
Clinical and Translational Radiation Oncology 33 (2022) 134–144

2405-6308/© 2022 Published by Elsevier B.V. on behalf of European Society for Radiotherapy and Oncology. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Prediction models for treatment-induced cardiac toxicity in patients with 
non-small-cell lung cancer: A systematic review and meta-analysis 

Fariba Tohidinezhad, Francesca Pennetta, Judith van Loon, Andre Dekker, Dirk de Ruysscher, 
Alberto Traverso * 

Department of Radiation Oncology (Maastro Clinic), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, 
Netherlands   

A R T I C L E  I N F O   

Keywords: 
Lung neoplasms 
Cardiotoxicity 
Machine learning 
Forecasting 
Artificial intelligence 
Outcome 

A B S T R A C T   

Background: To maximize the likelihood of positive outcome in non-small-cell lung cancer (NSCLC) survivors, 
potential benefits of treatment modalities have to be weighed against the possibilities of damage to normal 
tissues, such as the heart. High-quality data-driven evidence regarding appropriate risk stratification strategies is 
still scarce. The aim of this review is to summarize and appraise available prediction models for treatment- 
induced cardiac events in patients with NSCLC. 
Methods: A systematic search of MEDLINE was performed using a Boolean combination of appropriate truncation 
and indexing terms related to “NSCLC”, “prediction models”, “cardiac toxicity”, and “treatment modalities”. The 
following exclusion criteria were applied: sample-size of less than 100, no significant predictors in multivariate 
analysis, lack of model specifications, and case-mix studies. The generic inverse variance method was used to 
pool the summary effect estimate for each predictor. The quality of the papers was assessed using the Prediction 
model Risk Of Bias Assessment Tool. 
Results: Of the 3,056 papers retrieved, 28 prediction models were identified, including seven for (chemo-) 
radiotherapy, one for immunotherapy, and 20 for surgical resection. Forty-one distinct predictors were entered in 
the prediction models. The pooled effect estimate of the mean heart dose (HR = 1.06, 95%CI:1.04–1.08) and 
history of cardiovascular diseases (HR = 3.1, 95%CI:1.8–5.36) were shown to significantly increase the risk of 
developing late cardiac toxicity after (chemo-)radiotherapy. Summary estimates of age (OR = 1.17, 95% 
CI:1.06–1.29), male gender (OR = 1.61, 95%CI:1.4–1.85), and advanced stage (OR = 1.34, 95%CI:1.06–1.69) 
were significantly associated with higher risk of acute cardiac events after surgery. Risk of bias varied across 
studies, but analysis was the most concerning domain where none of the studies were judged to be low risk. 
Conclusion: This review highlights the need for a robust prediction model which can inform patients and clini-
cians about expected treatment-induced heart damage. Identified clues suggest incorporation of detailed cardiac 
metrics (substructures’ volumes and doses).   

1. Introduction 

Non-Small-Cell Lung Cancer (NSCLC) is the leading cause of cancer- 
related deaths in both Europe and the USA [1]. Technological advances 
in cancer therapy have enabled multimodal treatment for NSCLC pa-
tients, improving survival. For example, proton therapy delivers a highly 
localized dose to the target volumes, with better healthy tissue sparing 
[2]. Minimally invasive resection techniques (e.g. video-assisted thor-
acoscopic surgery) have improved post-operative fitness [3]. Finally, 

immunotherapy enables the immune system to control the cancer [4]. 
All of these therapies have their own efficacy and toxicity profile which 
are also very patient specific. The possibility to choose among multiple 
combinations of treatment modalities demands for an accurate quanti-
fication of treatment efficacy vs treatment side effects (toxicities) in an 
individual patient. 

