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Introduction
Censored data are commonly observed in different disciplines such as economics, engi-
neering and life sciences [1–3]. Given the uncertainty in censored data, the modeling 
and analysis fit naturally in the Bayesian framework by using expectation-maximization 
(EM), data-augmentation (DA) and Markov chain Monte Carlo (MCMC) algorithms [4, 
5]. For example, in highly fractionated experiments, frequentist likelihood-based esti-
mates may not even exist for simple models consisting of only main effects, while Bayes-
ian approach offers a straightforward implementation strategy [6]. When the outcome 
cannot be fully observed, censored data can be treated as additional parameters from a 
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fully Bayesian perspective, with a likelihood function specifying joint modeling for both 
observed and censored data. The Bayesian approach has multiple advantages in the pres-
ence of censored data or inadequate sample size, and for nested/non-nested model com-
parisons [7]. Compared with the multiple imputation, Bayesian modeling is robust in 
statistical inference even when a large proportion of missing data is present [8, 9].

Just Another Gibbs Sampling (JAGS) is an object-oriented software to generate pos-
terior samples using MCMC simulations [10]. It avoids the explicit specification of the 
MCMC algorithms for model parameters, especially when the closed-form expres-
sions of conditional distributions are not available, and simplifies the implementation 
of Bayesian modeling. JAGS also clarifies certain confusing aspects for missing data in 
BUGS [11, 12]. To distinguish the concepts of censoring and truncation, it introduces a 
degenerate dinterval distribution function for general interval-censored data [10].

Some existing R packages, including rjags [13], r2jags [14] and runjags [15], 
provide a user-friendly interface for R users to conduct Bayesian data analysis via JAGS. 
Most importantly, these R packages for JAGS, together with coda [16] and MCMCpack 
[17], not only make it easy to process the output of Bayesian models implemented using 
JAGS, but also further help (1) visualize the posterior samples via plots, (2) predict new 
data based on posterior predictive distributions, and (3) calculate the deviance using 
posterior samples from JAGS models.

For Bayesian inference especially with complicated model features, model selection is 
a critical component to identify an approximate model best describing the information 
in the data. Among many popular approaches, the seminal work of deviance information 
criterion (DIC) by [18] was proposed based on Kullback–Leibler (K–L) divergence [19] 
and embedded in JAGS as part of the dic module based on the posterior samples obtained 
from MCMC simulations. However, when the outcome variables are censored, the built-
in function dinterval() returns a constant value of 1 for the likelihood calculation 
[20, 21], which is equivalent to ignoring all of the censored observations in the deviance 
monitor of the dic module. As a result, it fails to calculate DIC for model comparison, 
which may limit the broader usage of JAGS for Bayesian modeling of censored data [22].

Therefore, we propose an alternative model specification for the analysis of censored 
outcomes in JAGS. It is a universal approach that automatically returns the correct devi-
ances for both observed and censored data, such that DIC and penalized expected devi-
ance [23] can be properly and simultaneously calculated using posterior samples from 
MCMC simulations; thus Bayesian model selection for censored data modeling can be 
conducted using JAGS without analytical customization of the deviance of the model. 
The proposed approach is applicable to many different Bayesian model structures, such 
as Bayesian tobit regression model [24], semiparametric accelerated failure time (AFT) 
models for censored survival data [25], illness-death model using Bayesian approach for 
semicompeting risks data [26], Bayesian hierarchical model for censored normal out-
come [27], and Bayesian Thurstonian models for ranking data [28], among many.

The rest of the paper is organized as follows. We first introduce the default approach for 
censored data modeling using the built-in function in JAGS, and then we propose an alterna-
tive strategy for correct deviance computation. Furthermore, we use a right-censored survival 
example to illustrate the discrepancy in deviance functions using both approaches, and apply 
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Bayesian model selection using the correctly specified likelihood in an application to drug 
safety for cancer immunotherapy. Concluding remarks and discussions are given at the end.

