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Abstract

The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal
mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient
mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an
effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on
a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient
mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material
properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In
contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to
wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests.
Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A
deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate
cartilage matrix - a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active
mineralization inhibition is a necessity for proper long bone growth.
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Introduction

Fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is

a 52 kDa glycoprotein member of the type 3 cystatin-family

proteins composed of two N-terminal cystatin protein domains,

and a third C-terminal domain rich in proline [1]. Fetuin-A has

originally been described as the most abundant globulin in fetal

calf serum [2], and was long known as one of the most abundant

non-collagenous proteins [3] highly enriched in the mineralized

bone matrix [4–7]. Fetuin-A has a high affinity mineral binding

site located in the amino-terminal domain D1 enabling it to

inhibit ectopic calcification [8,9] by forming soluble colloidal

nanospheres [8,10]. These colloids are variously termed calci-

protein particles CPPs in analogy to lipoprotein particles [9,11],

or fetuin-mineral complex FMC [10] or nanons [12]. Soluble

protein-mineral complexes containing fetuin-A are regarded as

physiological byproducts of mineral metabolism preventing

pathological calcification at sites of high mineral supersaturation

[13,14]. Complexes of fetuin-A, albumin and calcium phosphate

have been detected serum [15] including human serum of

chronic kidney disease patients [16,17] and in ascites of patients

with peritoneal calcifying sclerosis [18]. These complexes have

been previously implicated as the source of an entity dubbed

‘‘nanobacteria’’ that have vexed the microbiology and biominer-

alization community for almost a decade [12,14,15,19]. Thus the

role of fetuin-A as an important regulator of mineralization or

a ‘‘mineral chaperone’’ [13,20] has gained abundant support, but

its role in mineralization control of the tissue which is most

abundant of it – bone – is understudied. When fetuin-A deficient

mice (Ahsg2/2) became available [21] bone growth and

remodeling phenotypes were examined in these mice. The

skeletal structure of Ahsg2/2 mice appeared normal at birth, but

abnormalities were observed in adult Ahsg2/2 mice. Maturation

of growth plate chondrocytes was impaired, and femurs
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lengthened more slowly between 3 and 18 months of age in

Ahsg2/2 mice. Previously it had been found that fetuin-A is

a soluble transforming growth factor-beta (TGF-beta)/bone

morphogenetic protein (BMP)-binding protein controlling cyto-

kine access to membrane signaling receptors [22,23]. Hence the

altered bone phenotype was explained in terms of failure to block

TGF-beta-dependent signaling in osteoblastic cells. Mice lacking

fetuin-A displayed growth plate defects, increased bone formation

with age, and enhanced cytokine-dependent osteogenesis [24].

Tumorigenesis experiments employing Ahsg2/2 mice further

supported the hypothesis that fetuin-A is an antagonist of

transforming growth factor beta in vivo, in that it inhibited

intestinal tumor progression. All these experiments had been

performed using the first available fetuin-A deficient mouse strain

129,B6Ahsgtm1mbl, which had a mixed 129Sv6C57BL/6 genetic

background [21]. We created two more strains of fetuin-A

deficient mice with defined genetic backgrounds (B6-Ahsgtm1wja,

D2-Ahsgtm1wja) by backcrossing to C57BL/6 and DBA/2 mice.

Surprisingly all D2-Ahsgtm1wja mice showed massive soft tissue

calcification throughout their body, while B6-Ahsgtm1wja mice did

not [25]. The latter mice calcified when additionally challenged

with heminephrectomy and high mineral diet [26,27]. These

results showed that fetuin-A is a systemic, soluble inhibitor of

pathological mineralization that is backed up by other genetic

factors rendering mouse strains prone to or resistant to

dystrophic calcification. Integrative genomics of the so-called

Dyscalc locus led to the identification of Abcc6 as the major causal

gene for dystrophic cardiac calcification [28]. Abcc6 deficient

mice develop soft tissue calcifications that seem to be less

extensive than in D2-Ahsgtm1wja mice both in localization and

extent. Interestingly, Abcc6 deficiency is associated with reduced

plasma fetuin-A levels and the calcifications can be partially

corrected by over-expressing fetuin-A [29] suggesting that fetuin-

A acts downstream or in concert with Abcc6. Despite heavy early

onset and life-long progressing dystrophic calcification in Abcc6

and especially in DBA/2 fetuin-A deficient mice, true osteogen-

esis has never been reported in these mice. This contrasts the

popular view that pathologic calcification is necessarily a form of

ectopic osteogenesis. More likely both genes seem to be involved

in systemic mineral homeostasis and transport. Therefore we

have termed fetuin-A a mineral chaperone mediating the

solubilization, transport and elimination from circulation of

otherwise insoluble mineral much like apolipoproteins help in

lipid transport and metabolism [13,20].

In vitro experiments involving re-mineralization of decalcified

bone tissue showed that in the absence of fetuin-A, extra-fibrillar

mineralization of the collagen fibrils can readily occur, but

proper collagen fibril mineralization cannot [30,31]. Recent

potentiometric titration investigations of fetuin-A mediated

mineralization in solution found resulting mineral in the form

of HAP mineral platelets. We asked if the lack of fetuin-A in

bones of Ahsg2/2 mice would indeed result in altered bone

quality. Here, we report a detailed multiscale analysis of bones

from fetuin-A deficient and fetuin-A producing mice. Surpris-

ingly, contrary to expected differences at the materials level, all

micro-mechanical and micro-structural parameters were found to

be similar in Ahsg2/2 and Ahsg+/+ bone. In sharp contrast,

macro-mechanical strength and bone length were both altered in

Ahsg2/2 mice. This phenotype was associated with enhanced

growth plate cartilage mineralization corroborating the role of

fetuin-A as a blood-borne systemic inhibitor of mineralization

and thus, of pathological calcification in the extracellular and

vascular compartments.