Cardiac toxicity is one of the most undesirable treatment-induced 
side effects for NSCLC patients. It encompasses many cardiological 
symptoms and adverse events: chest pain, arrhythmias, pericardial 
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effusion, myocardial dysfunction, ischemic heart diseases, and lastly 
heart failure. Short-term toxicities usually have a recovery period within 
weeks to months, but late events are considered irreversible and they 
determine cardiac function loss over time [5]. The pathophysiology of 
cardiac toxicity is characterized by diverse etiological factors: presence 
of comorbidities prior to treatment, tumor-related variables, and 
treatment-related parameters [6]. We hypothesize that data-driven risk 
stratification models that identify patients at high risk of developing 
cardiac sequalae can be used as decision support tools by clinicians for 
tailoring treatment strategy. 

Machine learning (ML) binds statistical inferring to computer science 
to automatically learn unknown patterns in data and provide new 
knowledge on a specific problem [7]. ML augments our brain capacity to 
process multi-source high dimensional data. Accurate and precise ML 
models can fulfil their potential to become decision support tools for a 
better evaluation of treatment side effects and radically change clinical 
guidelines in NSCLC patients. Finally, quantitative meta-analysis of the 
ML models can be helpful to verify consensus on the most relevant 
prognostic factors. 

Despite numerous studies investigating clinical prediction models for 
treatment-related cardiac toxicities, previous reviews have focused on 
either specific treatment modalities [8,9] or exclusively the predictive 
power of the dosimetric parameters [10]. To the best of our knowledge, 
this is the first report to provide a broader overview. 

The aims of this review are to: 1) summarize available prediction 
models for cardiac events after different treatment modalities in NSCLC 
patients, 2) appraise the prediction models from both methodological 
and clinical perspectives, and 3) discuss possible future directions. 

2. Methods 

The systematic review and meta-analysis were conducted following 
the Preferred Reporting Items for Systematic Reviews and Meta-Analysis 
(PRISMA) guidelines [11]. 

2.1. Literature search strategy 

On February 10, 2021, MEDLINE was searched via PubMed with no 
language, date, or document type restrictions. The search term was 
developed using the Boolean combination of the Medical Subject 
Headings (MeSH) and appropriate truncations associated with the 
following keywords: “NSCLC”, “prediction models”, “cardiac toxicity”, 
and “treatment modalities” (full search string provided in Supplemen-
tary Material S1). 

2.2. Eligibility criteria and study selection 

We included original publications:  

▪ That developed a prediction model using any machine learning 
techniques,  

▪ To predict cardiac toxicities, 
▪ On NSCLC patients that underwent monotherapy or multi-

modal treatments (i.e. surgery, chemotherapy, radiotherapy, 
immunotherapy, particle therapy, and/or targeted therapy). 

Two independent reviewers (A.T. and F.T.) excluded the irrelevant 
papers using the following criteria:  

• Univariate-only analyses,  
• Case-mix studies,  
• Lack of model specifications,  
• No significant predictors in the multivariate analysis,  
• Mixed-outcome models,  
• In-vivo/in-vitro studies,  
• Conference abstracts or editorials,  

• Sample-size of less than 100 patients (to achieve high-quality effect 
estimates). 

Studies were included in meta-analysis if the identified predictors 
were statistically (i.e. type of effect estimates) and clinically (i.e. similar 
reference group of the categorical variables) homogeneous. The refer-
ence lists of the selected articles and the “Similar Articles” section in 
PubMed were also cross-checked (F.P. and F.T.) to identify further 
relevant papers. 

2.3. Data extraction 

One reviewer extracted the following items from the included 
studies: publication year, sample-size, mean age, gender distribution, 
country/region, treatment(s), event rate, type of cardiac toxicity (i.e. 
dependent variable), time-point of outcome assessment, machine 
learning algorithm, model’s specifications (i.e. intercept, type and size 
of the effect estimates, and the corresponding 95% Confidence Intervals 
or CIs), and performance measures. A sample (20%) of the extracted 
items were double-checked to verify the satisfactory quality of data 
extraction. 

