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Abstract
Efficient and accurate quantitation of metabolites from LC-MS data has become an important

topic. Here we present an automated tool, called iMet-Q (intelligent Metabolomic Quantita-

tion), for label-freemetabolomics quantitation from high-throughput MS1 data. By performing

peak detection and peak alignment, iMet-Q provides a summary of quantitation results and

reports ion abundance at both replicate level and sample level. Furthermore, it gives the

charge states and isotope ratios of detected metabolite peaks to facilitate metabolite identifica-

tion. An in-house standard mixture and a public Arabidopsis metabolome data set were ana-

lyzed by iMet-Q. Three public quantitation tools, including XCMS, MetAlign, andMZmine 2,

were used for performance comparison. From the mixture data set, seven standard metabo-

lites were detected by the four quantitation tools, for which iMet-Q had a smaller quantitation

error of 12% in both profile and centroid data sets. Our tool also correctly determined the

charge states of seven standard metabolites. By searching the mass values for those stan-

dard metabolites against HumanMetabolome Database, we obtained a total of 183metabolite

candidates.With the isotope ratios calculated by iMet-Q, 49% (89 out of 183) metabolite can-

didates were filtered out. From the public Arabidopsis data set reported with two internal stan-

dards and 167 elucidatedmetabolites, iMet-Q detected all of the peaks corresponding to the

internal standards and 167 metabolites. Meanwhile, our tool had small abundance variation

(�0.19) when quantifying the two internal standards and had higher abundance correlation

(�0.92) when quantifying the 167metabolites. iMet-Q provides user-friendly interfaces and is

publicly available for download at http://ms.iis.sinica.edu.tw/comics/Software_iMet-Q.html.

Introduction
Unbiased quantitation and identification of small-molecule metabolites in a biological system
is important because metabolites serve as direct signatures of biochemical activity, making
them relatively easier to correlate with disease phenotype and more suitable for clinical
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diagnostics [1–8]. Liquid chromatography coupled with mass spectrometry (LC-MS) has
become a conventional platform for analyzing metabolites across a large number of biological
samples because of its ability to measure thousands of metabolites in a short period of time [2,
5, 9–13]. However, it is a time-consuming process to manually calculate the abundances of
thousands of metabolites from large-scale LC-MS data, and thus developing a software package
to automatically quantify LC-MS metabolomics data becomes essential.

Many commercial software programs have been developed by instrument vendors, such as
Progenesis QI (Waters), MassHunter (Agilent), MultiQuant (Sciex), and Xcalibur (Thermo).
But they usually accept data formats specific to their own instruments, and thus limit the possi-
bility of integrating metabolite analyses across different analytical platforms [14–17]. Addition-
ally, data processing algorithms implemented in these programs are mostly unavailable.
Publicly available quantitation tools, on the other hand, accept multiple input data formats and
provide description of their computational algorithms. For example, XCMS [18], MetAlign
[19] and MZmine 2 [20] accept input formats such as mzXML, mzData, and netCDF. XCMS,
implemented in R, C, and C++ programming language, provides format conversion, noise fil-
tering, peak detection, non-linear spectral alignment algorithms, and statistical analysis of
LC-MS data. MetAlign, an open interface-driven tool implemented in C++ programming lan-
guage, provides format conversion, mass calculation, baseline correction, peak-picking, satura-
tion and mass peak artifact filtering, as well as data set alignment. MZmine 2, a modular-based
tool implemented in Java programming language, provides raw data import, raw data process-
ing, peak detection, peak list alignment, normalization, visualization, peak identification, and
statistical analysis.

However, some concerns of these public tools have been reported. For instance, some tools
combine binning with model fitting or use slope calculation approaches to perform peak detec-
tion, but these approaches may have low sensitivity on peak picking because the peak shapes
vary greatly from one to another [21, 22]. Due to different peak detection and peak alignment
algorithms provided in each tool, it is difficult for users to optimize the algorithm-related
parameters, which very likely affect the quantitation results [23, 24]. On the other hand, most
of the tools do not provide deisotoping, and thus users have to apply additional packages, such
as CAMERA [25], to perform isotope pattern assembly [21].