Default procedure for censored data modeling in JAGS
Censoring occurs when the value of an observation is only partially observed, which is 
common in Bayesian modeling. Hereinafter we assume that the outcome model and the 
censoring mechanism are independent, a.k.a. noninformative censoring in survival analy-
sis. It is a fundamental assumption for censored data behind most statistical methodologies 
[29]. We first briefly review the standard approach to model censored data in JAGS with its 
limitation in model assessment.

A default approach for analysis of censored observations in JAGS is to use the built-in din-
terval distribution function for model specification and posterior sampling. The Model 1 
below illustrates a general form of model specification for censored data analysis in JAGS. It 
helps to model three types of censoring: right-censoring, left-censoring and interval-censor-
ing [21].

0+

0+ 0+

where the outcome of interest, Y, which can be either observed or censored (coded as NA in 
the data table), follows density distribution f with parameter θ . R is a censoring variable fol-
lowing an interval distribution. If R = 1 , then the outcome is interval-censored; cut1[] and 
cut2[] are lower and upper cutoff values for interval-censoring, respectively. If R = 0 , the 
data is left-censored while the outcome contains partial information which is less than a lower 
limit; If R = 2 , the data is right-censored, which is above a certain cutoff value. lim[,] is a 
vector of length 2, which contains a pair of cutoff values for each unobserved outcome data, as 
illustrated in the comment lines above, and cut[] specifies the one-sided cutoff value for left/
right-censoring.

However, dinterval() function has a limitation in deviance calculation when we 
assess model fit based upon deviance-based statistics. For example, when we apply an exist-
ing function, dic.samples(), in the rjags package [13] to call the dic module and to 
generate penalized deviance samples within R [30], the following warning message appears.
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By default, the dic module was created to monitor and record the likelihood/deviance 
of a JAGS model at each iteration and calculate the deviance-based model selection criteria 
such as DIC or penalized expected deviance. In the presence of censored outcomes, even 
though the dinterval() function can generate the proper posterior distribution of the 
parameters in JAGS, the likelihood function is misspecified with the wrong focus of infer-
ence on the censored outcome variable [22]. Instead, a constant value of 1 for the likelihood 
function, or equivalently, a constant value of 0 for the deviance function, is misspecified for 
the censored outcomes in the deviance monitor. Therefore, the posterior mean deviance 
computed from the dic module using the default procedure dinterval() is mistakenly 
reported by the posterior mean deviance of observed data only; see also the first example in 
Illustrative Examples. It suggests that the posterior mean deviance extracted from the dic 
module in JAGS should not be used in model assessment [20].

Alternative modeling strategy in JAGS
The goal is simply to derive the deviance and associated model selection criteria in JAGS 
without any manual calculation by definition. Rather than handling censored data with 
the dinterval() function in the JAGS Model 1, we present an alternative modeling 
strategy to specify the proper deviance based on the type of censoring.

We divide the data into 3 subgroups: observed, left- or right-censored, and interval-
censored. For incomplete observations, we introduce ancillary indicator variables Z1 for 
left- and right- censored data and Z2 for interval-censored data. Hence, the alternative 
JAGS model specification (Model 2) can be written in a general form as follows:

p[c+i] <- F(cut2[i], theta[0+c+i]) - F(cut1[i], theta[0+c+i])

(p[c+i])

theta[0+c])
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Every subgroup is self-blocked with a separate section of the likelihood in JAGS, where 
O is the set of observed data, C is the set of left/right-censored observations, and I is the 
set of interval-censored observations. Z1 is a binary random variable, where Z1 = 1 if it 
is left-censored, or Z1 = 0 if right-censored. The probability of success p in the Bernoulli 
distribution of Z1 is defined by the cumulative distribution F for the censored outcomes, 
which neatly identifies the probabilities for both left-censored and right-censored data 
with properly specified cutoffs. For interval censored observations, we set Z2 = 1 and 
the probability of success in Bernoulli distribution is the incremental change of the val-
ues in F function between the cutoffs, corresponding to the unobserved outcome which 
lies in a semi-closed interval.