2.4. Quantitative data synthesis 

The summary effect estimate for each predictor was calculated (Odds 
Ratio (OR) for logistic regression and Hazard Ratio (HR) for cox pro-
portional hazard models). The generic inverse variance method was 
used to obtain the summary effects and statistical weight of the studies 
[12]. To determine the statistical heterogeneity between the studies for 
each predictor, the χ2 of the Cochran’s Q-test and the I2 statistic were 
calculated [13]. Based on the level of heterogeneity, the random- or 
fixes-effect models was used. If the level of heterogeneity was not sig-
nificant (P > 0.05 in Q-test or I2 less than 50%), a fixed-effect model was 
employed to estimate the summary effect. Otherwise, a random-effect 
model was used. Quantitative syntheses were performed using the Re-
view Manager software (RevMan v.5.4, The Cochrane Collaboration, 
2020). 

2.5. Risk of bias assessment 

The Prediction model Risk Of Bias Assessment Tool (PROBAST) was 
used to perform quality assessment of the included studies [14]. PRO-
BAST was specifically designed to assess the risk of bias of the studies 
which include either development or validation of a prediction model. 
PROBAST has four domains: participants, predictors, outcome, and 
analysis with a total of 20 signaling questions. Each signaling question 
was answered on the 5-point scale as no, probably no, yes, probably yes, 
or no information. Each domain was judged as low, high, or unclear risk 
of bias based on the answers to the signaling questions. 

3. Results 

3.1. Study selection 

The database search returned 3,056 studies. Of these, 2,929 were 
excluded during title and abstract screening because they did not meet 
inclusion criteria. Full-text review of the remaining 127 articles resulted 
in inclusion of 28 papers in qualitative synthesis. Furthermore, 18 
studies were used to calculate the summary effect estimates of the pre-
dictors. Manual searches did not identify any relevant publications. The 
details of the study selection process are shown in Fig. 1. 

3.2. Characteristics of the included studies 

The key characteristics of the included studies are listed in Table 1. 
Of the 28 included papers, seven studies developed prediction models 
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for late cardiac toxicity after (chemo-)radiotherapy [15–21]. We iden-
tified 20 prediction models for acute cardiac events after surgery 
[22–41] and one study estimated the risk of developing cardiovascular 
events after immunotherapy (nivolumab and pembrolizumab) [42]. 

The studies were published between 1993 and 2020 and approxi-
mately 42.9% of the studies were performed in the United States. The 
remaining studies were performed in Japan, Italy, China, United 
Kingdom, Canada, and Switzerland. The median sample size of studies 
was 288 and the median male gender distribution was 56.6%. Further-
more, three studies included elderly patients [15,26,42]. 

Twelve studies (42.9%) included patients who underwent surgical 
resection as the sole treatment method [22,26–30,33,35–37,39,40] and 
eight studies (28.6%) assessed cardiac events after combined therapy of 
surgery with chemotherapy and/or radiotherapy 
[23–25,31,32,34,38,41]. Five studies (17.9%) considered radiotherapy 
(3D-conformal radiotherapy, intensity-modulated radiotherapy, or 
radioactive implant) with or without chemotherapy as the eligibility 
criteria of their study samples [15,17–20]. Moreover, two studies (7.1%) 
included the patients in clinical trials who received either photon (in-
tensity-modulated) or proton beam therapy [16,21]. 

3.3. Cardiac toxicity 

The cardiac event rate in the study samples ranged between 3.9% 
and 49.6%. Atrial fibrillation, arrhythmia, pericardial effusion, and 
ischemic heart diseases were considered as the primary end point in 12 
(42.9%) [27,28,30–32,34–40], 4 (14.3%) [22–24,29], 2 (7.1%) [16,21], 
and 1 (3.6%) studies [15], respectively. Nine studies (32.1%) used all 
types of cardiac events as the outcome. Nineteen studies (67.9%) 
measured acute cardiac side effects after surgical resection and the 
remaining nine studies recorded late cardiac toxicities occurring at least 
three months after treatment completion. Electrocardiography (n = 16, 
57.1%) [22,24,26–36,38–40], Common Terminology Criteria for 
Adverse Events (CTCAE) (n = 3, 10.7%) [17,19,21], and the Interna-
tional Classification of Diseases, Ninth Revision, Clinical Modification 
(ICD-9-CM) (n = 2, 7.1%) [15,42] were the most frequently used in-
struments for assessing or grading the cardiac events. 

