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Abstract: Medicinal plants have been used since ancient times for their various therapeutic activities
and are safer compared to modern medicines, especially when properly identifying and preparing
them and choosing an adequate dose administration. The phytochemical compounds present in
plants are progressively yielding evidence in modern drug delivery systems by treating various
diseases like cancers, coronary heart disease, diabetes, high blood pressure, inflammation, microbial,
viral and parasitic infections, psychotic diseases, spasmodic conditions, ulcers, etc. The phytochemical
requires a rational approach to deliver the compounds to enhance the efficacy and to improve patients’
compatibility. Nanotechnology is emerging as one of the most promising strategies in disease control.
Nano-formulations could target certain parts of the body and control drug release. Different studies
report that phytochemical-loaded nano-formulations have been tested successfully both in vitro and
in vivo for healing of skin wounds. The use of nano systems as drug carriers may reduce the toxicity
and enhance the bioavailability of the incorporated drug. In this review, we focus on various nano-
phytomedicines that have been used in treating skin burn wounds, and how both nanotechnology
and phytochemicals are effective for treating skin burns.

Keywords: burn; injury; phytochemical; nanotechnology; wound healing

1. Introduction

Skin is the largest visible and vulnerable organ of the human body. It protects our
body from environmental changes and dehydration [1,2]. There are certain skin conditions,
such as burns and other substantial loss of the outer layer of the skin (epidermis), which
acts as the barricade that prevents the skin from degeneration and microbial incursion and
balances the fluid levels of the body. In such conditions, both nutritional and electrolytes
constituents get demolished. Hence, skin wounds can drastically impact human health [3].
Various diseases, such as eczema, herpes zoster, rosacea, and psoriasis, can cause harm
to skin; however, burns are the major cause of skin damage [4]. According to the World
Health Organization (WHO), an estimated 180,000 deaths are caused by burns annually [5].
A burn injury may result from hot and cold materials and vulnerability to chemicals and
radiations. Burn wounds are of three types and classified by the profundity: (1) superficial
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(first degree), (2) partial thickness (second degree), and (3) full thickness (third degree) [6,7].
Healing of burn wounds is a complicated process, and it proceeds through various phases,
including inflammation, proliferation, and remodeling. These phases should occur in
the proper order and time sequence for better would healing as changes in any of the
phases may cause a delay in the healing process [8,9]. After epidermal injury, platelet
activation leads to control of blood loss and results in clot formation, which is the first step
in wound healing mechanism [10]. Nanotechnology offers an excellent outlook to fast-track
persistent wound healing by altering the different phases of healing with high payloads
of phytoconstituents [11]. Over the last two centuries, the use of plants extracts in wound
healing has increased due to the presence of active compounds in these extracts [12]. Herbal
medicines are widely accepted because of their efficacy and low level of adverse effects [13].
For skin-related diseases and other disorders, utilization of herbal constituents is accepted
by 80% of population [14]. Using different plant extracts, various studies have been
performed to observe the pharmacological action of constituents on various disease. From
2011 to present day, the use of herbal medicines has increased from $18 million to $26 billion;
it is also estimated that 50% of approved herbal drugs are provided worldwide [15,16].

Nanocarriers with herbal drugs have gathered significant recognition for their poten-
tial and distinctive attributes in numerous domains of human activity [17].

The combination of nanotechnology with natural drugs would be a novel development
for enhancing the medicinal effect of these natural drugs [18]. To increase the acceptability
of these compounds by patients and to prevent the need for repeated administration, the
phytochemical needs an approach that can encourage the delivery of active components
in a sustained release format. Novel drug delivery systems help achieve the required
therapeutic effects with reduced adverse events and enhance the bioavailability of herbal
constituents [19,20].

Comprehensive searches were done on Google Scholar and PubMed databases pertain-
ing to herbal-based pharmaceuticals for burn wound, nano-drug delivery applications in
burn healings, and past to present evolution of nano-phytomedicines for the management
of burn wound healing. We focused mainly on the last 15 years of works in this area,
although some older references were also included to provide validity to the review.

2. Wound Healing Process

Would healing is a complicated process, and it progresses through various phases,
including inflammation, proliferation, and remodeling. Involvement of fibroblasts, leuko-
cytes, and monocytes in the healing process aid in reconstituting the destructed skin
(Figure 1). Vitamins E and C play crucial roles in wound healing as these are key factors in
this process. Vitamin K prevents severe bleeding, carotenoids restore the skin epithelial
layer and tissues, and phytosterols have antimicrobial and anti-inflammatory effects [21].
Would healing also involves the use of biochemical genetic reprogramming to reinstate
the skin health. Recent research has shown that the use of phytochemicals has active
constituents that have the capability to induce wound healing with less side effects [22].
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Figure 1. Different phases of the wound-healing process.