To rectify the above concerns, we develop a quantitation tool, called iMet-Q (intelligent
Metabolomic Quantitation), written in C# programming language, which provides highly
accurate quantitation and user-friendly graphical interfaces. For peak detection, iMet-Q
requires one input parameter, i.e., mzWidth (defined as the width of a peak in m/z dimension),
and calculates the full width at half maximum (FWHM) of a peak to dynamically determine its
chromatographic width so that the peak boundary can be automatically determined (i.e., with-
out requiring parameter input). In addition, our tool determines the charge state of a peak by
calculating the similarity between the peak shape of monoisotope and the peak shape of the
second isotope peak. Once the charge state is determined, iMet-Q calculates its isotope ratio
(i.e., the ratio of the second isotope abundance to the monoisotope abundance) to facilitate
metabolite identification. Since metabolites usually have smaller retention time drifts across
LC-MS technical replicates, iMet-Q first aligns peaks across different LC-MS replicates of a
sample and then across different samples. In each alignment, LOESS regression algorithm [26,
27] is applied to adjust peak retention time so that peaks in different LC-MS replicates/samples
can be aligned according to theirm/z and adjusted retention time values.

We used two metabolite data sets, an in-house standard mixture and a public Arabidopsis
metabolome data set [28], to evaluate the performance of iMet-Q and compare it with three
public quantitation tools, including XCMS, MetAlign, and MZmine2. Since the standard mix-
ture was acquired in profile mode, we evaluated the performance of the four tools in both
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profile and centroid data sets, in which the centroid data set was converted from the profile
data set by the centroiding function of ProteoWizard [29]. As a result, iMet-Q had small quan-
titation error of 12% in both profile and centroid data sets. In addition, our tool correctly deter-
mined the charge state of seven standard metabolites, removed their isotope peaks, and
calculated their isotope ratios. With the isotope ratios, we successfully filtered out 49% (89 out
of 183) metabolite candidates when using mass values of these standard metabolites to search
in Human Metabolome Database (HMDB) [30]. For the public Arabidopsis metabolome data
set reported with two internal standards and 167 elucidated metabolites, iMet-Q detected the
internal standards from all replicates and samples. In addition, all of the 167 metabolites were
also detected by iMet-Q, whereas 103 (62%), 145 (87%), and 129 (77%) elucidated metabolites
were detected by XCMS, MetAlign, and MZmine 2, respectively. Comparing with the three
quantitation tools, iMet-Q had relatively small abundance variations (�0.19) when quantifying
the internal standards, and had higher abundance correlation (�0.92) when quantifying the
167 metabolites across replicates. All data underlying the manuscript are fully available without
restriction. The source code of iMet-Q is freely available on SourceForge (http://sourceforge.
net/projects/imet-q/?source=navbar) under the license of GPL2.

Materials and Methods

Experiment on standard metabolite mixture
Chemicals. All chemicals and solvents were purchased from Sigma Aldrich (St. Louis,

MO, USA). The chemicals were all of analytical grade. Water containing 0.1% formic acid (sol-
vent A), and acetonitrile containing 0.1% formic acid (solvent B) were of CHROMASOLV
grade.

Sample preparation. Stoke solution of metabolites was prepared as 1 mg/mL of 80%
MeOH solution with 0.1% formic acid. Two metabolite mixtures, Sample 1 and Sample 2, were
prepared by adding seven standard metabolites with different amount into two 1.7 mL vials.
These standard metabolites were L-histidine (3 μL in Sample 1, 6μL in Sample 2), L-carnosine
(50μL in Sample 1, 50μL in Sample 2), creatine (6μL in Sample 1, 6μL in Sample 2), caffeine
(6μL in Sample 1, 6μL in Sample 2), hippuric acid (5μL in Sample 1, 25μL in Sample 2), glyco-
cholic acid (2μL in Sample 1, 10μL in Sample 2), and cholic acid (2μL in Sample 1, 6μL in Sam-
ple 2). The solutions were dried with SpeedVac and re-dissolved by 100 L of MeOH and water
(2:1, v/v) with 0.1% formic acid.