Materials and Methods

Animals and Diets
The animal welfare committee of the Landesamt für Natur-,

Umwelt- und Verbraucherschutz LANUV of the state of North

Rhine Westfalia approved our animal study protocol. Animal

maintenance and handling was according to the Federation for

Laboratory Animal Science Associations FELASA recommenda-

tions. Animals were sacrificed by isoflurane overdosing. We

studied fetuin-A deficient mice (B6-Ahsgtm1wja, N11 backcross

generation) and wildtype littermates. Mice were maintained in

a temperature-controlled room on a 12-hour day/night cycle.

Food and water were given ad libitum. Fetuin-A deficient

Ahsg2/2 mice on a pure C57BL/6 genetic background were

analyzed using adult mice with ages between 4 and 12 months

for histological and microstructural analyses.

Histomorphometry and mechanical testing- After the initial analysis by

contact X-ray (Faxitron Xray Corp., Lincolnshire, USA) the

vertebral bodies L2 to L5 were dehydrated and embedded non-

decalcified into polymethylmetacrylate (PMMA) for sectioning.

Sections were either stained with toluidine blue or by the von

Kossa/van Giesson procedure as described [32]. Static and

cellular histomorphometry was carried out using the OsteoMea-

sure system (Osteometrics, Decatur, USA) following the guidelines

of the American Society of Bone and Mineral Research [33]. The

cortical thickness of femora was quantified by mCT scanning using

a mCT40 (Scanco Medical, Switzerland). Femora were then tested

to failure by three-point bending on a servohydraulic device

(Z.2.5/TN1S, Zwick/Roell, Ulm, Germany) as described [34].

Sample Preparation for High-resolution Microstructure
Analysis

Bone samples were sectioned from the mid-diaphysis of femora

from 12-month-old mice. The femora were sectioned along the

tangential-longitudinal plane (Figure S1). Each half of the femoral

cortex was polished mechanically from both sides in an automatic

polisher (Logitech PM5, Logitech Ltd., Glasgow, UK) until the

sample was planar. Care was taken to make sure the samples’

longitudinal axes were parallel to the main longitudinal bone axis.

Subsequent polishing was performed using 5, 3, 1 mm grit-sized

diamond particles (DP-Spray P, Struers A/S, Ballerup, Denmark),

in that order, until the final sample thickness was 50 mm. Gross

sectioning of cortical bones was performed with a slow speed saw

(Isomet Low Speed Saw, Buehler Ltd., Lake Bluff, IL, USA) and

further processed by UV laser micro-dissection prior to spectro-

scopic and micro-mechanical probing of the tissues. The samples

were further sectioned in an UV laser micro-dissection system

(PALM MicroBeam C, P.A.L.M. Microlaser Technologies

GmbH, Bernried, Germany) [35] to isolate sections that were

150 mm (width) 650 mm (thickness) 62.5 mm (length) in di-

mension. All sectioning and micro-dissection were performed on

hydrated samples. Further detail of high-resolution microstructural

analysis is given in supporting methods appendix.

Optical Microscopy of Microstructural Features in the
Bulk Material

Macroscopic structural features in both Ahsg+/+ and Ahsg2/2

were observed with a polarized microscope (Leica DM RXA2,

Leica Microscopy and Systems GmbH, Wetzlar, Germany)

equipped with a Leica DFC digital camera. Specifically, in

reflective mode the surface of the samples were examined to

compare texture as well as osteocyte lacunae morphology and

orientation.

Effects of Fetuin-A Knockout on Mice Bone

PLOS ONE | www.plosone.org 2 October 2012 | Volume 7 | Issue 10 | e47338



Scanning Electron Microscopy of Microstructural
Features in the Bulk Material

The bulk microstructure of Ahsg+/+ and Ahsg2/2 bone was

analyzed by scanning electron microscopy (Quanta 200 ESEM,

FEI Company, Hillsboro, OR, USA) in low vacuum and a semi-

hydrated state at 3.0 kV without sputter coating. Morphologies

and orientations of the osteocyte lacunae in both Ahsg+/+ and

Ahsg2/2 bone were compared.

Confocal Laser Scanning Microscopy
Samples were stained with a rhodamine-B (Sigma-Aldrich

GmbH, Steinheim, Germany) solution diluted in a ratio of 1:5

with phosphate buffered saline (PBS) for 3 days. After washing

with PBS at neutral pH, confocal laser scanning micrographs were

obtained with a Zeiss LSM 510 scanning system (Zeiss Micro-

Imaging GmbH, Jena, Germany) equipped with a 100X oil

immersion microscope objective having a numerical aperture of

1.4. The excitation wavelength was set to 514 nm, while the

emission was measured at a range from 550 up to 650 nm. Image

stacks were measured to a penetration depth of 20 mm with each

image taken at 0.1 mm intervals. The spatial pixel resolution of

each image in the stack was 0.260.2 mm. Z-projections of image

stacks were obtained with the stddev-method plug-in of the ImageJ

image analysis package [36].

Phase Enhanced X-ray Microradiography
Representative samples from the femur of Ahsg+/+ and Ahsg2/

2, mounted in a custom made tensile tester, were imaged in the

BAMline imaging beamline of the Helmholtz Zentrum Berlin für

Materialien und Energie. Phase enhanced images were obtained

for each sample, tensed until failure, using a partially coherent and

monochromatic beam with an energy of 30 KeV. Due to Fresnel

propagation and edge enhancement, microstructural details such

as defects, cracks, and osteocytes were readily seen. Samples were

analyzed for the evolution of strain using customized software

(Labview 7.0, National Instruments, Munich, Germany) to analyze

strain along the length of the sample.