2.1. Inflammatory Phase

The inflammatory phase starts 4–5 days after the skin damage has already occurred.
Once injury occurs, intravascular platelets mediate homeostasis, which is responsible for
clot formation over the wound to stop further bleeding [23]. Post-homeostasis, thrombin
activates platelets, which releases multiple growth factors, such as epidermal growth factor
(EGF), insulin growth factor-1 (IGF-1), platelet derived growth factor (PDGF), fibroblast
growth factor (FGF), and transforming growth factor (EGF, IGF-1, PDGF, FGF, and TGF,
respectively) [24,25]. These growth factors activate neutrophils, monocytes, leukocytes,
and macrophages, which act as a shield for skin to prevent further damage and initiate the
wound healing process [26,27].

2.2. The Proliferative Phase

The proliferative phase involves cell proliferation and migration and takes 3–15 days
to activate [28]. Once PDGF is released by platelets during the inflammatory phase, forma-
tion of new blood vessels and capillaries occurs [29]. Following this step, angiogenesis and
migration of fibroblasts takes place to form granulation tissues [30]. Once the fibroblasts
process is complete, a new extracellular matrix (ECM) consisting of collagen and proteogly-
cans is produced. Some fibroblasts undergo fission into myofibroblasts, which helps with
the contraction of the wounded area [31]. Following this step, activation of keratinocytes,
which migrate to the injured area and completes the last step, that of re-epithelialization,
occurs [32].

2.3. Re-Modeling Stage

The re-modeling stage continues to change over the first several weeks to several years
after the wound occurs. Collagen I replace collagen III, which consists of newly synthesized
ECM, and the fresh collagen fibers develop into an assembled lattice composition that
enhances the intensity of healed tissues [33,34].
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3. The Impact of Antibiotics and Antioxidant Properties of Plants

Since ancient times, various plants have been used for treatment of different dis-
eases and are currently in use worldwide. Due to their antimicrobial activities, nat-
ural constituents, such as aminoglycosides [35], beta-lactams [36], glycopeptides [37],
quinolones [38], sulfonamides [39], and tetracyclines [40] have been utilized for wound
healing treatment. For wound therapy, the benefits of plant extracts or phytochemical have
been recognized as has the existence of antioxidants in numerous plants extracts. The pres-
ence of oxygen free radicals causes disruption in the wound healing process. Stress caused
by oxidation slows down the healing process and causes additional damage to tissues.
An antioxidant confers protection from oxygen free radicals by reducing their effects; this
process assists in the wound healing process. Active compounds possessing antimicrobial
effects play an important role as they neutralize free oxygen radicals and enhance the
wound healing process [41,42]. Antioxidants have been used to hasten healing activity
by extending antioxidant effects throughout the healing process. It seems the existence
of antioxidants is essential to facilitate recuperation from persistent skin injury; Table 1
shows plants with both antimicrobial and antioxidant properties [43]. Natural metabolites
influence the wound healing process by introducing various growth factors, such as EGF
and FGF, which affect cellular movement [44]. Animal studies have indicated that herbal
compounds encourage anti-inflammatory and antimicrobial activities for wound treatment
by promoting regeneration of skin cells and displacing connective tissues [45]. Table 1
shows the names of natural compounds having antioxidant and antibiotic activities toward
wound healing.

The efficacy of Centella asiatica has been studied broadly in animal models. This herb
helps heal the incision-induced injuries. In one study, it was concluded that the level
of antioxidants increases extensively in the presence of this herb, leading to improved
healing activity [46]. Asiaticoside is extracted from Centella asiatica and produces a better
capacity for injury healing process in both chronic and immediate healing as it has fibroblast
proliferating activity [47].

Leaf extracts from Chromolaena odorata contain flavonoids and this herb has been
used widely in the wound healing activity due to the free radical approach, which has
shown a conclusive promotion in healing activity [48]. This extract was shown to cause
improvement in the fibroblast proliferation and keratinocyte and endothelial cell activity,
and to stimulate keratinocyte migration [48].

Quercus infectoria Olivier possesses anti-inflammatory, anti-bacterial, and antioxidant
properties. The ethanolic extract of gallic acid, ellagic acid, and syringic acid form the
active constituents of tannins, which might be the reason for antioxidant effects resulting
in enhanced healing activity. In this study, the incision wound animal model showed
better healing activity after stimulation with antioxidants, which caused enhancement of
the superoxide dismutase and catalase levels, both of which are influential antioxidant
enzymes [49].

