagnosis or therapy. The re-
lapse case was the fourth category whereby patients
were previously diagnosed, treated of TB and completed
the TB therapy but experienced a recurrence. The fifth
and final category was the cases transferred in from
other health facilities to continue with the therapy.
Using the Integrated Nested Laplace Approach

(INLA), we fitted the case notification data to our spa-
tiotemporal disease models to determine the best fit. We
assessed the nature of the response variables on our
baseline predictors. We specified the Besag-York-Mollie
(BYM) prior on υs using the intrinsic conditional autore-

gressive structure (iCAR). Thus υsi j υsi≠s j � Nð
P

jϵNðsÞυs j
#NðsÞ

;
σ2υ

#NðsÞÞ where #N(s) is the number of neighbors sharing

boundaries with the county si. The BYM model allows
us to capture both the heterogeneity (variability) and
clustering of disease risk simultaneously. We then used
the exchangeable prior on νs, that is νs � Nð0; σ2νÞ . We
modeled γt using a random walk specified through the
temporal adjacency structure, which is analogous to the
spatially structured random effects specification as it
borrows strength from adjacent time periods. The tem-
porally unstructured random effect ϕt was modeled
using the Gaussian exchangeable prior ϕt~N(0, τϕ). We
defined improper priors for the intercept and regression

coefficients of the fixed effects as α~N(0, 0) and β~N(0,
0.001) respectively. For the distribution of the hyper-
parameters, we assumed the default specifications of
INLA whereby we assigned minimally informative priors
on the log of the precision of both the structured and
unstructured effects ψ~(1,0.0005).

Results
Demographic characterization of TB-HIV case notification
in Kenya, 2012–2018
Of the total 608,312 TB case notification for the period
2012–2018 included in the study, 194,129 cases were HIV
co-infected, 391,030 cases were HIV uninfected and 23,
153 cases were unaware of their HIV status because either
the HIV test was not done or they declined to be tested.
The demographic characteristics of TB patients stratified
by HIV status are in Table 1. The TB case notification de-
creased from 99,586 (16.4%) in 2012 to 78,318 (12.6%) in
2016 but increased to 85,886 (14.1%) in 2017 and 83,324
(13.7%) in 2018. Similarly, the co-infection cases decreased
from 36,135 (36.3%) in 2012 to 21,896 (26.3%) in 2018.
The chi-square test showed that HIV status was positively
associated with age, time of case notification, type of TB,
gender and TB patient type (p-value < 0.01).
The male TB case notification exceeded the female but

the proportion of TB-HIV co-infection was higher in female
cases (39.7%) as compared to male cases (27.0%). The tem-
poral trend of co-infection risk was consistently higher in
women (Fig. 1) whereas the spatial pattern was widespread
in males compared to the female. The counties with a high
co-infection burden for both males and females were Homa-
bay, Siaya, Kisumu, Migori and Busia counties (Fig. 2). A sig-
nificant share of the co-infection was among adults between
the ages of 35 to 44 years (46.7%) and 45 to 54 years (42.1%).
Patients aged below 25 years and above 54 years registered a
considerably lower co-infection risk over time (Fig. 3). The
spatial patterns based on age-categories showed a wide-
spread co-infection risk pattern for the ages 25–34 followed
by 35–44 years (Fig. 4). These age categories and generally
the most sexually active age ranges, which puts them at a
higher risk of co-infection.
The proportion of extra-pulmonary TB cases co-

infected with HIV (35.6%) also surpassed that of pulmon-
ary TB (31.2%). Looking at the patient types, the 194,129
TB-HIV co-infection cases were composed of 171,115
(31.0%) new TB infections, 17,174 (42.9%) TB relapse
cases, 457 (29.5%) TB therapy failure cases, 3336 (37.5%)
defaulted cases and 2047 (30.9%) transferred in cases.