UPLC/LTQ-Orbitrap MS. A UPLC system (Acquity, Waters, Milford, MA, USA) equipped
with a C18 reversed-phase column (2.1 × 100 mm, 1.8 m, HSS-T3; Waters, Milford, MA, USA)
was coupled with a LTQ-Orbitrap mass spectrometer (Thermo Scientific, San Jose, CA, USA)
with an orthogonal electrospray ionization (ESI) source. The initial flow rate was 0.1 mL/min of
99% solvent A (0.1% formic acid) and 1% solvent B (acetonitrile with 0.1% formic acid). A vol-
ume of 1μL of Sample 1 and Sample 2 were sequentially injected, and 6 technical replicates were
conducted in profile mode on each standard mixture. After injection, solvent B was maintained
at 1% for 5 min, then increased to 50% during a time span of 9 min, then to 90% over 6 min, and
finally to 99% over a period of 12 min after which this percent composition was held for 1 min.
The flow rate was changed to 0.5 mL/min, and after 5 min reduced to 0.1mL/min. After 0.1 min,
solvent B was reduced back to 1% and held at this percentage for 7 min.

The mass spectrometer was controlled by using Xcalibur 2.0.7 software (Thermo Scientific)
and operated in positive ion mode on them/z range from 120 to 1,000 with 60,000 resolution
atm/z 400. The source and capillary voltages were set to 4500 and 35 V, and the temperatures
of the capillary and the APCI vaporizer were set to 275°C and 150°C. Internal calibration was
performed using the ion signal of dioctyl phthalate atm/z 391.28 as a lock mass.
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Public Arabidopsis metabolome data set
A public Arabidopsis metabolome data set of 36 samples acquired by LC-ESI-Q-TOF/MS (HPLC:
Waters Acquity UPLC system; MS:Waters Q-TOF Premier) in positive- and negative-ion modes,
with four technical replicates on each sample, was downloaded from the website of PRIMe
(http://prime.psc.riken.jp/). All replicates of the Arabidopsis metabolome data set were acquired
in centroid mode. Two internal standards, lidocaine (m/z = 235 [M+H]+, eluted at 4.19 min in
the positive-ion mode data) and camphor-10-sulfonic acid (m/z = 231 [M-H]-, eluted at 3.84min
in the negative-ion mode data) were spiked in each sample with the same amount of 0.5 mg/L for
abundance normalization and 167 metabolites were elucidated from this data set [31, 32].

Data processing and software parameter settings
Data processing was performed on a Microsoft Windows 7 computer (x64 edition service pack
1 with an Intel Xeon E5-2630 processor, 16 GB RAM and 500GB hard disk drive). All raw data
files of the standard mixture experiment and the public data set were converted into mzXML
format using ProteoWizard. The acquired profile-mode data of standard mixture experiment
was converted into two data sets, where one data set was directly converted to mzXML files
(called profile data set for convenience) and the other was converted to mzXML files with an
additional centroiding procedure in ProteoWizard (called centroid data set for convenience).
Since the public data was acquired in centroid mode, no additional centroiding procedure in
ProteoWizard was performed.