Wounds, burns, and internal and external ulcers can be treated by Buddleja globasa
(common name: orange bell Buddleja). This herb is also used traditionally in Chile for the
treatment of ulcers and burns. This herb was tested for its capability to stimulate fibroblast
growth and antioxidant activity in vitro. Testing was specific as the effect of the aqueous
solution of B. globasa on these two processes is considered as the first stage in the tissue
repair cycle [50]. It was proven that the damage caused by oxygen free radical causes a
delay in the healing process; thus, an antioxidant was needed to reverse this delay [51].
This process was achieved because of the presence of flavonoids and caffeic acid in the
extract. Buddleja leaves have other applications in the skin layer formation that is part of
wound healing [52].
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Curcumin is a derivative of Curucuma longa, which is also known as turmeric and
Haldi. C. longa has numerous biological properties, which consist of antioxidant, initiation
of enzyme detoxification, and prevention of degenerative diseases [53]. Dermal application
of these substances to patients resulted in enhanced wound healing activity and provided
tissue defense from oxidation-induced damage [54].

Table 1. Phytochemicals having antibiotic, antimicrobial, and antioxidants activity on wound healing.

Medicinal Plants Family Active Ingredients Activities Reference

Acacia Senegal L. Leguminosae Saponins, alkaloids, and malic acid Antimicrobial, anti-inflammatory, and
antioxidant activity [55]

Acalypha indica L. Euphorbiaceae Flavanoids, alkaloids, saponins Antioxidant and antimicrobial activity [55]

Allophylus rubifolius L. Sapindaceae - Antioxidant, antibacterial, and
anti-inflammatory activity [55]

Anagallis arvensis L. Primulaceae flavonoids, saponins, glycosides,
alkaloids, and anthraquinones

Antioxidant, anti-inflammatory, and
antimicrobial activity [56]

Anogeissus dhofarica L. Combretaceae - Antioxidant and antimicrobial activity [41]

Aloevera L. Liliacae Saponins, acemannan,
and anthraquinone Antimicrobial activity [57]

Anethum graveolens L. Umbelliferae - Anti-inflammatory and
antibacterial activity [58]

Aristolochia bracteolate L. Aristolochiaceae - Antimicrobial and antioxidant activity [59]

Alternanthera brasiliana L. Amaranthaceae - Antimicrobial activity [60]

Achillea millefolium L. Asteraceae
Isovaleric acid, salicylic acid,
sterols, flavonoids, tannins,

and coumarins
Antimicrobial activity [15]

Acanthus polystachyus L. Acanthaceae
Tannins, flavonoids, saponins,

polyphenols, terpenoids,
glycosides, and anthraquinones

Anti-inflammatory and
antioxidant activity [61]

Becium dhofarense L. Lamiaceae - Antioxidant activity [55]

Bridelia ferruginea L. Phyllanthaceae Flavonoids, tannins, saponins,
and terpenoids Antioxidant and antibacterial activity [62]

Buddleja globosa L. Scrophulariaceae - Antioxidant activity [50]

Centella asiatica L. Araliaceae Flavonoids Antioxidant activity [46,63,64]

Chromolaena odorata L. Asteraceae
Alkaloids, flavonoids, flavanone,
essential oils, phenolics, saponins,

tannins, and terpenoids

Antimicrobial, antioxidant, and
anti-inflammatory activity [48]

Clerodendrum infortunatum L. Lamiaceae Flavonoids Antioxidant and antimicrobial activity [65]

Combretum smeathmanii L. Combretaceae Alkaloids, coumarins, flavonoids,
saponins, terpenes, and sterols Antioxidant and antimicrobial activity [66]

Cordia perrottettii L. Boraginaceae - Antioxidant activity [55]

Curcuma longa L. Zingiberaceae Glycosides, tannins,
and flavonoids

Anti-inflammatory, antimicrobial, and
antioxidant activity [53,54,67]

Crassocephalum crepidioides L. Asteraceae Phenolic, flavonoid, and
essential oil

Anti-inflammatory and
antioxidant activity [68]

Cinnamomum verum L. Lauraceae Tannins Anti-inflammatory, antimicrobial, and
antioxidant activity [69]

Dendrophthoe falcata L. Loranthaceae - Antioxidant and antimicrobial activity [70]

Eucalyptus globulus L. Myrtaceae
Alkaloids, flavonoids, saponin,

tannin, carbohydrates, and
glycosides etc.

Anti-inflammatory activity [71]

Ficus asperifolia L. Moraceae Flavonoids, phenolics, alkaloids,
and tannins Antioxidant and antimicrobial activity [72]
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Table 1. Cont.