3.4. Analysis of the risk factors for cardiac toxicity 

The most frequent risk factors for the treatment-induced cardiac 
toxicity were: Age (n = 14), history of cardiovascular diseases (n = 13), 

Fig. 1. PRISMA flow diagram of the study selection process (see abbreviations in Table 1).  
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Table 1 
Characteristics of the prediction model development studies for treatment-induced cardiac toxicity in non-small-cell lung cancer patients.  

Study Year Country Sample 
Size 

Male TNM 
Stage 

Acute/ 
Late 

Outcome Coefficient Prediction Equation Performance 
Measures 

Prediction Models for Cardiotoxicity after (Chemo-)Radiotherapy 
Hardy et al.  

[15] 
2010 USA 34,209 18,875 Every 

stage 
Late IHD HR (1.25 × Age between 80 and 84)+(1.45 ×

Age ≥ 85)+(0.83 × Female)+(1.24 × CT- 
only)+(0.85 × RT-only)+(1.32 ×
Comorbidity Score = 2)+(1.56 ×
Comorbidity Score = 3)+(0.77 ×
Comorbidity Score ≥ 4)+(1.15 × Stage 
IIIB)+(1.31 × Stage IIIA)+(1.4 × Stage 
II)+(1.34 × Stage I)+(1.38 × Unstaged)* 

– 

Ning et al.  
[16] 

2017 China 201 113 Every 
stage 

Late PE HR (2.14 × HV35)+(0.52 × Tumour Location 
Right vs. Left)+(2.82 × Adjuvant CT)+
(1.68 × Cardiac History)* 

– 

Dess et al.  
[17] 

2017 USA 125 95 II-III Late CE HR (2.96 × Pre-existing Cardiac Disease)+
(1.07 × Mean Heart Dose)* 

– 

Yegya- 
Raman 
et al. [18] 

2018 USA 140 77 II-III- 
IV 

Late CE HR (3.54 × CAD)+(1.065 × Mean Heart Dose) 
* 

– 

Chen et al.  
[19] 

2019 China 137 84 III Late CE HR (2.225 × Age)+(2.852 × Pre-CAD)+
(3.727 × HV30)+(3.584 × GLS at Baseline) 
* 

– 

Atkins et al.  
[20] 

2019 USA 748 380 II-III Late CE HR (1.01 × Age)+(7 × CHD)+(1.55 ×
Arrhythmia)+(0.39 × IMRT)+(1.05 ×
Mean Heart Dose)+(0.95 × Cardiac Dose 
× CHD) * 

– 

Niedzielski 
et al. [21] 

2020 USA 141 77 III Late PE B − 1.37+(-0.009 × Age)+(0.021 ×
Female)+(-0.038 × Right Upper Lobe 
Tumour)+(-0.156 × CVD)+(0.026 × WH 
Mean Dose)+(0.931 × WH V55)+(2.013 
× WH V60)+(0.823 × WH V65)+(2.016 ×
WH V70)+(0.007 × LA Volume)+(0.008 
× LA Mean Dose)+(0.473 × LA V5)+
(0.134 × LA V20)+(0.342 × LA V25)+
(0.288 × LA V30)+(0.089 × LA V35)+
(0.072 × LA V55)+(0.373 × LA V60)+
(0.043 × LA V65)+(0.012 × RV Max Dose) 

AUC = 0.82 
Calibration 
Slope = 1.356 

Prediction Model for Cardiotoxicity after Immunotherapy 
Bishnoi et al. 