Both profile and centroid data sets of standard mixture were processed by four tools. iMet-Q
automatically skipped centroiding step when processing the centroid data set and used the fol-
lowing parameter setting: mzWidth = 0.02, mzTol = 0.02, and rtTol = 0.2 for both data sets. For
XCMS, peaks in the profile and centroid data sets were first detected usingmatchedFilter and
centWave function, respectively. Then the rector.loess and group.density functions were then
applied to align the detected peaks across samples. An additional fillPeaks fuction was performed
for the recovery of missing peaks as suggested by the package vignette of XCMS. To optimize the
XCMS parameters, 42 parameter combinations were examined using the standard metabolites in
the standard mixture as benchmarks. The examination results of the 42 parameter combinations
are listed in S1 and S2 Tables, and the quantitation results generated using those parameter com-
binations are provided in S1 and S2 Files. The optimized XCMS parameters on peak picking are:
method = matchedFilter, fwhm = 30, snthresh = 10 for profile dataset; and method = centWave,
ppm = 45, snthresh = 10, peakwidth = (5,20) for centroid dataset. The optimized XCMS parame-
ters for both profile and centroid data sets on retention time correction and peak grouping are:
method = loess, span = .67; and method = "density", mzwid = 0.03, bw = 3, minfrac = 0, min-
samp = 0. MetAlign only accepts and processes the centroid data set. To runMetAlign, we
selected the data type of accurate mass data with mass resolution of 10,000 and applied the
default settings for the remaining parameters. In MZmine 2, the exact mass detector function and
the centroid mass detector function were first applied to process the profile and centroid data sets,
respectively, both with a noise level of 1,000,000. Then the following functions were applied
using the same parameters to process both data sets. The chromatogram builder was used with
the minimum time span, minimum height, andm/z tolerance set to be 0, 0 and 0.02, respectively.
For chromatogram deconvolution, baseline cut-off algorithm was used to detect peaks, where the
minimum peak height, peak duration length, and baseline level were 1,000,000, 0–2 min, and
1,000,000, respectively. Them/z and retention time tolerances in both isotopic peaks grouper and
peak alignment were 0.02 and 0.2 min, respectively.

Public Arabidopsis data set was processed by iMet-Q with mzWidth, mzTol, and rtTol of
0.03, 0.03, and 0.16 min, respectively. We used the XCMS centWave function for peak
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detection, rector.loess and group.density functions for peak alignment, and fillPeaks function
for the recovery of missing peaks. To optimize XCMS parameters on the public Arabidopsis
positive- and negative-mode data sets, 37 parameter combinations were examined on each set
and the parameter combination achieving the best quantitation performance was selected. The
examination results of the parameter combinations are listed in S3 and S4 Tables, and the
quantitation results generated using those parameter combinations are provided in S3 and S4
Files. Both data sets used centWave method in peak picking and the optimized XCMS parame-
ters for Arabidopsis positive- and negative-mode datasets are: ppm = 30, snthresh = 10, peak-
width = (25, 40); and ppm = 20, snthresh = 10, peakwidth = (5, 20), respectively. Next, in
retention time correction and peak grouping, the optimized XCMS parameters for both profile
and centroid data sets are: method = loess, span = .67; and method = "density", mzwid = 0.03,
bw = 3, minfrac = 0, minsamp = 0. For MetAlign, we selected the data type of accurate mass
data with mass resolution of 9,000 and applied the following parameter settings for data pro-
cessing: maximum amplitude = 10,000, peak slope factor = 1, peak threshold factor = 6, average
peak width at half weight = 8, maximum shift per scan = 35, select min nr per peak set = 4, and
scaling options = none. In MZmine 2, we used the centroid mass detector with a noise level of
6. The minimum time span, minimum height, andm/z tolerance in the chromatogram builder
were set to be 0.1 min, 6 and 0.03, respectively. For chromatogram deconvolution, baseline cut-
off algorithm was used to detect peaks, where the minimum peak height, peak duration length,
and baseline level were 6, 0–1.6 (min), and 6, respectively. Them/z and retention time toler-
ances in both isotopic peaks grouper and peak alignment were 0.03 and 0.16 min, respectively.
Detected peaks by each tool were retained in the quantitation results if their retention time val-
ues were within the effective retention time range (i.e., 0.85 to 12 min) and the peaks were
detected in at least one sample.

Robust algorithms for metabolite quantitation
In order to process data from various mass spectrometers, iMet-Q accepts input files in
netCDF, mzXML, and mzML formats, which can be conveniently converted from raw data by
existing converters. Also, it accepts profile-mode and centroid-mode data. The workflow of
iMet-Q contains two main tasks, peak detection and peak alignment, as depicted in Fig 1. Per-
forming peak detection on each input file generates a peak list that reports them/z, retention
time, charge state, isotope ratio, and abundance of detected peaks. To compare compounds
across different samples, iMet-Q aligns the detected peaks in the peak lists according to their
m/z and retention time. The detailed procedures of peak detection, peak alignment and quanti-
tation result generation are described below.