Medicinal Plants Family Active Ingredients Activities Reference

Gossypium arboreum L. Malvaceae

Alkaloids, phenolic compounds,
terpenoids, tannins, saponins
flavonoids, cardiac glycosides,

and protein

Antioxidant and antimicrobial activity [72]

Gunnera perpensa L. Gunneraceae

Alkaloids, ellagic acids, flavonoids,
phenols, benzoquinones,

proanthocyanidins, tannins,
and minerals

Anti-inflammatory, antioxidant, and
antibacterial activity [73]

Hippophae rhamnoides L. Elaeagnaceae

Flavonoids, tannins, triterpenes,
glycerides of palmitic, stearic, oleic

acids, vitamins (C, E, K), and
amino acids

Anti-inflammatory, antimicrobial, and
antioxidant activity [74]

Holoptelea integrifolia L. Ulmaceae
Terpenoids, saponins, tannins,
phenols, alkaloids, flavonoids,

glycosides, and quinines

Anti-inflammatory, antibacterial, and
antioxidant activity [75]

Memecylon edule L. Melastomataceae - Anti-inflammatory activity [76]

Moringa peregrina L. Moringaceae Proteins, vitamins, beta-carotene,
amino acid, and phenolics

Anti-inflammatory, antimicrobial and
antioxidant activity [53,77]

Olea europaea L. Oleaceae
Flavonoids, iridoids, secoiridoids,

flavanones, biophenols,
triterpenes, benzoic acid

Antioxidant activity [53,78]

Phyllanthus muellerianus L. Phyllanthaceae
Isoquercitrin, rutin, astragalin,

phaselic acid, gallic acid, caffeic
acid, methylgallate

Anti-inflammatory and
antioxidant activity [71]

Plagiochasma appendiculatum L. Aytoniaceae - Antioxidant and antimicrobial activity [79]

Pluchea Arabica L. Asteraceae Anthocyanins, phenolic acids,
flavonoids, and carotenoids Antioxidant activity [53]

Quercus infectoria L. Fagaceae Tannin Anti-inflammatory and antibacterial [49]

Rhizophora mangle L. Rhizophoraceae Triterpenes, tannins and
their glycosides Antimicrobial and antioxidant activity [80]

Secamone afzelii L. Apocynaceae alkaloids, tannins, cardiac
glycosides and saponins Antioxidant activity [50]

Trigonella foenum L. Papilionaceae
Carbohydrates, proteins,

lipids, fibers, flavonoids, alkaloids,
and saponins

Anti-inflammatory and
antioxidant activity [81]

4. Nanotechnology Involvement in Wound Healing Enhancement

Nano-drug delivery systems enormously influence the potential of drugs’ medicinal
effects and also protect the drugs from deterioration. Wound healing and skin re-formation
involves various nano-delivery systems, such as those contained in organic nanoparticles,
lipid nanoparticles, liposomes, polymeric nanoparticles, nanohydrogels, and nanofibers.
These nano-systems show better efficacy compared to conventional systems (Figure 2).

In the past decades, a steady increase in the filing of patents based on herbal nano-
formulations has been recorded. The key factor behind this increase is the capability
of nano-formulations to overcome solubility drawbacks and bioavailability problems
faced by conventional systems. One of most frequently filed patents is for curcumin, the
multifunctional phytoceutical, extensively used in the treatment of tumors, cancers, and
skin disorders. Other herbal based nano-formulations patents include carotenoids (nano-
particles), silymarin (nano-particles), Panax ginseng (liquid mixture), Syzygium cumini,
Tinospora cordifolia, Trigonella foenum-graecum, Withania somnifera (nano-emulsion, nanoen-
capsulation, nano-dispersion, or synergistic liquid mixture), and Arbutin (emulsified
nanoparticles) [82].
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4.1. Nanofibers