Micro-computed Tomography, mCT and Radiography
Three representative samples of sectioned femora of each

genotype were measured for their characteristic X-ray attenuation

coefficients. Samples were mounted upright on a rotation stage of

a mCT laboratory source (Skyscan 1072, Skyscan, Kontich,

Belgium) and scanned to obtain radiographs from multiple

angular orientations at an energy of 46 keV using 218 mA and

acquisition times of 2.8 seconds (pixel resolution was 1.72 mm).

Due to the parallelepiped shape of each sample, it was possible to

identify and measure radiographs of the front and side projections

corresponding to the sample widths and depths. These were used

to determine the sample dimensions (for estimates of thickness) as

well as the relative absorption of multiple regions along the sample

(relative to the regions used as background) using ImageJ [36]. In

addition, the sample dimensions were confirmed by scanning

electron micrographs of the same samples. Average sample

thickness and attenuation were determined from five measurement

points randomly collected on the sample within orthogonal sample

projections. The sample attenuation was determined with the

following equation:

m~
{ln I

I0

� �

dcm
ð1Þ

where m is the attenuation coefficient, I is the intensity of the beam

passing through the sample, I0 is the empty-beam intensity without

the sample (background), and dcm is the thickness of the sample

corresponding to the attenuation measured in centimeters

(obtained from orthogonal projection).

Nanoindentation (NI) Measurements
All NI samples were embedded in polymethylmethacrylate

(PMMA) and oriented such that the tangential-longitudinal plane

was parallel to the indentation surface. The indentation surfaces

were polished with 3 and 1 mm grit-sized polishing paper and

subsequently, with 0.3 and 0.05 mm sized alumina particle

suspensions (AP-D, Struers A/S, Ballerup, Denmark). Polished

samples were mounted into a nanoindenter (Ubi 1, Hysitron Inc.,

Minneapolis, MN, USA) and indentations were performed on the

sample’s tangential-longitudinal plane using a Berkovich indenter

,10 mm2. The loading cycle for each indent consisted of 5 s

loading, 30 s holding at 5000 mN load, and 5 s unloading. All NI

measurements were performed in dry conditions. Each sample was

indented a total of 10 indents transverse to the tangential-

longitudinal plane.

Micro-tensile Mechanical Measurements
Micro-tensile experiments were performed with a custom-made

micro-tensile testing apparatus with a translation motor (M-

126.DG, Physik Instrumente, Karlsruhe, Germany) and a 250 g

load cell (ALD-MINI-UTC-250, A.L. Design Inc., Buffalo, NY,

USA) at a constant strain rate of 0.2 mm s21 to simulate quasi-

static loading. Each sectioned sample was glued to stiff teflon foils

with cyanoacrylate (Loctite Deutschland GmbH, Munich, Ger-

many) and mounted into the tensile apparatus such that the tensile

axis was parallel to the longitudinal axis of the sample. Strain

measurements were accomplished by measuring the percent

displacement between optical marks made by a 50 mm tip sized

marker (Copic Multiliner, Too Marker Products, Japan) on the

sample and tracked by a video camera (Basler A101f, Basler Vision

Technologies, Ahrensburg, Germany). Both the camera and the

tensile tester were controlled by customized software (Labview 7.0,

National Instruments). Each sample was tensed until fracture.

Stress-strain behaviors were obtained for each sample measure-

ment and further analysis were performed to determine charac-

teristic materials properties. All samples were kept hydrated during

measurements and tensed until failure.

Polarized Raman Microspectroscopy
A continuous laser beam was focused down to a micrometer

size spot on the sample through a confocal Raman microscope

(CRM200, WITec GmbH, Ulm, Germany) equipped with piezo-

scanner (P-500, Physik Instrumente, Karlsruhe, Germany). The

diode pumped linearly polarized 785 nm near infrared laser

excitation (Toptica Photonics AG, Graefelfing, Germany) was

used in combination with a water immersed 60X (Nikon, NA

= 1.0) microscope objective. For each sample, 10 different points

were analyzed. To overcome the orientation dependence of the

Raman intensity signal with respect to the orientation of the laser

polarization [37], each analyzed point was an average of 4

spectra (total integration time was 10 s) acquired with different

polarization orientations (0, 245, 45 and 90 degrees with respect

to laboratory coordinates) The spectra were acquired using an

air-cooled CCD detector (PI-MAX, Princeton Instruments Inc.,

Trenton, NJ, USA) behind a grating (300 g mm21) spectrograph

(Acton, Princeton Instruments Inc., Trenton, NJ, USA) with

a spectral resolution of 6 cm21. ScanCtrlSpectroscopyPlus

(version 1.38, WITec GmbH, Ulm, Germany) was used for the

Effects of Fetuin-A Knockout on Mice Bone
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experimental setup and spectral processing. Raman intensities of

the Amide I band (1600–1700 cm21) and PO4
32 (910–

990 cm21) were obtained by subtracting the respective back-

ground intensity and integrating over the wave number regions

using a sum filter for each spectrum.

Scanning Electron Microscopy of Fracture Surfaces
Fracture surfaces of representative samples tensed to fracture

were imaged by scanning electron microscopy using a field-

emission scanning microscope (LEO FE-SEM Gemini 1550, LEO

Electron Microscopy Group, Oberkochen, Germany) at 3.0 kV.

Samples were sputter coated with a 3 nm uniform layer of

palladium using a sputter coater (Bal-Tec SCD-050 Cool Sputter

Coater, Bal-Tec AG, Schalksmuehle, Germany).