Peak Detection
Centroiding signals in each scan. Centroiding, which can be performed during or after

data acquisition, is a common first step for processing metabolomics data so that the data size
can be greatly reduced. It aims at combining multiple signals from the same compound into a
single one with anm/z and intensity value [32]. If the input files have already been centroided,
iMet-Q automatically skips this step. The detailed algorithm description is listed in S1 Section.

Removing noises from each scan. Due to nonspecific nature of ESI, a great portion of sig-
nals in the spectra could be noise [33]. It is essential to remove these noises to increase the
effectiveness of peak detection. Instead of determining a fixed baseline for each spectrum,
iMet-Q equally divides a scan into s segments (s = 10 by default) with an overlap of 20% to
avoid borderline issues and defines the average intensity in a segment as its noise level. Then,
for each segment, signals with S/N less than a specific threshold (3 by default) are removed
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from the scan, where S is the signal intensity and N is the noise level in the segment. The num-
ber of segments and the S/N threshold are user-adjustable.

Constructing extracted ion chromatograms (EIC) with dynamically determining peak
width. After processing signals in each scan, iMet-Q uses a two-stage algorithm to construct the
extracted ion chromatogram (EIC) of a compound. The two-stage algorithm includes signal clustering
and EIC boundary determination. Let S ¼ ffs11; s12; . . . ; s1n1g; fs21; s22; . . . ; s2n2g; . . . ; fsm1 ; sm2 ; . . . ; smnkgg
be the list of signals in all scans, wherem is the total number of scans and nk is the number of sig-

nals in the kth scan. In signal clustering, starting from the most intensive signal, say sji, among all

scans in S, iMet-Q clusters signals in S with sji if them/z differences between the signals and sji are
within the given tolerance d, i.e., mzWidth in iMet-Q. A cluster with at least three signals is fur-
ther processed. In the step of EIC boundary determination, iMet-Q automatically calculates
FWHM and then dynamically determines the boundaries using FWHM. To be specific, for the

most intensive signal in a cluster, say sji, with retention time t, the boundaries of the EIC are ini-
tially determined as t ± w, where w is the FWHM. To adapt to possible tailing effect of an EIC,
the boundaries are further extended by a tolerance at most 0.5w and are set to the farthest signal

Fig 1. Schematic depiction of iMet-Q workflow for peak detection and peak alignment.

doi:10.1371/journal.pone.0146112.g001
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or a signal with local-minimum intensity in this range (as shown in Fig 2). Then the trapezoid
areas between any two adjacent signals of the EIC are summed up as the abundance. The two-
stage algorithm is iteratively performed on the remaining unclustered signals to construct EICs
until all signals in S are processed. In the following subsections, we term the constructed EICs as
peaks for convenience. Furthermore, each peak is represented by its apex, i.e., using the m/z,
retention time of the apex signal, and the associated abundance is recorded.

Determining the charge state and isotope ratio of peaks. In order to determine the
charge state and isotope ratio, iMet-Q first constructs an isotope envelope for a peak. Starting
from the most intensive peak, P1, in the current peak list, our tool groups it with all of its neigh-
boring peaks having largerm/z values and decreasing intensities, i.e., forming an isotope
group. If them/z distance between the apex of any two peaks in the isotope group equals to 1/z
(z can be 1~4), the group is considered as a possible isotope envelope, where P1 and the peak
adjacent to P1 are considered as the monoisotope peak and the second isotope peak, respec-
tively. Then, to validate the correctness of the isotope envelope, iMet-Q calculates the peak
shape similarity between the monoisotope peak and the second isotope peak by using the dot
product as shown below:

Similarity ¼

Xn

i¼1

xiyiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

x2i

s ffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

y2i

s ð1Þ

where n is the number of scans that both the monoisotope peak and the second isotope peak
co-occur, and xi and yi are their respective signal intensities in the ith scan. If the peak shape
similarity between the two peaks is above a user-defined threshold (0.8 by default), we consider
that all of the peaks in the isotope group form an isotope envelope and the charge state of P1 is
determined as z. Moreover, the isotope ratio of P1 is calculated as the abundance of the second
isotope peak divided by the abundance of P1, and the peaks in the isotope group are removed
from further processing. Otherwise, the peaks do not form an isotope envelope and the charge

Fig 2. A cartoon for the illustration of constructing extracted ion chromatograms. The blue straight
lines represent the clustered signals,w and t are the FWHM and retention time of sji, respectively. Signal A
and B are determined as the boundaries of the EIC, and the area in light blue color is the abundance.

doi:10.1371/journal.pone.0146112.g002
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state and isotope ratio of P1 are denoted as 0. The charge state determination procedure is
repeatedly performed until all peaks are processed.

By performing the above peak detection procedures, iMet-Q generates a peak list with
charge state and isotope ratio information for each input replicate file. Note that the isotope
peaks except the monoisotope in the confirmed isotope envelopes will not be reported in the
peak list.

Peak Alignment
For an input data set with multiple samples (each probably with multiple technical replicates),
iMet-Q performs the same algorithm for pair-wise alignment within a sample (i.e., aligning
replicates) and then across samples. The algorithm is described as follows.

iMet-Q first selects the peak list that contains the largest number of detected peaks as the
reference list and aligns other peak lists to it. For a pair of reference list and aligning peak list,
iMet-Q uses peaks detected in both lists with theirm/z and retention time differences within
user-defined tolerances (i.e., mzTol and rtTol in iMet-Q) as landmarks [34]. Given the reten-
tion time of landmarks in the reference list and in the aligning peak list as vectors A and B,
respectively, iMet-Q uses LOESS regression [26, 27] to generate a mapping between A and B
with span of 20% and weight of 1 since LOESS regression combines multiple linear least square
regression models which fit localized subsets of the data. The retention time of peaks, which
are not landmarks, in either peak list are adjusted according to the LOESS regression model.
iMet-Q then aligns the peaks in both peak lists that satisfy user-definedm/z tolerance and
retention time tolerance based on adjusted retention time.

Repeating the above process for all peak lists, peaks can be aligned across replicates. Since
peaks aligned from different replicates in a sample may have slightly different values ofm/z
and retention time, we use themedian of theirm/z and retention time as the representative
peak in each sample. Then the same algorithm is applied to align all of the representative peaks
across samples.

Generating output of quantitation results
In addition to viewing quantitation results in the main interface, iMet-Q reports the medians
ofm/z, retention time and abundance of the peaks in all replicates of all samples. For the charge
state of an aligned peak, iMet-Q displays the charge state that is detected in most replicates. For
the isotope ratio, iMet-Q collects the isotope ratios corresponding to the displayed charge state
and reports the median as the isotope ratio. Quantitation results can be exported in.csv and.txt
formats by users to conduct further analyses.

Results and Discussion
We evaluated the performance of iMet-Q in metabolite quantitation by comparing the accu-
racy of detecting metabolites and the abundance consistency, calculated by Pearson product-
moment correlation coefficient (PPMCC), of detected metabolites among replicates with
XCMS, MetAlign, and MZmine 2 using samples ranging from a small standard data set (seven
standard metabolites) to a complex biological data set (public Arabidopsis data set). We also
demonstrated the ability of iMet-Q on charge state determination and isotope ratio calculation.

Performance evaluation on a standard metabolite mixture data
To demonstrate the ability of iMet-Q, we used a standard metabolite mixture in which seven
standard metabolites with different sample concentration in two samples were included for
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evaluation. The sample ratio, defined as the detected abundance of a standard metabolite in Sam-
ple 1 divided by that in Sample 2, is calculated for each of the seven metabolites in the standard
metabolite mixture for the four quantitation tools. Both profile and centroid data sets generated
from the raw data were processed by iMet-Q, XCMS, MetAlign, andMZmine 2, respectively.
Algorithms and parameter settings used in these tools were described in the subsection ofData
Processing and Software Parameter Settings. Table 1 shows the quantitation errors, which is
defined as the difference between theoretical and calculated sample ratios divided by the theoreti-
cal sample ratios, of the seven standard metabolites calculated by the four quantitation tools.
Detailed abundances and sample ratios calculated by the four tools are listed in S5 Table.