Proposition 1 in “Appendix A” demonstrates that the proposed alternative modeling 
strategy in the JAGS Model 2 has a correctly specified likelihood function for censored 
data. Therefore, it is warranted that the JAGS Model 2 can generate proper posterior 
samples and deliver valid Bayesian posterior inference.

In addition, the JAGS Model 2 spontaneously specifies correct deviances in the dic 
module for model assessment of censored observations. For K-L based model compari-
son, especially when there are complicated model features, it is convenient to have an 
automatic algorithm to avoid any manual calculation of deviance function and model 
selection criteria. Because the computation is implemented via the built-in dic module, 
we empirically compare the deviance reported from the JAGS Model 2 to the deviance 
manually calculated using posterior samples in the next section and illustrate that the 
proposed model can report the correct deviance values.

The JAGS Model 2 encompasses a broad range of model structures. The censored 
regression models, which are also called tobit models, usually have data both in blocks 1 
and 2 with normally distributed or t-distributed errors [24, 31]. Some extensions include 
time-series analysis [32], longitudinal data analysis [33] and spatial analysis [34]. In the 
context of survival data analysis, some commonly assumed parametric distributions F 
include exponential, Weibull, generalized gamma, log-normal, and log-logistic [35, 36], 
since the event times are positively valued with a skewed distribution, making the sym-
metric normal distribution a poor choice for fitting the data closely. Additionally, it is 
unnecessary to assume a known censoring time. Because the cutoff can be either pre-
specified with a fixed value or modeled as a random variable, the proposed approach 
naturally accommodates models with unobserved, stochastic censoring thresholds [37].

The proposed modeling strategy coincides with non-censored discrete data modeling in 
some situations for computational advantages. After converting the standard model to a 
latent-variable formulation, we can adapt logit, probit or complementary log-log models 
as a type of block 2 data with Z1 defined as the binary outcome and cut (cutoff) treated 
as fixed at 0 [38]. It is also possible to extend the proposed approach for ordered probit 
analysis [39], which accommodates many applications in economics and marketing [40].

Illustrative examples
In this section, two real data applications are examined with the proposed approach. 
The first example applies both the default approach and the alternative strategy to model 
time-to-event outcomes with right censoring. The reported deviance of the model is 
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assessed with the true value calculated manually based on the full likelihood function. 
It demonstrates that the alternative strategy not only properly draws posterior samples 
in JAGS, but also automatically delivers the correct deviance for model assessment. The 
second example shows that the proposed approach is capable of comparing censored 
data models by DIC [18] and penalized expected deviance (PED, [23]) simultaneously, 
using a drug safety subset [41] in which some of the outcome data are left-censored.

Survival data

Right censoring is common in the time-to-event data of survival analysis. The first 
example is from a classical right-censored survival dataset on acute myeloid leukemia 
[42]. Individual patient-level data were collected along with survival or censoring time to 
test whether the standard course of chemotherapy should be maintained for additional 
cycles or not. The Bayesian survival analysis is conducted using MCMC simulation and 
implemented in JAGS 4.3.0 software [21] and R version 3.4.1. The JAGS codes for both 
models are attached in “Appendix B”. We run three parallel chains for the exponential 
survival regression model and discard the first 30,000 iterations of burn-in, followed 
by saving 10,000 posterior samples of parameters per MCMC chain with thinning by 
3. Once the posterior samples are obtained, the deviance function of the model based 
on the exact likelihood function is manually calculated, and compared with the calcu-
lated deviance using dic.samples() function in the rjags package with additional 
10,000 iterations.