[42] 
2020 USA 6405 3383 IV Late CVD HR (1.04 × Age between 70 and 74)+(1.11 ×

Age between 75 and 79)+(1.24 × Age ≥
80)+(0.86 × Female)+(0.81 ×
Immunotherapy) +(1.15 × CCI = 1)+
(1.32 × CCI = 2)+(1.56 × CCI ≥ 3)+(0.85 
× Adenocarcinoma)+(1.23 × Obesity)+
(1.25 × Smoking) +(1.92 × Pre-existing 
CVD)+(0.91 × Radiotherapy)* 

– 

Prediction Models for Cardiotoxicity after Surgery 
Asamura 

et al. [22] 
1993 Japan 267 190 NA Acute CA B − 8.25+(0.09 × Age)+(0.53 × Extent of 

Pulmonary Resection) 
– 

Amar et al.  
[23] 

1995 USA 116 56 NA Acute CA RR (3.5 × Intraoperative Blood Loss ≥ 1 L)+
(3.6 × Tricuspid Regurgitation Jet ≥ 2.7 
m/s)* 

– 

Sekine et al.  
[24] 

2001 USA 244 153 Every 
stage 

Acute CA OR (2.93 × Major Resection)+(4.67 × COPD)* – 

Licker et al.  
[25] 

2002 Switzerland 193 145 Every 
stage 

Acute CE OR − 1.99+(3.7 × Age ≥ 70)+(1.4 × Stage III- 
IV) 

– 

Brunelli et al. 
[26] 

2004 Italy 109 NA NA Acute CE B (1.11 × Concomitant Cardiac Disease)+
(-0.18 × Low Height Climbed at 
Preoperative Stair Climbing Test)* 

– 

Neragi et al.  
[27] 

2008 USA 127 94 NA Acute AF OR (2.8 × Age > 65)+(1.3 × Male)+(7.2 ×
EPP)+(0.8 × Heart Rate > 72 bpm)+(0.9 
× Left-Lung Affected)+(0.4 × CAD 
History)* 

H-L P = 0.9 

(continued on next page) 
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atrial volume parameters (n = 10), gender (n = 7), type of resection 
technique (n = 7), heart volume measures (n = 6), Tumor-Node- 
Metastasis (TNM) stage (n = 5), mean heart dose (n = 4), laterality of 
tumor location (n = 4), radiotherapy (n = 3), chemotherapy (n = 2), and 
Charlson comorbidity index (n = 2). Fig. 2 presents the frequency of 
times that each variable was either considered as a candidate predictor 
or entered in the final prediction model. 

The forest plot of the pooled hazard ratios of the identified risk 
factors for late cardiac toxicity after (chemo-)radiation is shown in 
Fig. 3. Mean heart dose (HR = 1.06, 95% CI:1.04 to 1.08) and history of 
cardiovascular diseases (HR = 3.1, 95% CI:1.8 to 5.36) were shown to 
significantly increase the risk of developing cardiac toxicity. In contrast, 
the summary effect estimates for age (HR = 1.38, 95% CI:0.95 to 1.99) 
and chemotherapy (HR = 1.8, 95% CI:0.81 to 4.02) were not statistically 
significant. 

As shown in Fig. 4, summary estimates of age (OR = 1.17, 95% 
CI:1.06 to 1.29), male gender (OR = 1.61, 95% CI:1.4 to 1.85), and 
advanced TNM stage (OR = 1.34, 95% CI:1.06 to 1.69) were signifi-
cantly associated with higher risk of acute cardiac events after surgical 
resection. However, no significant predictive value was shown for his-
tory of cardiovascular diseases (OR = 3.6, 95% CI:0.93 to 13.97) and left 
laterality (OR = 0.9, 95% CI:0.81 to 1). 

3.5. Quality assessment 

Fig. 5 shows the grading of PROBAST signaling questions and the 
summary risk of bias for the participants, predictors, outcome, and 
analysis domains. Less than half of the studies were either at low or 
unclear risk of bias for the participants and predictors domains, but all 
studies were at high risk of bias in the analysis domain. All included 
studies used regression analysis as the machine learning algorithm. Four 
studies documented the reason for method selection [21,33,37,38] and 
only one study performed systematic review as the predictor selection 
technique before modeling [37]. 