Nanofibers are formed by unbreakable polymer chains of natural and synthetic com-
pounds, which act as a sheet of nanofibers when placed on the skin to improve the tis-
sues [83]. Nanofibers imitate collagen fibrils in the ECM, which can be formed from the
synthetic or natural compounds and have numerous qualities that provide benefits to the
wound healing process [83]. Nanofibers are beneficial for wound healing because they
have a permeable construction and great orifice connection. Nanofibers have the capability
to keep moisture at a suitable level. The synthesis of nanofibers with phytochemicals in
nanofibrous materials has yielded tremendous results in the area of wound healing as
these fibers have the capability to reduce the incision mark because of their porosity, which
allows movement of oxygen [84]. Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is
an anthraquinone derivative that is found in the roots of Rheum officinale L. and is used
extensively for wound healing as it has antimicrobial and anti-inflammatory activities.
It produced a positive result when used for acute skin injuries [85]. The nanofibers of
emodin in polyvinylpyrrolidone were harmless, anti-allergenic, bioactive, and dissolved
at a rapid rate when compared to the pure compound. Re-epitheliazation was shown to
have occurred at the wounded area, which hastened the healing process [86]. To increase
the composition of collagen in human cells to 100%, emodin was incorporated in cellulose
acetate nanostructure fibers [87]. The development of herbal constituents in cellulose ac-
etate nanofibers promotes wound healing by using biomaterials as an interactive dressing
material. Asiaticoside is extracted from C. asiatica, and the incorporation of trisachharide
triterpene into cellulose acetate nanofibers produces an antioxidative effect during the early
stages of the injury healing [88]. Increases in types I and III pro-collagen mRNAs were
shown to enhance skin fibroblasts by elevating the protein levels [89]. Curcumin incorpo-
rated into cellulose acetate caused an improvement in fibroblast proliferation, enhanced
collagen synthesis, and protected the dermal fibroblast cells from oxidative stress caused
by hydrogen peroxide (H2O2) [90].
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The active constituent of turmeric curcumin (1,7-bis (4-hydroxy-3-methoxyphenyl)-
1,6-heptadiene-3,5-dione) is a polyphenolic compound, which is obtained from C. longa L.
Curcumin is an active ingredient and its use is widely accepted for wound healing because
it possesses various properties, such as anti-inflammatory, antibacterial, and antioxidant
ones [91]. For epidermal injury healing, curcumin has been used in various in-vivo animal
models [92]. Re-epithelization occurs during the early stages and enhances coagulation
synthesis because it releases TGFβ1, which leads to increases in the number of blood vessels
and cell granulation [93]. Liakos et al. [94] suggested that essential oils, such as cinnamon,
lemongrass, and peppermint, can be used as antimicrobial agents. These electro-spun
cellulose-based nanofibrous dressings were shown to prevent the Escherichia coli growth
and required lesser quantities of oils. These dressings did not show any kind of cytotoxic
effects and appears to be safe to use.

It has been reported that the curcumin loaded poly(ε-caprolactone)/gum tragacanth
(PCL/GT) led to an improvement in the mechanical properties and tensile strengths of
nanofibers and had a positive impact on collagen content for the treatment of diabetic
wounds. By 15 days after injury, this moiety led to rapid wound healing by causing
regeneration of the epithelial layer [95]. Bromelain-loaded chitosan nanofibers produced
favorable wound healing results. It was observed for the second degree burn and has
positive impact. The chitosan 2% w/v bromelain showed better physiochemical results
compared to chitosan 4% w/v bromelain and was effective in reducing burn-induced
injuries [96]. Bixin-loaded polycaprolactone (PCL) nanofibers maintained and accelerated
wound healing activity in excisional wounds and effectively reduced the scar tissue area
on the diabetic mice [97]. Alfalfa nanofibers yielded better results with respect to skin
regeneration as these nanofibers possess antibacterial activity and bioactive phytoestrogens
that work as a building block for the dressings for regenerative wounds [98].

4.2. Polymeric Nanoparticles (PNPs)

Polymeric nanoparticles are biocompatible colloidal systems that have risen in im-
portance for both biomedical and bioengineering applications [99]. They are generally
integrated by charged polymers and connected by interactivity of cationic and anionic
chains of groups [100]. When drugs are incorporated into polymeric systems, this pro-
cess prevents the deterioration caused by proteases found in the injury and delivered
in stages to lower the frequency of administration [101]. Polymeric nanomaterials are
widely utilized because of their antibacterial and wound healing activities [102]. For re-
generation of skin injury, keratinocyte growth factor (KGF) is an impressive and potent
growth factor [103]. It was observed that the KGF consists of self-assembled nanovesicles
that enhances healing of the injured tissue cells of the skin by enhancing epithelization and
skin re-modeling [104,105]. Recently, PNPs have been formulated by poly-lactic-co-glycolic
acid (PLGA) and some of the other combinations in polymeric systems, including alginate,
gelatin, and chitosan [106]. PLGA is approved by the Food and Drug Administration
(FDA) for use in PNPs. The size of the PGLA NPS is 1–200 nm, which provides the bene-
fits of biodegradability, biocompatibility, and being innocuous [107]. PLGA particles are
generally formulated by emulsification of lipophilic compounds utilizing numerous surfac-
tants and organic solvents [108]. The development of EGF-loaded nanoparticles for injury
healing using PGLA yielded a positive response with respect to fibroblast proliferation
and enhancement of the healing activity in the full thickness wounded skin. EGF plays
an importance role in mediating the de-differentiation of keratinocytes into an epithelial
linage and to reestablishing the epithelial barrier [109]. One of the studies also suggested
that PGLA might produce a biocompatible system for growth factor delivery. To reduce
lactate levels and enhance wound healing activity, the peptide defense host, known as
LL37, was incorporated into PGLA nanoparticles [110]. Natural polymers, such as chi-
tosan, have been chiefly considered for wound healing activity because of antibacterial and
biocompatibility activities [111]. Chitosan is cationic in nature and has been utilized for the
inhibition of microbial-induced infections [112]. Chitosan nanovesicles (150–300 nm) are
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generally formulated utilizing the method of ionic gelation [113]. Nowadays, chitosan is
widely accepted in wound treatment, and it can also be utilized as a prophylactic agent
to inhibit the infection development and enhance healing activity [114,115]. Studies have
shown that polylactic acid-loaded chitosan magnetic eugenol nanospheres had improved
prevention and development of biofilm compared to pure chitosan, whilst performing
endothelial proliferation [116]. Most of the studies concerning this topic have reported that
nanovesicles containing chitosan and analogs might enhance healing activity by improving
inflammatory cell function and restoring fibroblasts and osteoblast functions [117]. In two
different studies, it was observed that chitosan-loaded nanovesicles improved the coagula-
tion by binding to red blood cells (RBC) and ameliorating the function of inflammatory
cells. In another study, the chitosan nanovesicles were used as the compounds in bandages
outlined for the skin wound and, hence, enhanced healing activity in both humans and
animals [115,118].