Lab-based Small Angle X-ray Scattering (SAXS)
Samples were measured with a laboratory-based SAXS system

(Nanostar, Bruker AXS, Madison, Wisconsin, USA) with copper

Ka radiation at 40 kV, 35 mA power settings. Each data point

represents three scan frames with an acquisition time of 1 hour.

Analysis of the data using Fit2D (AP Hammersley, ESRF,

Grenoble, France) produced a T-parameter used to evaluate the

thickness of mineral particles in the samples.

In situ Synchrotron-based SAXS
Micro-tensile measurements were performed by mounting the

custom-made microtensile apparatus in beamline ID2 at the

European Synchrotron Radiation Facility (ESRF, Grenoble,

France). Synchrotron radiation was used to measure the SAXS

patterns during microtensile measurements of hydrated samples.

Specifically, the meridional stagger D of collagen molecules in the

fibril led to an axial diffraction pattern. Percent changes in the

positions of the peaks provided measures of fibril strain while

percent changes in the positions of marks on the sample surface

provided measures of tissue strain. The fibril direction was aligned

along the tensile direction in the sample, as seen from the SAXS

images of the fibril meridional pattern (Figure S2). Subsequent

filtering of off-axis measurements were later determined during the

SAXS analysis and not included in the data.

Analysis of data involved radial integration of SAXS images

azimuthally. After integration, custom scripts were used for peak

fitting routines of the 1st order reflection from the intensity profile

of the meridional collagen SAXS pattern. An exponentially

modified Gaussian with a background term was used as a fitting

function (Figure S2).

The X-ray beam wavelength l was 0.995 Å and the beam

width was ,200 mm640 mm high. A FRELON 2000 CCD

detector connected to an X-ray image intensifier TTE (TH 49–

427, Thomson CSF, Moirans, France) was used for reading the

SAXS pattern. A beamstop with integrated diode was used for

normalization of the spectra to absolute scattering intensities.

SAXS frames were collected concurrently by using SPEC

(Certified Scientific Software, Boston, MA, USA) with automatic

correction for dark field current. The sample to detector distance

for the FRELON 2000 dectector was 10.0 m 63 mm measured

with linear encoder and mechanical measurement [38]. SAXS

data frames had 1,02461,024 pixels and a pixel size of

164.46164.7 mm2.

All samples were tensed to failure at a constant motor velocity of

0.2 mm s21 and SAXS measurements were collected at various

points along the stress-strain curve. Exposure time for the frames

was 0.1 s. X-ray irradiation of the sample was blocked between

exposures.

Quantitative Backscattered Electron Microscopy
The evaluation protocol of quantitative backscattered signal

intensities is based on the work of other groups and has been

described previously [39,40]. The scanning electron microscope

(LEO 435 VP, LEO Electron Microscopy Ltd., Cambridge,

England) was operated at 15 kV and 665 pA at a constant

working distance (BSE Detector, Type 202, K.E. Developments

Ltd., Cambridge, England). A pixel size of 3 mm was chosen

following the recommendation of Roschger and co-worker [41].

Mineralization profiles were generated of both cancellous bone in

the ossification zone and cortical bone of femoral and tibial

samples in each case. The degree of mineralization is presented as

the mean Ca content (mean Ca-Wt%).

Results

Normal Trabecular Bone Mass, but Reduced Length of
Long Bones in Ahsg2/2 Mice

To analyze whether fetuin-A deficiency would result in

impaired bone structure in the absence of soft tissue calcifications,

we analyzed the skeletal phenotype of 4 months old Ahsg2/2

mice that were backcrossed for 10 generations into the genetic

background C57BL/6. We first performed non-decalcified histol-

ogy on the spine followed by static histomorphometry (Fig. 1A).

Here we did not observe a significant difference between Ahsg2/2

mice and wildtype littermates in terms of the trabecular bone

volume and the trabecular number (Fig. 1B), thereby demonstrat-

ing that the osteopenia observed in Ahsg2/2 mice on a DBA/2

genetic background [25] was secondary to ectopic calcification.

This was further underscored by the fact that we observed no

significant difference in the number of bone-forming osteoblasts

and of bone-resorbing osteoclasts between wildtype and Ahsg2/2

littermates (Fig. 1C). We also did not find any gross abnormalities

in bone matrix mineralization, since the osteoid volume was not

significantly different between the two groups. The length of the

spine was also unaffected by the absence of fetuin-A. In contrast

fetuin-A deficient long bones, especially the femora were shorter

than wildtype bones (Fig. 1D). When we utilized cross-sectional

mCT scanning, we further found an increased cortical thickness of

fetuin-A deficient femora compared to wildtype controls (Fig. 1E).

This led us to perform three-point-bending assays with these

bones, where we found that the force to failure was significantly

increased for fetuin-A deficient femora (Fig. 1F). Taken together,

these results demonstrated that the absence of fetuin-A in long

bones improves their biomechanical competence, thus raising the

question, whether the intrinsic material properties of cortical bone

are altered in Ahsg2/2 mice.