As shown in Table 1, iMet-Q, XCMS, and MZmine 2 had the average quantitation error of
12%, 12% and 13% on the profile data set, and 12%, 32% and 14% on the centroid data set.
MetAlign did not process the profile data set and had the average quantitation error of 14% on
the centroid data set. The results showed that iMet-Q achieved the smallest quantitation errors
and also had the same average quantitation error of 12% in both profile and centroid data set,
suggesting the robustness of iMet-Q on processing input files in both data type.

In addition to accurate quantitation, iMet-Q determined the charge state and isotope ratio
of detected peaks. In order to evaluate the charge state determined by iMet-Q, we used CAM-
ERA to annotate charge states and isotope peaks of the standard metabolites. Charge states and
isotope peaks of the seven standard metabolites in both profile and centroid data sets annotated
by iMet-Q were overall identical with CAMERA’s annotation.

To demonstrate possible usefulness of isotope ratio information, we searched the mass of
seven standard metabolites against HMDB [30] with mass tolerance of ±5 ppm and adduct
type of unknown (assuming a user has little information on the spectra). As a result, 183
metabolites candidates were obtained. Using iMet-Q’s calculated isotope ratios (the isotope
ratio tolerance is ±0.02) to filter out unnecessary metabolite candidates, we reduced 49% (89
out of 183) metabolite candidates (S6 Table). The remaining metabolite candidates could not
be filtered out by isotope ratios because they have the same chemical formula (i.e., identical
theoretical isotope ratios).

Performance evaluation on a public Arabidopsis metabolome data
The public Arabidopsis data of 36 distinct samples collected from eight different plant classes
(classified by Matsuda et al.) was used to demonstrate iMet-Q’s performance on quantifying

Table 1. The quantitation error (%) of seven standard metabolites calculated by iMet-Q, XCMS, MetAlign, and MZmine 2.

Quantitation error (%)a

iMet-Q XCMS MetAlign MZmine 2

Standard Compound Theoretical Sample Ratio Profile Centroid Profile Centroid Profile Centroid Profile Centroid

L-hisitidine 0.50 14 14 14 2 - 12 14 12

L-Carnosine 1.00 9 8 7 50 - 11 8 8

Creatine 1.00 12 12 12 18 - 12 12 11

Caffine 1.00 15 16 14 2 - 14 15 16

Hippuric acid 0.20 10 10 10 105 - 5 15 20

Glycocholic acid 0.20 20 20 20 20 - 30 5 5

Cholic acid 0.33 6 6 6 24 - 12 24 24

Average 12 12 12 32 - 14 13 14

aQuantitation error (%) = (|Theoretical Sample Ratio–Calculated Sample Ratio|) x100/ Theoretical Sample Ratio.

doi:10.1371/journal.pone.0146112.t001
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complex biological samples. Each sample contained two internal standards, one for positive-
and the other for negative-ion modes, and 167 metabolites (71 detected only in positive-ion
mode, 39 only in negative-ion mode, and 57 in both modes) were elucidated from the data set
[28]. The performance of four tools were evaluated in terms of the accuracy on detecting the
two internal standards and 167 elucidated metabolites, and the ability of properly clustering 36
samples into eight plant classes.

Table 2 shows the reproducibility and normalized abundances of two internal standards
detected by the four quantitation tools, where iMet-Q, XCMS, and MetAlign detected all the
internal standards from each replicate, achieving 100% reproducibility, slightly better than
MZmine 2. Furthermore, iMet-Q reported normalized abundances of 1±0.19 and 1±0.18 for
the two standard metabolites, comparable to the best 1±0.18 reported by XCMS and MZmine
2 for Lidocaine and the best 1±0.17 reported by XCMS for Camphor-10-sulfonic acid.