4.3. Dendrimers

Dendrimers are nanoscale (1–10 nm) systems with homogeneous structures that are
monodispersed in polymer macromolecule that can be used for both therapeutic and diag-
nostic purposes. Subunits of phenyl acetylene were used to develop dendrimers [119,120].
In addition, functional groups present on the surface of dendrimers can operate as an-
tibacterial agents. Dendrimers cause detachment of contaminated tissues and may ex-
tend the phase of inflammation and slow injury diminution in addition to promoting
re-epithelization and better wound healing activity [121]. The interaction between posi-
tively and negatively charged groups present on dendrimers and on the bacterial cell wall
would lead to the bacterial structure disturbance [121]. In another study, silver-loaded
dendrimer NSs were observed to show anti-inflammatory and anti-microbial activities
in a synergistic manner. These properties were also shown to prevent inflammation and
enhance healing activity [122].

4.4. Metallic Nanoparticles

Metal-based nanoparticles are widely utilized as they produce antibacterial, antimi-
crobial, and anti-inflammatory effects. The chemical and physical structures of nanopar-
ticles are important for determining the propensity of a nanoparticle to enter and/or
bind to target cells with the capacity to interact with their biological machinery and
elicit a response. The metal-based nanoparticles are widely accepted in medicine, and
the most acceptable metallic nanoparticles are silver- and gold-based nanostructures.
Herbal plants are widely accepted in the development of metallic nanoparticles because
of their low levels of side effects and more therapeutic effects as compared to the conven-
tional dosage form [123]. Most of the herbal extracts, such as Cladophora fascicularis [124],
Aerva lanata [125], Hippophae rhamnoides [126], Eucommia ulmoides [127], Black tea leaf [128],
Averrhoa bilimbi [129], Salicornia brachiate [130], Abelmoschus esculentus [131], olive leaf [132],
Ipomoea carnea [133], geranium [134], and Cissus arnotiana [135] have been incorporated into
metallic nanoparticles

Silver nanoparticles are widely used as they possess antimicrobial, antibacterial, and
anti-inflammatory properties [136]. The solubility and bioactivity of the silver particles
at the wounded area depend on the size of silver particles; the smaller the size is, the
stronger the contact with the will skin be. Silver nanoparticle vesicle sizes range from
1 to 100 nm. In one study, the silver–silver chloride nanoparticles combined with lower
grapheme oxide nanovesicles induced an escalation of the healing process because it
generated a higher number of oxygen free radicals rather than free the silver ions. A
positive impact on the antibacterial activity on both Gram-negative and -positive bacteria
has been shown, and, hence, these particles can enhance wound healing activity as shown
in in-vivo studies in mice [137]. ACTICOAT is an alternate form of silver antimicrobial
barrier wound dressing, which prevents the complication of prior agents. It slows down the
bacterial activity, which leads to a reduction in inflammation and causes an improvement
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in the healing process [138]. The plant-based bio-prepared nanoparticles reveal potential
for wound remedy and bacterial infection prevention [139]. Different methods for the
preparation of silver nanoparticles are used. Photochemical and chemical reduction are the
two most widely used methods [140]. Different plant extracts have been incorporated into
silver nanoparticles for wound healing containing alkaloids, glycoside, corticosteroids and
essential oils [141]. Cassia roxburghii prepared silver nanoparticles show the potential for
wound healing enhancement as these particles have significant antibacterial and antifungal
activities [142].