Microstructure, Micromechanics as Well as Mineral and
Collagen Characteristics of Cortical Bone are Unaffected
by the Absence of Fetuin-A

Micro-structural analyses focused on homogenous bone regions

from the femoral cortex of adult mice. Typical Ahsg+/+ and

Ahsg2/2 samples observed with brightfield light microscopy

(Fig. 2A) and confocal laser scanning microscopy (Fig. 2B) revealed

no characteristic micro-structural differences. No differences were

observed in either the morphology or frequency of osteocyte

lacunae nor the canaliculae in both the Ahsg+/+ and Ahsg2/2

samples (Fig. 2A,B). Further complementing observations from

optical microscopy, scanning electron microscopy was used to

examine the microstructure in the Ahsg+/+ and Ahsg2/2 samples

(Fig. 2C). As observed in these various modes of microscopies,

both Ahsg+/+ and Ahsg2/2 samples did not display any significant

Effects of Fetuin-A Knockout on Mice Bone
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differences in microstructure. Importantly, the micrographs

presented in Fig. 2 illustrate that the starting material for micro-

mechanical analysis was free of structural defects and preparation

artifacts.

Representative samples of the femora from Ahsg+/+ (n = 4) and

Ahsg2/2 (n = 4) mice were tested by nanoindentation. Figure 2D

shows that the elastic moduli of wildtype samples were found to be

32.560.8 GPa (mean 6 SEM), whereas the fetuin-A deficient

samples were found to be 29.060.8 GPa. The respective hardness

values were 1.2660.06 GPa in wildtype and 1.2660.04 GPa in

fetuin-A deficient bone (Fig. 2D). Thus, both the indentation

moduli and hardness values were not significantly different

between wildtype and fetuin-A deficient bone.

In addition, samples from Ahsg+/+ and Ahsg2/2 mice (n = 4 in

each case) were measured under uni-axial tension until failure in

physiologically wet conditions. A total of 10 replicate measure-

ments for each genotype were measured. Ultimate tensile strength

(UTS) values of Ahsg+/+ and Ahsg2/2 samples were found to be

44.566.2 MPa and 34.463.8 MPa, respectively. Figure 2E illus-

trates that the elastic moduli of Ahsg+/+ samples were

25.463.2 GPa (mean 6 SEM) and 16.263.1 GPa for Ahsg2/2

samples. Like the nanoindentation measurements reported in

Fig. 2D, the tensile moduli and UTS of wildtype and and fetuin-A

deficient bone samples were not statistically different from each

other (p= 0.11 and p= 0.33 for tensile modulus and UTS,

respectively) suggesting that the bone materials properties of these

bone samples were very similar at the micro-scale. Figure 2F shows

representative fractured samples from micro-mechanical tensile

measurements examined by scanning electron microscopy to

visualize the fracture surfaces. Samples from both Ahsg+/+ and

Ahsg2/2 mice showed virtually indistinguishable fracture sur-

faces, which are typical of brittle fractures. At higher magnifica-

tions, both Ahsg+/+ and Ahsg2/2 bone showed collagen fiber

bundles with similar orientations and structure (Fig. 2F inset).

Indeed, micro-mechanical testing validates that the bone material

in wildtype and Ahsg2/2 mice is very similar despite the clear

difference at the macro-scale in mechanical strength and the

slightly elevated mineral content of whole fetuin-A deficient bone

(Fig. S3).

Polarized Raman micro-spectroscopy was performed to de-

termine the chemical composition of cortical bone to reveal

differences in organic to mineral compositions as shown in Fig. 3A

[37]. Absolute intensities of the mineral peak (PO432) were

normalized to intensities of the Amide I peak to obtain

a normalized ratio of mineral to organic in each sample. The

mean relative ratio was 9.8060.194 for Ahsg+/+ samples and

Figure 1. Normal trabecular bone mass, but increased cortical bone strength in fetuin-A deficient mice. (A) Von Kossa/van Gieson-
stained undecalcified sections of the spine from 4 months old wildtype and fetuin-A deficient mice. (B) Histomorphometric quantification of the
trabecular bone volume (BV/TV, bone volume per tissue volume) and the trabecular number (Tb.N.). (C) Histomorphometric quantification of the
osteoblast number (N.Ob./B.Pm, number of osteoblasts per bone perimeter) and the osteoclast number (N.Oc./B.Pm, number of osteoclasts per bone
perimeter). (D) Contact radiographs of the hindlegs from 4 months old Ahsg+/+ and Ahsg2/2 mice. The femoral length is given below. (E) Cross-
sectional mCT scanning of the femora. (F) Quantification of the cortical thickness and the force to failure in three-point-bending assays. All values
represent mean6SD (n = 8 per group). Asterisks indicate statistically significant differences (p,0.05).
doi:10.1371/journal.pone.0047338.g001
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9.5660.27 for the Ahsg2/2 samples, respectively (Fig. 3B).

ANOVA statistical evaluation of the ratios between the Ahsg+/+
and Ahsg2/2 sample groups showed no statistically significant

differences (P = 0.46 for the PO4/Amide I).

To further validate the degree of mineralization found in

Raman spectroscopy, X-ray attenuation and absorption experi-

ments were performed to compare the differences between

fetuin-A deficient and wildtype samples (Fig. 3B). Micro-

computed tomography revealed for Ahsg+/+ samples an atten-

uation coefficient of 47.061.7 cm21 (mean 6 SEM), whereas

Ahsg2/2 samples had a mean value of 46.063.2 cm21. Judged

by one-way ANOVA statistics, the attenuation coefficients of

Ahsg+/+ and Ahsg2/2 samples were not significantly different

(p= 0.36). Likewise in a laboratory based X-ray scattering

experiment, the X-ray beam absorption, which is a measure of

X-ray density was similar in Ahsg+/+ and Ahsg2/2 samples.

Additional analysis provided a T-parameter derived from the

scattering data to describe the dimensions of the mineral

crystallites in the Ahsg+/+ and Ahsg2/2 samples. The T-

parameter derived from the scattering data were very similar in

that 2.15 nm 60.05 were calculated for Ahsg+/+ samples and

2.19 nm 60.09 for the Ahsg2/2 samples (n = 10, p= 0.06).