The deviance information criterion (DIC; [18]) for model comparison is the posterior 
mean deviance plus the effective number of parameters as below,

where the deviance function D(λ) for this example is given by

where O = 18 for the observed cases and C = 5 for the censored cases. By definition, we 
manually calculate the DIC values for the exponential survival regression model using 
the posterior samples with D(�) = 164.6 , which is exactly the same as the posterior 
mean deviance obtained from dic module using our proposed approach. In contrast, 
the default approach using dinterval() leads to a mean deviance of 154.9, which is 
in fact the mean deviance of observed data only ( Dobs(�) = 154.9 ), suggesting that the 
dic module is prone to a wrong focus on the censored outcome and mis-specifies the 
deviance function. This demonstration entails the key distinction between the proposed 
and default approaches on the correct/wrong focus of dic module to consider both 
observed and censored data.

Figure  1a on the left and Fig.  1b in the middle compare the kernel density plots of 
posterior samples for coefficients in the exponential survival regression model between 
the default approach using dinterval() and the alternative strategy. The proposed 
approach has almost identical distributions to the default approach using dinter-
val() in estimation of the coefficient parameters. The output of dic.samples() function 

DIC = D(�)+ pD

D(�) = Dobs(�)+ Dcen(�) = −2

[

O
∑

o=1

log fY (yo|�)+

C
∑

c=1

log(1− FY (y
−
c |�))

]
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for mean deviance estimation is plotted in Fig.  1c on the right, where the solid verti-
cal line shows the mean deviance using dinterval() function and the dashed ver-
tical line using the proposed alternative strategy. Based on the saved MCMC samples, 
we also manually calculate the deviance based on the exact likelihood (1) and plot their 
kernel density curves displayed in the last panel. The result demonstrates that the pro-
posed JAGS Model 2 provides the correct value of mean deviance, while the estimate 
using dinterval() function is significantly biased due to the deviances ignored for 
censored outcomes.

Binomial data

The second example is from an application to assess drug safety for cancer immunother-
apy, known as programmed cell death protein 1 (PD-1) and programmed death-ligand 
1 (PD-L1) inhibitors. In clinical practice, it is important to investigate the incidence of 
treatment-related adverse events (AEs) and to better understand the safety profiles of 
these immuno-oncology drugs. In this illustrative example, we apply the alternative strat-
egy after extracting all-grade pneumonitis (a specific type of AE for inflammation of lung 
tissue) data from a recent meta-analysis [41]. The primary response is a binomial out-
come for the number of pneumonitis cases that could be censored; some rare pneumo-
nitis data may be missing due to low incidence. Usually, the less frequently observed AEs 
are less likely to be disclosed, given the prevalent manuscript word count limitations for 
clinical trial publications in medical journals. For each censored AE, a study-specific cut-
off value can be identified; only the AEs either of special interest or with observed inci-
dence exceeding the cutoff were reported. To take those non-ignorable censored data into 
account, we considered study-level rare binomial AE outcome data within the data coars-
ening framework [43] to examine the impact of stochastic censoring mechanism. If the 
data are coarsened at random, then we can construct the resultant likelihood ignoring 
the coarsening mechanism and model the outcome data only, as is presented below. The 
complete likelihood can be represented and modeled using selection model factorization 
including sensitivity analysis [44]. More technical details can be found in [45].
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Fig. 1 a A kernel density plot of regression coefficient β0 (the log of the baseline hazard) in the exponential 
survival regression model comparing two methods; b a kernel density plot of regression coefficient β1 (the 
log of the hazard ratio in patients who maintain additional cycles of chemo relative to patients who do not) 
comparing two methods; c a kernel density plot of deviance functions comparing two methods by manual 
computation of deviance from posterior samples (based upon the exact likelihood). The two vertical lines 
show the mean deviances generated via the dic.samples() function by the two methods
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In the Bayesian context, we compare seven distinct censored binomial models for all-
grade pneumonitis data to examine the model performance using the proposed strategy. 
To apply the JAGS Model 2, an outcome variable Z1 is incorporated for censoring status 
in block 2. In Model A, a baseline beta-binomial model by complete pooling is to esti-
mate the overall incidence of AE, in which no additional effect is included. In Model B, 
two-group drug effect is incorporated into the baseline model, and then we can estimate 
the AE incidences for two drug groups (PD-1 vs. PD-L1 inhibitors). To allow for five 
drug-specific (Nivolumab vs. Pembrolizumab vs. Atezolizumab vs. Avelumab vs. Dur-
valumab) effect on the incidence of AE, we begin with modeling drug effects without 
any link function as Model C, and then extend to specify half-Cauchy prior [46] to the 
standard deviation of drug effect with logit, cloglog, and probit link functions in Model 
D-F, respectively. Lastly, we include a saturated model G to estimate the incidence rate 
corresponding to each study without pooling. Mean deviance ( D̄ ), effective number of 
parameters ( pD ), DIC, optimism ( popt ), and PED are all calculated and compared based 
on the seven candidate models described above. The model assessment results obtained 
from the proposed JAGS models are summarized in Table 1.