Model comparison
In Tables 2 and 3 we present the results of the six hier-
archical models including the Deviance Information Cri-
terion (DIC), the effective number of parameters (pD)
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and the mean deviance (Ď). We compared the spatio-
temporal disease models discussed by [23], which dif-
fered in their formulation of the space-time structure
and the inclusion or not of the fixed effects. The values
of pD penalize the complexity of the model and smaller
values indicate a parsimonious model. For Poisson likeli-
hoods, the pD should be approximately equal to the
number of observations [27]; that is 47 × 7 = 329. Model
1a has a smaller pD than the number of observations
and the biggest DIC, indicating a clear lack of fit. Both
criteria thus point to the model 3f being the best fitting
model. In this model, the infrastructure index (RR =
5.75, Cr. I = (1.65, 19.89)) and gender ratio (RR =
5.81e−04, Cr. I = (1.06e−04, 3.18e−03)) were significantly as-
sociated with TB-HIV co-infection. In the remaining
sections, we focus on presenting the results on the
model 3b.

Temporal characteristics of TB-HIV co-infection epidemics
The temporal trend in TB-HIV co-infection relative risks
from 2012 to 2018 is in Fig. 5. The co-infection risk
trend shows an initial steady decrease between 2012 and
2016 then a sharp increase in 2017 that slightly de-
creases in 2018. The lowest risk of 0.9 was in the year
2016 while the highest risk of 1.07 was in the year 2012.

Spatial patterns of TB-HIV co-infection epidemic
The spatial map in Fig. 6 and the relative risk plot in
Fig. 7 present the cumulative predicted values of TB-
HIV co-infection risk over a 7-year period (2012–2018)
per county. There were 12 counties out of the 47 with
high co-infection risk evidenced by values greater than
1. Most of these high-risk counties were towards the fur-
ther west of Kenya; Homabay County was leading
followed by Siaya, Kisumu, Migori and Busia counties.

Table 1 Demographic characterization of TB patients with and without HIV in Kenya (2012–2018)

All [n (%)] HIV uninfected [n (%)] HIV co-infected [n (%)] HIV unknown [n (%)] χ2(df, p-value)

Year 6112.3 (12, < 0.01)

2012 99,586 (16.4) 58,967 (59.2) 36,135 (36.3) 4484 (4.5)

2013 90,674 (14.9) 53,562 (59.1) 32,099 (35.4) 5013 (5.5)

2014 90,123 (14.8) 55,593 (61.7) 30,472 (33.8) 4058 (4.5)

2015 82,401 (13.5) 53,617 (65.1) 26,616 (32.3) 2168 (2.6)

2016 78,318 (12.9) 50,393 (64.3) 23,051 (29.4) 2874 (3.7)

2017 85,886 (14.1) 59,535 (69.3) 23,860 (27.8) 2491 (2.9)

2018 83,324 (13.7) 59,363 (71.2) 21,896 (26.3) 2065 (2.5)

TB Type 1422.1 (2, < 0.01)

Extra-pulmonary TB 102,072 (16.8) 60,643 (59.4) 36,344 (35.6) 5085 (5.0)

Pulmonary TB 506,240 (83.2) 330,387 (65.3) 157,785 (31.2) 18,068 (3.6)

Age Category 38,896 (12, < 0.01)

< 15 57,591 (9.5) 40,813 (70.9) 13,327 (23.1) 3451 (6.0)

15–24 108,104 (17.8) 87,171 (80.6) 16,438 (15.2) 4495 (4.2)

25–34 172,114 (28.3) 106,384 (61.8) 60,046 (34.9) 5682 (3.3)

35–44 130,106 (21.4) 65,507 (50.3) 60,808 (46.7) 3791 (2.9)

45–54 71,743 (11.8) 38,889 (54.2) 30,229 (42.1) 2615 (3.6)

55+ 68,656 (11.3) 52,256 (76.1) 13,281 (19.3) 3119 (4.5)

Gender 10,796 (2, < 0.01)

Female (F) 233,903 (38.45) 132,494 (56.6) 92,970 (39.7) 8439 (3.6)

Male (M) 374,409 (61.5) 258,536 (69.1) 101,159 (27.0) 14,714 (3.9)