Using in situ micro-tensile measurements coupled with

synchrotron diffraction, the behavior of the mineralized collagen

fibrils was examined with respect to the deformation occurring at

the tissue level. In the SAXS regime of reciprocal space, the D

period of collagen molecules in the fibril was measured and the

deformation in each sample was tracked by following the positions

of the diffraction peaks which allowed for a measurement of the

collagen fibril strain. When normalized with respect to the tissue

strains of the sample, we found little differences in strain between

the populations of Ahsg+/+ and Ahsg2/2 samples (Fig. 3C). We

observed that the tissue strains in both Ahsg+/+ and Ahsg2/2

samples occurred within a small range of 0–0.2% before failure.

No plastic deformation was observed in either sample types before

failure. The normalized fibril-tissue strains of mouse bone samples

regardless of the Ahsg genotype were usually
efibril
etissue

w1:0. This

suggested that deformation behaviors of the fetuin-A deficient and

wildtype mice samples were similar.

We did not detect differences in the microstructure of fetuin-A

deficient bone that would explain the increased mechanical

strength determined by macro-scale mechanical testing. The

striking length difference between wildtype and Ahsg2/2 bones

could also not be explained by microscale compositional

Figure 2. Microstructural and micro-scale mechanical properties of Ahsg+/+ and Ahsg2/2 cortical bone. (A). Light microscopy of
osteocyte lacunae in Ahsg+/+ and Ahsg2/2 samples, respectively (scale bar: 20 mm) (B). Laser scanning confocal microscopy using Rhodamine-B as
a contrasting agent showing osteocytic and canalicular networks in Ahsg+/+ and Ahsg2/2 samples, light areas are intensely stained with
Rhodamine-B, scale bar: 20 mm. (C) Backscatter scanning electron microscopy revealing the microstructure at the surface and no significant
differences in density, scale bar: 10 mm. (D) Nanoindentation (n = 80) measurements of the indentation moduli and hardness of Ahsg+/+ and Ahsg2/
2 bone samples (E) Micro-tensile (n = 20) measurements of tensile strength and elastic moduli in wildtype and fetuin-A deficient bone samples (F)
Representative Ahsg+/+ and Ahsg2/2 fracture surfaces showing evidence of brittle failure, scale bar: 20 mm, inset: higher magnification of the
fracture surface, scale bar: 2 mm.
doi:10.1371/journal.pone.0047338.g002
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differences. Failure to detect clear differences in bone cellularity

effectively ruled out bone cell dysregulation as a likely cause for the

shorter femora. Likewise the differences in total bone mineral

could not be accounted for by the microscale composition

determined by the aforementioned X-ray and Raman spectro-

scopic measurements.

Increased Mineral Content in the Growth Plates of
Fetuin-A Deficient Long Bones

Since a reduced femoral length can also explain the increased

biomechanical competence in bending of fetuin-A deficient

femora, we next analyzed the growth plate cartilage in these

mice. The ossification zone in growth plates of wildtype tibia and

femora shown in Fig. 4A revealed the appearance of cartilage

cores in the primary and secondary trabeculae indicating a non-

completed cartilage-to-bone transition at age 4 months. This is in

contrast to the Ahsg2/2 growth plates, which showed a completed

bone mineralization without the occurrence of cartilage cores

within the trabeculae. Similarly the analysis of Ahsg2/2 distal

femur growth plates revealed more mineralized bridges per growth

plate than wildtype (4.061.4 vs. 1.660.5, n = 6, p = 0.009)

suggesting more complete growth plate mineralization and closure

(Fig. S4). Furthermore, differences between wildtype and Ahsg2/

2 mice were obvious with regard to the growth plate chondrocyte

organization (Fig. 4A). Ahsg2/2 mice had discontinuities across

the growth plates and regions of thickened calcified bridge

formations (Fig. 4A) as observed by backscattered electron

microscopy from the bisection in mineralized and non-mineralized

tissue (Fig. 4B). The quantification of backscattered signal

intensities showed that the mineral content in Ahsg2/2 mice

was significantly increased in both tibial and femoral growth plates

in comparison to Ahsg+/+ mice (Fig. 4C). This difference between

Ahsg2/2 and Ahsg+/+ mice was restricted to the measured

calcified growth plates since the cortical counterparts showed no

comparable difference in the degree of mineralization (Fig. 4D).

Focusing on the inter-site differences in femoral and tibial regions

of interest both Ahsg2/2 and Ahsg+/+ showed increased calcium

content in the femoral growth plates and cortices (Fig. 4 C,D).

In summary, the observed increase in macroscale mechanical

bending strength of the fetuin-A deficient bone was most likely due

to stunted growth caused by increased or premature growth-plate

cartilage mineralization. This also corresponds to the associated

overall shorter length, increased cortical thickness and slightly

increased bone diameter at the midshaft position found in the

skeletal tissues. Collectively, these changes resulted in macroscop-

ically stronger femora and tibia in fetuin-A deficient mice than in

wildtype adult mice, despite similar microscopic properties of the

bone material.