Per the results summarized in Table 1, there is no significant discrepancy on either DICs 
or PEDs between Model C–F, indicating that the data are not sensitive to the choice of link 
functions. In general, models with drug-specific effects (Model C–F) outperform the base-
line model with complete pooling (Model A) and the model with PD-1/PD-L1 effect (Model 
B); the beta-binomial model without pooling (Model G) overfits the data. All results are 
simultaneously computed from dic.samples() function in the rjags package from R.

Discussion
In this paper we propose an alternative strategy to apply Bayesian modeling for censored 
data in JAGS. It specifies the correct deviances for censored observations such that 
the model selection methods DIC and PED can be easily calculated from the built-in 
dic module. This approach can also simplify the calculation of other popular Bayesian 
K-L based measures such as the Bayesian predictive information criterion (BPIC, [47]) 
and the widely applicable information criterion (WAIC, [48]). Though not explicitly 
specified, the proposed approach can be easily extended to model truncated data, for 
example, left-truncated right-censored observations in survival analysis. Even for non-
censored data such as binary outcomes, the proposed approach can still be useful for 
computational advantages.

The proposed method may have a similar model presentation to the EM algorithm [4] 
to handle censored data, for example, in tobit or probit regression modeling [49, 50]. In 
Bayesian contexts, the EM-type algorithms are designed to apply parameter optimiza-
tion in the posterior mode estimation, while the goal is to achieve the automatic cal-
culation of deviance with the posterior distribution estimation. DA is another relevant 
approach to estimate the posterior distribution, which constructs computationally con-
venient iterative sampling via the introduction of unobserved data or latent variables [5, 
24, 39]. Different from our approach, DA requires the sampling of the unobserved data, 
which may alter the deviance in application of K-L based model selection [18].

A relevant question, as raised by a reviewer, is how the miscalculated DIC value may 
impact model comparison. In a data analysis project, a ranking of candidate models 
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can be derived based on the comparison of the calculated DIC values from dic module 
in JAGS. If the DIC is used for model selection, can the default method and the pro-
posed approach make any difference in the ranking, or equivalently, the selected model? 
From a modeling perspective, there are scenarios to yield the exact identical DIC rank-
ing using both default and alternative JAGS model specifications, only if the additional 
deviance of the censored data doesn’t change the ranking using deviance of observed 
data only. However, the major contribution of this work is not to distinguish in which 
scenarios there could be a discrepancy, but to propose a care-free approach that can 
always deliver the correct model ranking to facilitate the appropriate model selection.