Patient Type 2681.4 (8, < 0.01)

Default (D) 8889 (1.5) 5335 (60.0) 3336 (37.5) 218 (2.5)

Failed (F) 1547 (0.3) 1068 (69.0) 457 (29.5) 22 (1.4)

New (N) 551,231 (90.6) 358,430 (65.0) 171,115 (31.0) 21,686 (3.9)

Relapse (R) 40,020 (6.6) 21,862 (54.6) 17,174 (42.9) 984 (2.5)

Transferred In (TI) 6625 (1.1) 4335 (65.4) 2047 (30.9) 243 (3.7)

Total (N) 608,312 391,030 194,129 23,153
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Figure 8a shows the spatial pattern of the posterior mean
for the country-specific relative risk ðζs ¼ eðξs¼υsþνsÞ) of TB-
HIV co-infection compared to the whole of Kenya while
Fig. 8b presents the measure of uncertainty associated with
the posterior means ζs : P(ζs > 1| y). It is evident that there is
an increased co-infection risk in a number of counties char-
acterized by a spatial relative risk above one and a posterior
probability of the relative risk above 0.8 indicating a high
level of associated certainty.

Spatiotemporal trends of TB-HIV co-infection epidemics
The probability maps for the space-time interaction
relative risk estimates greater than one, Pðeδst > 1jyÞ ,
for the 7 years are in Fig. 9. These are the exceedance
probabilities useful for assessing the unusual elevation
of coinfection risk over the 7-year period of study.
Only a few counties had a probability of the relative
risk being greater than 1 and they varied in different
years.

Fig. 1 Temporal trend of co-infection risk by gender

Fig. 2 Spatial patterns of co-infection burden by gender
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Discussion
The surveillance data from the National TB program
gives deep insights into the TB-HIV co-epidemic. This
study established that 96% of the TB case notifications
had documented HIV test results, which is greater than
the WHO’s global estimate of 64% in 2017 and that of
the African region (86%) [28]. The significant upturn in

the HIV screening practices for every TB case notifica-
tion in Kenya could be attributed to the commitment
from the National TB program and the health profes-
sionals in communication and social mobilization for
early diagnosis and therapy uptake. Similar observations
were reported in Ghana [29] and Ethiopia [30]. Globally,
Kenya registered an 8% TB decline rate per year from

Fig. 3 Temporal trend of co-infection by age-category

Fig. 4 Spatial patterns of co-infection burden by age category
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Table 2 Posterior estimates and their 95% credible intervals (CI) for the random effects models

Variables 1a (95% Cr. I) 2a (95% Cr. I) 3a (95% Cr. I)

Fixed effects:

(Intercept) 0.91 (0.73, 1.13) 0.74 (0.60, 0.91)* 0.74
(0.61, 0.90)*

Year 0.94 (0.92, 0.97)* – –

Random effects

Spatial

Structured (τυ) 4.64e02 (1.37e01, 3.95e03) 4.34e02 (1.33e01, 3.75e03) 3.29e03

(6.66e02, 1.09e04)

Unstructured (τν) 1.96 (1.27, 2.89) 1.95 (1.27, 2.90) 2.24
(1.44, 3.31)

Temporal

Structured (τγ) – 2.07e02 (6.68e01, 5.28e02) 1.02e04 (7.23e02, 5.91e04)

Unstructured (τϕ) – 1.21e04 (9.45e02, 6.51e04) 5.65e02 (1.48e02, 2.08e03)

Spatiotemporal

Interaction (τδ) 3.48e03 (1.05e03, 9.48e03) – 6.64e01 (5.40 e01, 8.15e01)

DIC 5163.47 5163.31 3100.82

pD 55.40 55.40 268.34

Md (Ď) 5108.07 5107.91 2832.49

Table 3 Posterior estimates and their 95% credible intervals (CI) for the random effects models with covariates

Variables 1b (95% Cr. I) 2b (95% Cr. I) 3b (95% Cr. I)