The active constituent of Drosera binata is naphthoquinones, primarily plumbagin.
D. binata silver nanoparticles show better antibacterial activity against Staphylococcus aureus
without affecting human keratinocytes. It was also inconclusive as to whether it is D. binata
extract or its pure form (3-chloroplumbagin) that would have effective results for antibiotics
and, hence, enhance wound healing [143]. Extracts of grape pomace were also combined
with silver nitrate, and grape-silver nanoparticle-stabilized liposomes were developed by
Castangia et al. The resulting nano-formulation showed potential to offer a significant
shield of keratinocytes and fibroblasts to combat oxidative stress, thus, avoiding cell
damage and death [144]. The other highly acceptable nanoparticles in different applications,
such as wound treatment, re-epithelization, and particularly drug delivery, include gold
nanoparticles [145].

Their chemical stability and capability to absorb near-infrared (NIR) light combined
with their positive impact and antibacterial activity will strengthen the wound healing
process [146]. Gold nanoparticles have the potential to penetrate bacterial tissues and cause
alterations in the cell membrane, which causes inhibition of bacterial activity [147], and
also prevents bacteria from developing reactive oxygen species [148].

Gold nanoparticles are synthesized with collagen, gelatin, and chitosan to yield effec-
tive injury recovery activity and also helps to achieve the biocompatibility [149]. Chitosan-
loaded gold nanoparticles showed enhanced results in the healing process as these particles
increase free radical scavenging and improve biocompatibility; in the model, these particles
enhance the formation of cells and lead to an improvement in hemostasis by increasing
the healing activity in comparison to pure chitosan [150]. The resulting metabolites from
Indigofera aspalathoides Vahl. (Papilionaceae), which is also known as Shivanarvembu, are
extracted from plants and used for wound healing. The histopathology results demon-
strate that the I. aspalathoides silver nanoparticles have a better effect on wound healing in
mice. When treated with plant extract, the granulation tissue which possesses fibroblasts,
collagen fibers, minimal edema, and newly developed blood vessels were noted [151]. The
other forms of metallic nanoparticles are gold and copper oxide nanovesicles that improve
wound healing, which leads to fast injury healing and slows down the infection develop-
ment. Both silver and gold nanoparticles are formed by incorporating Coleous forskohlii
root extracts. These particles exhibit antimicrobial activity and antioxidant activities and
have a positive effect on re-epithelization at the site of wound, which enhances connective
tissue formation and causes an increase in proliferation and remodeling rates of dermal
cells [152]. The development of both titanium dioxide and copper oxide nanoparticles of
Moringa oleifera and Ficus religiosa leaf extracts, respectively, were shown to enhance wound
healing and decrease the removal wound site in rats [153].

4.5. Nanohydrogels

For wound treatment, nanohydrogels are considered to be effective carriers as they
possess three-dimensional polymeric networks. Due to their permeable network, they have
the capability to absorb the liquid, which helps the wound to keep hydrated and enhance
the wound healing process by keeping the proper oxygen level. Due to their effectiveness,
compatibility, and showing beneficial results on skin revitalization, nanohydrogels have
become widely accepted [154].
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To improve wound healing activity, the gellan cholesterol nanohydrogel is immersed
in baicalin. The baicalin-loaded nanohydrogels manifest ideal efficacy for skin repair
and also act as inflammation inhibitors when applied to an epidermal inflammation mice
model in in-vivo studies [155]. The freshly developed nanocrystal bacterial cellulose
hydrogels instantly stick to fibroblasts, support human dermal fibroblast morphology,
restrict the relocation of cells, enhance the proliferation of cells, and influence the nine
expressions of genes connected to healing of injury. These genes include interleukins 6
and 10, granulocyte-macrophage colony-stimulating factor, matrix metalloproteinase 2
(IL-6 and -10, GM-CSF, MMP-2, respectively), and TGF-β; hence, nanohydrogels play an
important role in skin regeneration [156].