Discussion

Fetuin-A/Ahsg content had little effect on bone mineral or

matrix quality in the cortex, instead it dramatically affected the

growth plate morphology. Femora from fetuin-A deficient mice

were approximately 30% shorter than in age-matched wildtype

mice (Fig. 1). This phenotype of Ahsg2/2 mice signifies a form of

mineralization dependent dysplasia that had previously gone

unnoticed. An earlier study of Ahsg2/2 mice maintained on

a mixed genetic background of 129SvJ/B6, likewise reported

shorter long bones in the null mutants [24], but missed two

features presented here. Firstly, we determined that the fore-

shortening was associated with increased mineralization restricted

to the growth plate chondrocytes. Additionally, the remainder of

the bone material was structurally and mechanically equivalent to

Figure 3. Mineral and organic components in Ahsg+/+ and
Ahsg2/2 femoral cortical bone. (A) A typical Raman spectrum of
representative Ahsg+/+ and Ahsg2/2 samples with peaks at 910–
990 cm21 and 1600–1700 cm21 representing PO4

32 (mineral) and
Amide I (organic matrix) groups, respectively. inset: Normalized
intensity measurements at polarization angles of 245, 0, 45, 90 were
made to address the orientation artifacts of Raman intensity of type I
collagen for both Ahsg+/+ and Ahsg2/2. The dashed lines are fits
which estimate parameters characteristic of sample orientation and
mineralization. The solid lines indicate mean intensity values of
mineralization in the samples. (B) The mineral content normalized with
the organic matrix can be observed by Raman ratios between Ahsg+/+
and Ahsg2/2 samples. Further complementing these observations,
measurements of the mineral component were made with X-ray
attenuation, absorption, as well as small-angle X-ray scattering. (C)
Comparing fibrillar versus tissue strains in Ahsg+/+ (green circles) and
Ahsg2/2 (red squares) bone. Samples were measured with in-situ
synchrotron small angle X-ray scattering to determine the amount of
strain contributed by the collagenous fibrils within the Ahsg+/+ and
Ahsg2/2 samples. Dashed lines represent orientation guides.
doi:10.1371/journal.pone.0047338.g003

Effects of Fetuin-A Knockout on Mice Bone

PLOS ONE | www.plosone.org 7 October 2012 | Volume 7 | Issue 10 | e47338



wildtype bone. Here, we reconcile the fetuin-A deficient bone

phenotype with the well-established role of fetuin-A as a potent

systemic inhibitor of mineralization [9,11,13,15,20,25,27,42,43]

and offer a simple, straightforward explanation for the observed

long bone growth defect–we propose that the stunted growth is

a consequence of premature growth plate mineralization. The role

of fetuin-A activity as a regulator of mineralization of hypertrophic

chondrocytes in the growth plate fits well with its tissue

distribution. Growth plate cartilage is free of fetuin-A, because it

is not vascularized. Vascularization and blood supply enter at

a time when mineralization commences, a process highly

controlled by molecular inhibitors to regulate the kinetics of

mineralization. Any change in fetuin-A concentration at this

critical time translates into noticeable changes in mineralization in

solution, a biochemical process studied in great detail by us

[8,9,11,44–47] and others [10,12,14,15,29,30,48,49]. Endochon-

dral ossification represents the culmination of a sequence of

changes in the cartilage cells and their associated matrix that must

always occur in the same order and requires a minimum period of

time [50]. The developmental regulation of the growth plate

progresses from the condensation of mesenchymal cells, their

differentiation into chondrocytes and finally maturation to matrix-

secreting hypertrohic chondrocytes that cross-talk to the bone

collar and attract blood vessels. Ultimately the hypertrophic

chondrocytes undergo apoptosis and mineralize [51]. Our results

indicate that the lack of fetuin-A, a serum borne inhibitor of

mineralization may accelerate the final step of this process, namely

matrix mineralization, thus prematurely terminating growth plate

activity and longitudinal bone growth. It is presently unclear, why

only the proximal long bones are shorter. There is however,

a striking phenocopy of fetuin-A deficieny. Physeal obliteration in

humans [52] and the so-called hyena disease in calves [53] are

caused by vitamin A-induced premature closure of epiphyses that

cause preferential foreshortening of hind limb bones. Vitamin A/

retinoic acid is thought to accelerate the progression of

chondrocytes from the proliferative phase to the calcifying stage

Figure 4. Growth plate morphology and mineralization in Ahsg+/+ and Ahsg2/2 mice. (A) Wildtype mice had dark blue stained cartilage
cores within metaphyseal trabeculae of the growth plates, whereas Ahsg2/2 had completed the cartilage-to-bone transition without the remains of
cartilage cores within the trabeculae. Moreover, Ahsg 2/2 mice showed pronounced discontinuities in the chondrocyte column organization in
comparison to the wildtype mice (Toluidine blue staining). (B) Ahsg 2/2 mice frequently showed thickened calcified bridge formations across their
growth plates, which was confirmed by backscattered electron microscopy. The orange and black areas correspond to mineralized and non-
mineralized tissue, respectively. (C) The mineral content in Ahsg2/2 mice was significantly increased in both tibial and femoral growth plates in
comparison to wildtype mice as judged by quantitative backscattered electron imaging. (D) In contrast, the mineralization (mean Ca Wt%) of the
femoral and tibial cortices was similar in Ahsg2/2 and Ahsg+/+ mice.
doi:10.1371/journal.pone.0047338.g004
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bypassing hypertrophy and thus bone length growth. A role of

fetuin-A in the regulation of vitamin A bioavailability and activity

merits further study.

Fetuin-A and the human homologue, a2-HS glycoprotein, induce

alkaline phosphatase in epiphyseal growth plate chondrocytes [54].

The induction of this maturation marker may represent an adaptive

response in the presence of surplus mineralization inhibitor,

triggering the natural chondrocyte progression into mineralized

cartilage. In fact, the growth plate chondrocytes may be the cell type

that is physiologically most prone to pathological mineralization,

because it grows in an environment well protected from mineral

supply and thus mineralization, yet becomes quickly exposed to

a mineralizing fluid once the cartilage is vascularized. It will be

interesting to revisit the influence of fetuin-A on physiological

chondrocyte mineralization in a similar way previously performed

withprimaryosteoblasts [8]andsmoothmusclecells [42]asmodelsof

physiological and pathological mineralization, respectively.