Fixed effects:

(Intercept) 2.81e02 (9.49, 8.35e03)a 2.28e02 (7.69, 6.77e03)a 2.02e02 (7.54, 5.43e03)a

Year 0.94 (0.92, 0.97)a – –

Poverty 3.49 (0.96, 16.95) 3.49 (0.72, 16.95) 3.74 (0.81, 17.46)

Infrastructure 4.90 (1.40, 17.29)a 4.90 (1.40, 17.29) 5.75 (1.65, 19.89)a

Health 2.56 (0.56, 11.59) 2.56 (0.56, 11.59) 1.99 (0.44, 8.94)`

Education 0.36 (0.07, 1.86) 0.36 (0.07, 0.53)a 0.40 (0.08, 1.99)

Gender 4.71e−04 (8.36e−05, 2.63e−03)a 4.67e−04 (8.36e−05, 2.63e−03)a 5.81e−04 (1.06e−04, 3.18e−03)a

Dependency 0.94 (0.33, 2.69) 0.94 (0.32, 2.69) 1.01 (0.36, 2.83)

Gini 1.15 (0.21, 6.23) 1.15 (0.21, 6.23) 0.79 (0.14, 4.35)

Random effects

Spatial

Structured (τυ) 4.75e02 (1.63e01, 3.91e03) 4.89e02 (1.63e01, 4.00e03) 3.22e03 (6.70e02, 1.09e04)

Unstructured (τν) 8.30 (5.21, 1.27e01) 8.30 (5.21, 1.77e01) 8.96 (5.55, 1.39e01)

Temporal

Structured (τγ) – 2.06e02 (6.71e01, 5.31e02) 1.08e04 (7.24e03, 5.95e04)

Unstructured (τϕ) – 1.18e04 (9.45e02, 6.42e04) 5.57e02 (1.46e02, 2.02e03)

Spatiotemporal

Interaction (τδ) 3.50e03 (1.04e03, 9.47e03) – 6.63e01 (5.39e01, 8.14e01)

DIC 5162.85 5162.69 3100.07

pD 55.18 55.19 268.09

Md (Ď) 5107.66 5107.50 2831.98
a- significant fixed effects
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2013 to 2017 amongst other high TB burden countries
including the Russian Federation (13%), Ethiopia (12%),
Sierra Leone (10%) and Viet Nam at 8% [28].
Our findings on the number of TB case notifications per

year for the period 2012 to 2018 showed a steady

reduction for the period 2012–2016 then a significant rise
in 2017 and a slow decrease in 2018. The temporal trend
of the coinfection relative risk for the entire country
followed a similar pattern as the TB case notifications.
From 2012 to 2016, there was a clear downward relative risk

Fig. 5 Temporal trend of co-infection risk in Kenya

Fig. 6 Spatial pattern of co-infection burden per County (2012–2018)
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trend then a steep upward risk for the year 2017–2018. This
could be because of either improvement in TB cases detec-
tion or surveillance biases due to spatial heterogeneity in the
co-infection dynamics, an observation that is in accord with
the conclusions of [31]. To maintain the consistent TB de-
cline rates, supplementary efforts to support TB-HIV collab-
orative activities towards reducing the burden of HIV in TB
patients are critical.
The co-infection cases were higher in patients aged be-

tween 35 and 54 years with new cases of TB infection.

Similarly, the co-infection risk was higher for the same
age bracket, which implied that co-infection was more
common in the sexually active age group. These findings
were contrary to the findings by [32] and [29] who ob-
served that high rates of TB-HIV co-infections were in
younger patients (< 15 years of age) but consistent with
several other studies [30, 33–36]. The study also revealed
that a larger proportion of the HIV co-infected cases had
extra-pulmonary TB conforming to [37] and [34] who
found that the risk of extra-pulmonary TB was higher in

Fig. 7 Relative risk plot (2012–2018)