Implicit or explicit predictor importance assessment was performed 
in five studies mostly focusing on cardiac parameters (e.g. coronary 
artery calcium score, whole heart volume, or dose-volume metrics from 
the substructures of the heart) [16,18,21,27,41]. 

The interaction terms were assessed in two studies (i.e. mean heart 
dose × pre-existing coronary heart disease [20] and chemotherapy-only 
× radiotherapy-only × chemoradiotherapy treatments [15]). Moreover, 
one study used elastic net regression as the penalized regression method 
[21]. 

Twenty-four studies (85.7%) did not report the intercept of the 
prediction models. Only five studies (17.9%) assessed the discrimination 
power in terms of the area under the receiver operating characteristic 
curve [21,28,31,33,34]. Furthermore, the Hosmer-Lemeshow test or 

Table 1 (continued ) 

Study Year Country Sample 
Size 

Male TNM 
Stage 

Acute/ 
Late 

Outcome Coefficient Prediction Equation Performance 
Measures 

Nojiri et al.  
[28] 

2010 Japan 126 84 Every 
stage 

Acute AF RR (1.81 × Ratio of Early Trans-mitral 
Velocity/Tissue Doppler Mitral Annular 
Early Diastolic Velocity)* 

AUC = 0.83 

Onaitis et al.  
[29] 

2010 USA 13,906 6870 Every 
stage 

Acute CA OR (1.79 × Age)+(1.57 × Male)+(0.67 ×
Black Race)+(1.24 × Stage II and above)+
(1.95 × Pneumonectomy vs. Lobectomy)+
(1.69 × Bi-lobectomy vs. Lobectomy) * 

– 

Hollings et al. 
[30] 

2010 USA 360 153 NA Acute AF OR (0.922 × Age)+(16.957 × Pre-existing AF 
or Arrhythmia)* 

– 

Imperatori 
et al. [31] 

2012 Italy 454 369 Every 
stage 

Acute AF OR (5.91 × Paroxymal AF)+(3.61 × Peri- 
operative Blood Transfusion)+(3.39 ×
Post-operative FBS)* 

AUC = 0.75H-L 
P = 0.433 

Anile et al.  
[32] 

2012 Italy 134 102 III Acute AF B (0.731 × LA Area)* – 

Wotton et al. 
[33] 

2013 UK 703 401 II-III- 
IV 

Acute CE OR − 3.03+(0.75 × ThRCRI between 1 and 
1.5)+(2.94 × ThRCRI between 2 and 2.5)+
(4.12 × ThRCRI > 2.5) 

AUC = 0.57 R2 

= 0.007 

Ivanovic et al. 
[34] 

2014 Canada 363 168 Every 
stage 

Acute AF OR (2.3 × Age ≥ 70)+(4 × Angioplasty/ 
Stents/Angina)+(3.7 × Thoracotomy)+
(16.5 × Converted Surgery)+(7.1 × Stage 
IV)* 

AUC = 0.81H-L 
P = 0.89 

Xin et al.  
[35] 

2014 Japan 186 118 NA Acute AF OR (0.9 × Side of Lobectomy)* – 

Ai et al. [36] 2015 USA 703 377 NA Acute AF OR (1.036 × Age)+(1.723 × Male)+(3.708 ×
CCB Use)* 

– 

Iwata et al.  
[37] 

2016 Japan 377 262 NA Acute AF OR (5.32 × Male)+(3.92 × Resected 
Segments)+(2.67 × BNP)* 

– 

Muranishi 
et al. [38] 

2017 Japan 593 350 Every 
stage 

Acute AF OR (1.09 × Propensity Score)+(3.06 × Lymph 
Node Dissection)* 

– 

Garner et al.  
[39] 

2017 UK 376 167 NA Acute AF B (0.07 × Age)+(1.482 × Post-operative 
Infection)* 

– 

Ueda et al.  
[40] 

2018 Japan 607 294 I Acute AF OR (1.059 × Age)+(5.734 × Lobectomy vs. 
Segmentectomy)+(2.182 × FEV1 less than 
70%)* 

– 

Osawa et al.  
[41] 