Censoring is frequently observed in real-world data analysis. In addition to normally dis-
tributed data in censored regression models, various types of outcome, including survival 
data [7], binomial data [41], count data [51] and ranking data [28], can all be modeled by 
the proposed alternative strategy when censoring occurs. Not only to the medical sciences, 
the proposed strategy can also be applied to many other fields, such as, in measuring the 
performance of timing asynchronies using censored normal sensorimotor synchroni-
zation data in behavioral science [52], comparing industrial starch grain properties with 
ordered categorized data in agriculture [53], exploring forest genetics by modeling cen-
sored growth strain data for narrow-sense heritability estimation in environmental science 
[54], determining the importance of influential factors to lower the risk of food contamina-
tion for censored microbiological contamination data in food science [55], modeling the 
interval-censored as well as right-censored time to dental health event in primary school 
children for public health science [56], and modeling the demand data related to the sup-
ply chain management when the distribution of demand could be censored by inventory 
[57]. In summary, the proposed JAGS model specification can encompass a broad range of 
popular model structures and be utilized in a wide spectrum of applications.

Appendix A: Alternative modeling strategy
We justify that the proposed alternative procedure constructs the correct likelihood func-
tion for censored outcomes. In likelihood-based inference, the full likelihood for observed 
and censored data comprises four key components: observed case, left-censored case, 
right-censored case and interval-censored case. For observed data, the likelihood is simply 

Table 1 Model comparison: posterior mean deviance ( ̄D ), effective number of parameters ( pD ), 
deviance information criterion (DIC), optimism ( popt ), and penalized expected deviance (PED) from 
modeling observed and censored all-grade AE (pneumonitis) data

Model D̄ pD DIC popt PED

A 380.85 0.99 381.84 2.05 382.90

B 371.11 1.99 373.10 4.26 375.37

C 343.14 4.61 347.75 10.65 353.79

D 343.35 4.56 347.91 11.02 354.37

E 343.39 4.54 347.93 13.19 356.58

F 343.38 4.61 347.99 10.28 353.66

G 269.30 94.60 363.90 865.69 1134.99
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a product of individual probability density/mass function of the observed outcome. For 
any type of censored cases, the likelihood can be presented in a form of FY (b)− FY (a) , 
defining the probability of a censored outcome Y observed in the semi-closed interval, 
(a, b]. Here, FY (y) = P(Y ≤ y) denotes the cumulative distribution function of the ran-
dom outcome variable if it is fully observed. If the outcome variable is left-censored at a 
cutoff, yl , then FY (b) = FY (yl) and FY (a) = FY (−∞) = 0 . If data is right-censored with a 
lower bound, yr , then FY (a) = FY (y

−
r ) and FY (b) = FY (+∞) = 1 . For interval-censored 

data, the likelihood function is the product of Pr(ui ≤ Y ≤ vi) = FY (vi)− FY (u
−
i ) , where 

ui and vi are a pair of interval thresholds, which could vary for every observation. There-
fore, the exact likelihood function is given by:

where O is the set of observed outcome, L (or R) is the set of left (or right) censored 
observations, and I is the set of interval-censored data with ui and vi denoting the lower 
and upper bound of the ith interval-censored observation.

In the JAGS Model 2, we can specify the cutoff value cut = yl if data are left-cen-
sored, cut = y−r  if data are right-censored, and (cut1, cut2) = (u−i , vi) if data are 
interval censored. Defining F = FY  , we have the following property for the likelihood 
from the proposed JAGS model.

Proposition 1 The likelihood generated from the JAGS Model 2 using Bernoulli distribu-
tion with the cumulative probabilities for censored data is identical to the exact likelihood (1).

Proof
To illustrate that the likelihood from the JAGS Model 2, Ljags , is identical to its exact like-
lihood, Lexact , we start with deriving the formula for the likelihood presented in the cen-
sored JAGS model, which has three major components: observed case, one-sided censored 
case, and interval-censored case. The full likelihood, Ljags , can be written as:

(1)Lexact

(
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y−r
)]

∏

i∈I

[

FY (vi)− FY
(

u−i
)]

.

�
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Appendix B: JAGS code for survival example
The following is the JAGS code for survival regression model.
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