Fig. 8 County-specific relative risks and posterior probabilities
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HIV co-infected cases majorly because of delayed diagno-
sis especially for the sputum smear-negative.
In our study, the male TB cases significantly exceeded

female cases. However, the risk of co-infection was con-
sistently higher in females than in males for the period
2012–2018. The findings conform to a number of stud-
ies showing that females bear a disproportionate burden
of TB-HIV co-infection in SSA [14, 38–41]. The larger
TB case notification among the male could be because
of the barriers the female encounter in seeking care for
and diagnosis of TB or could reflect more complete
registration for treatment by the male [42]. In other
studies, by [34], the prevalence of co-infection was much
higher among males in most countries in Sub-Saharan
Africa whereas in all other countries there was no sig-
nificant difference in the gender ratio. However, the case
notification data alone are insufficient to determine
whether the gender ratio reflects an excess in the co-
infection burden among men or a disadvantage among
women in seeking and accessing TB care.
Having proper infrastructure in place is the foundation for

planning, delivering and evaluating public health services.
The country infrastructure ranking in [26] showed counties
with infrastructure index below the national average of 0.41
were classified as the most marginalized. In our study, it was
evident that counties in the western region of Kenya, that is
Homabay, Siaya, Kisumu, Migori, Busia, and Vihiga, have
unresolved co-infection dynamics that is echoed by their in-
frastructure index. Their patterns of co-infection also

reinforced the fact that counties with high HIV prevalence
also post high TB disease burden [43, 44] with exception of
a few like Wajir, Lamu, Isiolo and West Pokot that have
lower HIV incidence rate but high TB burden. We attribute
these exceptions to unsuccessful treatment critical to arrest-
ing TB re-infection and new infections. In terms of competi-
tive exclusion, TB can exist in places where HIV is of low
incidence.
Although TB disproportionately affects persons living

with HIV, most of the transmission is by persons with-
out HIV, who typically remain transmissible for a longer
period. Since delayed diagnosis influences, the prolonga-
tion of infectiousness and effective treatment rapidly at-
tenuates infectiousness [45, 46], initiatives to reduce TB
incidence in the general population can help prevent
new infections among persons living with HIV.
The primary limitation of the study is using case noti-

fication data as a surrogate measure of the general popu-
lation at risk. Case notifications are data from specific
subpopulations who seek treatment and care from health
facilities; these are geographically representative of
nearby populations. Whereas this kind of data is not
completely spatially random for the co-epidemic burden,
it still captures the spatiotemporal patterns of incidence
risk, which is the ultimate goal of this study.

Conclusion
We identified elevated risk areas for TB/HIV co-
infection and fluctuating temporal trends which could

Fig. 9 Posterior probabilities for the space-time interaction: 47 counties and 2012–2018 years
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be a result of improved TB case detection or surveillance
bias caused by spatial heterogeneity in the co-infection
dynamics. The elevated risk areas indicated the need for
focused interventions and continuous TB-HIV surveil-
lance. Our study also demonstrated the potential utility
of case notification data in providing robust estimates
for the broad spatiotemporal structure of the TB-HIV
co-epidemic. The findings showed that the high burden
counties for TB-HIV co-infection were consistent with
findings from previous work done on high burden coun-
ties for HIV. This suggested that the TB-HIV co-
epidemic in Kenya is still at a critical point portending a
dual endemic challenge for many years to come. Much
as HIV is a serious challenge in the management of TB,
the national response to TB-HIV co-infection promotes
HIV testing among TB patients as a strategy to reduce
TB transmission. However, the government of Kenya
needs to combine surveillance systems for the TB and
HIV National programs to optimize the TB-HIV coin-
fection case notification processes at all levels. With in-
tegrated case notification systems at the health facility
levels, there will be complete data capture on co-
infection incidences and outcomes. Integration of care
for both TB and HIV using a single facility and single
health provider in each county will enable proper moni-
toring of the co-infection trends, which will guide policy
decisions on access to health care and relevant public
health interventions. This will also ensure adequate re-
source allocation to cause a significant impact on the re-
duction of HIV burden amongst TB patients and TB
burden amongst HIV patients.
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