2020 Japan 309 188 I-II-III Late CE HR (4.93 × Advanced Stages of Lung Cancer)+
(1.95 × CAC Score)* 

– 

Abbreviations (alphabetic order): AF, Atrial Fibrillation; AUC, Area Under the Curve; BNP, Brain Natriuretic Peptide; CA, Cardiac Arrhythmia; CAC, Coronary Artery 
Calcium; CAD, Coronary Artery Disease; CCB, Calcium Channel Blockers; CCI, Charlson Comorbidity Index; CE, Cardiac Events; CHD, Coronary Heart Disease; COPD, 
Chronic Obstructive Pulmonary Disease; CT, Chemotherapy; CVD, Cardiovascular Diseases; EPP, Extrapleural Pneumonectomy; FBS, Fibrobronchoscopy; FEV, Forced 
Expiratory Volume; GLS, Global Longitudinal Strain; H-L P, Hosmer-Lemeshow P-value; HR, Hazard Ratio; HV, Heart Volume; IHD, Ischemic Heart Diseases; IMRT, 
Intensity-Modulated Radiation Therapy; LA, Left Atrium; NA, Not Available; OR, Odds Ratio; PE, Pericardial Effusion; RR, Relative Risk; RT, Radiotherapy; RV, Right 
Ventricle; ThRCRI, Thoracic Revised Cardiac Risk Index; TNM, Tumor-Lymph node-Metastasis; UK, United Kingdom; USA, United States of America; VATS, Video- 
Assisted Thoracic Surgery; WH, Whole Heart. 
*The intercept of the multivariate model was not reported. 
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calibration slope were used in four studies (14.3%) to estimate the 
agreement between the predicted probabilities and observed outcomes 
[21,27,31,34]. 

4. Discussion 

Cardiac toxicity is a complex multifactorial treatment-induced side- 

effect in patients with NSCLC. Quantification of the risk of cardiac 
toxicity can support the optimization of the treatment strategy for these 
patients. This systematic review identified 20 prediction models for 
acute surgical-related cardiac events as well as seven risk models for late 
cardiac toxicity after radiotherapy with or without chemotherapy. One 
study developed a prediction model to predict cardiovascular diseases 
after immunotherapy. However, there were not enough performance 

Fig. 2. Most common predictors considered and included. Considered: the predictor was used as a candidate predictor in multivariable analysis. Included: the 
predictor was entered in the final prediction model (Abbreviations: CRT, (Chemo-)Radiotherapy; DCO, Diffusing capacity of the lungs for carbon monoxide; FEV1, 
Forced Expiratory Volume1; FVC, Forced Vital Capacity; hs-CRP, high-sensitivity C-Reactive Protein; IMT, Immunotherapy; VATS, Video-Assisted Thoracoscopic 
Surgery; MVA, Multivariate Analysis; SR, Surgical Resection). 
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measures reported to enable the applicability of any of these models in 
clinical practice. 

On meta-analysis, cardiac radiation dose was significantly associated 
with a higher risk to develop late cardiac toxicity after (chemo-)radio-
therapy with a hazard of 1.06 per Gy increase in mean heart dose. 
Several large retrospective and prospective series have shown a similar 
dose–response relationship with cardiac events [43]. Previous studies 
found that higher ventricular doses were associated with cardiac disease 
biomarkers (e.g. troponin levels and brain natriuretic peptide) [44]. 
Furthermore, another study found that mean heart dose may underes-
timate the doses to the cardiac substructures and for optimal heart 
sparing investigations, the authors recommended to consider cardiac 
substructures as separate organs at risk [45]. Independently of the car-
diac dose, a history of cardiovascular comorbidities was also signifi-
cantly associated with a nearly three-fold increase in the likelihood of 
developing cardiac toxicity, which is in line with the previously pub-
lished studies [46]. Although conflicting evidence is available about the 
effect of age and chemotherapy, summary effect estimates showed no 
significant associations. 