4.6. Liposomes

Liposomes appear to be an important vehicle for topical delivery; they are harmless
and environmentally safe and possess high drug loading efficiency, long-term stability,
biological acceptability with skin in addition to having the capability to incorporate both
hydrophobic and hydrophilic drugs in water and bilayer cavities [157]. Liposomes success-
fully shield the injury site and build a humid habitat at the site of injury, which is beneficial
for the healing of the wounded skin. Taking all these characteristics into consideration,
liposomes have become widely accepted in skin regeneration and injury treatment [158]. A
study on propylene glycol liposome nanocarriers demonstrated numerous merits in com-
parison to other nano-systems. This system showed the tendency to enhance the stability,
retention, and permeation in the tissues of skin [159]. It surmised that propylene glycol
ameliorate the elasticity of vesicle containing bilayer of phospholipids. Hence, it improved
the permeation into the skin. Moreover, the particles size of liposomes should be 150 nm
for better drug perforation into the skin layers [160]. Liposomes with silk fibroin hydrogels
were prepared to stabilize the basic fibroblast growth factor (bFGF) that maintained the
activity of proliferation of cells on wound fluids; it also enhances the healing process by
inspiring angiogenesis [161]. Rabelo et al. assessed the gelatin-membrane consisting of
usnic acid-loaded liposomes and obtained encouraging results for wound healing. These
results showed that the membrane of liposomes prominently manages the second-grade
infection on porcine model [162]. Furthermore, with improved collagen, accumulation on
cellularized granulation tissue was discovered in the treated group of liposomal membrane,
which when compared to one of the commercial products improved the granulation tissue
maturation and repaired the scars [163]. Argan-liposomes and argan-hyalurosomes have
been successfully developed by incorporating neem oil into them. These formulations were
extremely biocompatible and could protect skin cells from oxidative stress effectively with
improved efficacy of oil. Moreover, formulations stimulate wound closure substantially
more effectively than oil dispersion [164]. The efficacy of mangiferin (employed in cure
of skin lesions) was enhanced by modifying transferosomes with propylene glycol and
glycerol. Improved deposition of mangiferin was observed in epidermal and dermal layer
and fibroblasts were protected from oxidative stress and intensified their propagation [165].

4.7. Inorganic Nanoparticles

Inorganic nanoparticles are those derived from the inorganic materials and include
carbon-, metal-, and ceramic-based nanovesicles that accelerate tissue repair and re-
modeling. These particles deliver assistance in the region of medicines, counting cancer,
imaging, and drug delivery; however, their utilization in tissue regulation and skin re-
modeling is new, it also provides adhesion in tissue and enhanced antimicrobial activity in
injury healing [166].
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4.8. Lipid Nanoparticles

Lipid nanoparticles were designed to overcome the stability limitation of liposomes
due to the lipid bilayer. Lipid nanovesicles consist of two types: (1) solid lipid nanoparticles
(SLNs) and (2) nanostructured lipid carriers (NLCs). The preparation of lipid nanovesi-
cles amid lipids molecules does not include the use of any potentially harmful biotic
solvents [167]. In a study, both SLN- and NLC-loaded rh-EGF (epidermal growth factor)
for chronic injury treatment were formulated by the emulsification followed by an ultra-
sonication method; however, the NLC process included no organic solvent and showed
better entrapment efficiency. The results of both formulations show capabilities to en-
hance cell proliferation when compared with free rh-EGF and considerably enhance the
healing activity for wound closure, re-establish the process of inflammation, and facilitate
re-epithelization [168].

In another study, development of SLNs with the elastase inhibitor serpin A1 and
antimicrobial peptide LL37 had a synergistic impact on injury healing. SLNs promoted
the closure of injury in cells of fibroblasts and keratinocytes. Moreover, it also led to
improvement in the activity of antibacterial against S. aureus and E. coli when compared
with the LL37- and A1-treated groups [169].

5. Future Perspective and Conclusions

The main aim of this review article was to describe the advantages of using nano-
systems for use in the wound healing process. The distinctive physiochemical properties of
nano-systems make them a perfect candidate for the application of wound healing process.
The wound therapy process by nanotechnological systems demonstrates better therapeutic
effect compared to the conventional therapy for wound healing. Nanotechnological systems
can change one or more than one phase of wound healing during the process, as it possesses
antibacterial, anti-inflammatory, and anti-proliferation activities. Worldwide, the research
has been conducted on natural and herbal compounds due to their more therapeutic effects
and lesser side effects. There is a need for the development of improved systems for the
delivery of drugs at the target site with a dose that does not alter the existing treatment of
disease. The herbal compounds have great potential and, hence, a better future, especially
when incorporated into the nanocarriers for chronic wound treatment as they have shown
promising results. Herbal medicine-based novel drug delivery systems have acknowledged
the approaches in the field of pharmaceuticals, which will improve the health of the people.
It is also concluded that the incorporation of herbal compound in the nano-vehicle will
aggrandize the magnitude of the existing delivery system. Anyhow, various approaches
have been employed for the privileged application of nanocarriers in wound healing
therapy. The main concerns for the nano-vehicles are toxicity because they may cause
possible side effects in the human body. Hence, this requires to be rectified at the starting
point for further progression of wound healing therapies in clinical trials. In in vivo models,
there is slighter comprehension regarding non-material mediated wound healing processes
and this is one of the problems observed. The studies of non-material-wound healing
processes are based on in-vitro studies or mainly depend on single aim bacteria. The in-vivo
wound healing application is required for the in-depth studies utilizing both Gram-positive
and -negative bacterial strains. Subsequently, the main focus should be on improving and
enhancing target efficiency for more efficacious wound healing. Therefore, the investigators
should target producing a nanomaterial that is biocompatible and biodegradable and has
the capability to correct all the phases of the wound healing process.
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