Our results show that fetuin-A has a developmental rather than

a structural role in murine bone. Fetuin-A is known to hinder the

precipitation of calcium phosphate in blood serum and sub-

sequently, prevents ectopic calcification of soft tissues. Clearance

of fetuin-A containing protein-mineral complexes by the mono-

cytic phagocyte system efficiently prevents local depostion [55].

Patients suffering from chronic kidney disease show decreased free

serum fetuin-A and increased serum fetuin-A mineral complexes

[17], which can be quantified by a nanoparticle-based serum test

measuring overall calcification inhibition [56]. The influence of

fetuin-A in initial bone mineralization seems, however, minimal in

the present model, despite the fact that fetuin-A is deposited in

mineralized bone in large amounts [4–7].

Supporting Information

Figure S1 Schematic of sample preparation. (A). Femora

of mice were sectioned along the anteriorposterior axis (as seen by

micro-CT) scale bar: 3 mm (B). Cortical bone from the mid-

diaphysis of each sample were further sectioned (C). Sectioning

and polishing along the longitudinal-tangential plane (D). Laser

microdissection was used to further section the sample into

dimensions of 2.5 mm60.05 mm60.15 mm (as seen by phase

enhanced X-ray radiography) scale bar: 75 mm.

(TIF)

Figure S2 Determining the fibrillar strain from SAXS
measurements. (A) Image of the meridional collagen SAXS

pattern from Fit2D (B) Radial integration of the meridional

collagen pattern produces an intensity profile with respect to Q-

space showing the 1st, 2nd, and 3rd order reflections (C) Fibrillar

strain can be measured from the percent change in position of the

1st order peak as reflected in the SAXS patterns during in situ

tensile measurements.

(TIF)

Figure S3 Tibia morphology and mineralization in
wildtype (Ahsg +/+) and fetuin-A deficient (Ahsg2/2)
mice. The mean calcium content in tibias of Ahsg 2/2 mice was

increased in comparison to wildtype mice as judged by

quantitative backscattered electron imaging of the enlarged areas

shown in the middle panels. Ash weight of tibia halves (shown in

the top panels) was also increased in Ahsg 2/2 mice compared to

wildtype mice. n = 4; * p,0.05; ** p,0.01.

(TIF)

Figure S4 Distal femur growth plate morphology and
mineralization in wildtype (A, C, E) and fetuin-A
deficient (B, D, F) mice. These representative samples show

higher numbers of bone bridges and more mineralization in the

growth plate of fetuin-A deficient mice than wildtype mice.

(TIF)
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27. Westenfeld R, Schäfer C, Krüger T, Haarmann C, Schurgers L, et al. (2009)

Fetuin-A Protects against Atherosclerotic Calcification in CKD. J Am Soc

Nephrol.

28. Meng H, Vera I, Che N, Wang X, Wang S, et al. (2007) Identification of Abcc6

as the major causal gene for dystrophic cardiac calcification in mice through

integrative genomics. Proc Natl Acad Sci U S A 104: 4530–4535.

29. Jiang Q, Dibra F, Lee MD, Oldenburg R, Uitto J (2010) Overexpression of

Fetuin-A Counteracts Ectopic Mineralization in a Mouse Model of Pseudox-

anthoma Elasticum (Abcc6(2/2)). The Journal of investigative dermatology.

30. Price P, Toroian D, Lim J (2009) Mineralization by inhibitor exclusion: The

calcification of collagen with fetuin. J Biol Chem.

31. Nudelman F, Pieterse K, George A, Bomans P, Friedrich H, et al. (2010) The

role of collagen in bone apatite formation in the presence of hydroxyapatite

nucleation inhibitors. Nature Materials 9: 1004–1009.

32. Schmidt K, Schinke T, Haberland M, Priemel M, Schilling A, et al. (2005) The

high-mobility-group transcription factor Sox8 is a negative regulator of

osteoblast differentiation. J Cell Biol 168: 899–910.

33. Parfitt A, Drezner M, Glorieux F, Kanis J, Malluche H, et al. (1987) Bone

histomorphometry: standardization of nomenclature, symbols, and units. Report

of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner

Res 2: 595–610.

34. Lehmann W, Schinke T, Schilling AF, Catal?-Lehnen P, Gebauer M, et al.

(2004) Absence of mouse pleiotrophin does not affect bone formation in vivo.

Bone 35: 1247–1255.

35. Gupta H, Seto J, Wagermaier W, Zaslansky P, Boesecke P, et al. (2006)

Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc

Natl Acad Sci USA 103: 17741–17746.

36. Rasband WS ImageJ. U S National Institutes of Health, Bethesda, Maryland,

USA. Available: http://rsb.info.nih.gov/ij/1997-2009. Accessed 2012 Sep 25.

37. Kazanci M, Roschger P, Paschalis E, Klaushofer K, Fratzl P (2006) Bone

osteonal tissues by Raman spectral mapping: Orientation-composition. JStruc

Bio 156: 489–496.

38. Megens M, vanKats C, Boesecke P, Vos W (1997) In situ characterization of

colloid spheres by synchrotron small-angle x-ray scattering. Langmuir 13: 6120–
6129.

39. Seitz S, Schnabel C, Busse B, Schmidt HU, Beil FT, et al. (2010) High bone

turnover and accumulation of osteoid in patients with neurofibromatosis 1.
Osteoporos Int 21: 119–127.

40. Busse B, Hahn M, Soltau M, Zustin J, Püschel K, et al. (2009) Increased calcium
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