The quantitative synthesis of the risk factors for acute cardiac events 

after surgery showed that while age, male gender, and advanced TNM 
stage had significant relationship with the outcome, the odds ratio of 
history of cardiovascular diseases and left tumor laterality were not 
statistically significant. Previous publications confirm the predictive 
value of age and male gender in non-cardiac thoracic surgery [47]. It 
should be noted that contradictory results are available about the as-
sociation of previous cardiovascular diseases and tumor laterality. 
Therefore, further studies are required to clarify their predictive values. 

The result of this review showed that poor quality of the models is a 
remarkable issue. We identified the following areas of concerns. Lack of 
reporting model’s intercept prevents future investigators to perform 
external validation studies. This limitation hampers the broader clinical 
application of the prediction models. In confirmation, in different clin-
ical settings, while the number of publications developing prediction 
models has been widely increasing in the recent years, very few models 
are actually used in clinical practice [48]. Using the TRIPOD (Trans-
parent Reporting of a multivariable prediction model for Individual 
Prognosis Or Diagnosis) checklist can improve the quality of the pre-
diction model papers which in turn paves the way for further evaluation 
studies [49]. Practical guidelines are available which can help 

Fig. 3. Pooled effect estimates and their corresponding 95% CIs for risk factors of late cardiac toxicity (age, history of cardiovascular diseases, mean heart dose, and 
chemotherapy) after (chemo-)radiotherapy in non-small-cell lung cancer patients. 
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researchers in performing and transparent reporting of the diagnostic or 
prognostic models in developing, validating, or updating studies [50]. 

All the reviewed papers used regression analysis as the modeling 
technique. Although, these models are considered as the most inter-
pretable machine learning solution, they are not the optimal technique 

to detect complex relationships between the variables. A wide variety of 
machine learning algorithms are available which can be used based on 
the number of unique data points and type of the dependent variable. 
For example, decision trees and Bayesian networks are robust classical 
techniques which can segment data sets into regions according to fixed 

Fig. 4. Pooled effect estimates and their corresponding 95% CIs for risk factors of acute cardiac toxicity (age, history of cardiovascular diseases, gender, TNM stage, 
and laterality of tumor location) after surgery in non-small-cell lung cancer patients. 
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rules. As the size of the dataset increases, more advanced deep learning 
algorithms may be more suitable to predict the outcome [51]. Due to the 
plethora of possible contributing factors and ML algorithms, there is not 
a specific solution for predicting cardiac toxicity. A typical workflow of 
developing a prediction model for cardiac toxicity is suggested in Fig. 6. 

Several limitations should be declared for this review. First, due to 
lack of unique definition for cardiac toxicity, studies considering all 
types of cardiac events as the primary outcome were included. Second, 

six out of nine summary effects were derived using random-effect 
models due to inevitably heterogeneous research designs. Third, in 
order to include homogenous effect estimates, studies with univariate 
analyses were not included. However, more predictors with weaker level 
of association could have been identified in those papers. Fourth, the 
majority of the models were trained with limited data sets and with 
regression classifiers which are not optimal machine learning algorithms 
for discovering non-linear associations. Fifth, poor quality of the 

Fig. 5. Answers to signaling questions from the Prediction model Risk Of Bias Assessment Tool (PROBAST) and the overall assessment of four domains: participants, 
predictors, outcome, and analysis. 
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included studies limits the clinical value of pooled effect estimates. On 
the other hand one of the main strengths of the study was that, the 
majority of the papers that reported a prediction model for (chemo-) 
radiation were recently published which implies the use of recent ra-
diation therapies (i.e. proton therapy and intensity modulated tech-
niques rather than previously used conventional methods). Moreover, 
quantitative pooled estimates provided understandable importance 
level of the potential risk factors for developing cardiac events. 

5. Conclusions 

Current literatures provide important information about the neces-
sity of incorporating patient and treatment factors for the prediction of 
cardiac toxicity after treatment of NSCLC patients. However, there is still 
a paucity of evidence presenting a reliable prediction model which could 
help clinicians to identify susceptible patients who should be protected 
from potential cardiac harms. 
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