For 167 elucidated metabolites, we searched theirm/z and retention time values provided in
[28] against the quantitation results of the four tools with m/z and retention time tolerances of
0.05 m/z and 9 seconds. As a result, iMet-Q detected all of the elucidated metabolites, whereas
XCMS, MetAlign, and MZmine 2 detected 103 (62%), 145 (87%), and 129 (77%) of the eluci-
dated metabolites, respectively. We further evaluated the detected abundance of these metabo-
lites. Since the exact abundance of 167 elucidated metabolites was unknown, we calculated the
abundance correlation between any two replicates of a sample by PPMCC. As a result, iMet-Q
achieved an average replicate abundance correlation of 0.92, whereas XCMS, MetAlign, and
MZmine 2 achieved average abundance correlations of 0.87, 0.78, and 0.81, respectively (as
shown in Fig 3). The result revealed that iMet-Q not only achieved high accuracy on detecting
the 167 elucidated metabolites but also provided very consistent quantitation result.

Next, we examined whether replicates of the 36 samples could be properly clustered into
eight plant classes using the quantitation results of the four tools. We combined the quantita-
tion results from positive- and negative-ion modes, and performed hierarchical clustering
using MATLAB dendrogram function with PPMCC as the abundance correlation measure.
The combined quantitation results of the four tools are provided in S7–S10 Tables. The num-
bers of detected peaks in the combined quantitation results of iMet-Q, XCMS, MetAlign, and
MZmine 2 were 13079, 7487, 37364, and 19394, respectively. Fig 4 shows the hierarchical clus-
tering results of the four tools. The average abundance correlations of the eight plant classes
using the combined quantitation results of iMet-Q, XCMS, MetAlign, and MZmine 2 were
0.71, 0.75, 0.65, and 0.59, respectively. The detailed average abundance correlation of each
plant class is shown in S11 Table. Note that all the replicates of flower class, the best clustered
plant class (blue color in Fig 4), were clustered using iMet-Q’s combined quantitation result,
and the average abundance correlation of the flower class was 0.88. This evaluation implies
that, although the numbers of peaks detected by MetAlign and MZmine 2 were much larger
than those detected by iMet-Q and XCMS, peaks detected by iMet-Q and XCMS might be
more essential for distinguishing plant classes.

Table 2. The reproducibility (Rep.) and normalized abundance (Abund.) of two internal standards
detected by four quantitation tools.

Lidocaine Camphor-10-sulfonic acid

Rep. (%) Abund. Rep. (%) Abund.

iMet-Q 100 1±0.19 100 1±0.18

XCMS 100 1±0.18 100 1±0.17

MetAlign 100 1±0.20 100 1±0.22

MZmine 2 100 1±0.18 85 1±0.46

doi:10.1371/journal.pone.0146112.t002
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To overcome the bottleneck in metabolite identification based on MS1 data, a method utiliz-
ing both isotope ratio and in-source fragment information has been recently proposed, in
which the same Arabidopsis metabolome data set was also used for identification performance
evaluation [35]. According to the study, 19 out of 167 elucidated metabolites have been con-
firmed that some of their in-source fragments were detected in MS1 scans [35], and the abun-
dance correlations between the 19 metabolites and their fragments were above 0.8. We thus
used the 19 confirmed metabolites to demonstrate the ability of iMet-Q. By calculating the
abundance correlations between 19 metabolites and their in-source fragments, iMet-Q
reported an abundance correlation of 0.94, whereas XCMS, MetAlign, and MZmine 2 reported
abundance correlations of 0.61, 0.76, and 0.66, respectively (as shown in Fig 5). This result
revealed that the abundances of the 19 metabolites and their in-source fragments were accu-
rately detected and calculated by iMet-Q. Furthermore, isotope ratios of 89.47% (17 out of 19)
metabolites were accurately calculated by iMet-Q, with differences within 0.05 to the theoreti-
cal ratio (S12 Table).

Friendly User Interfaces of iMet-Q
We particularly implemented iMet-Q as a project-oriented quantitation platform, allowing
users to conveniently quantify, manage and compare a large number of data sets or quantita-
tion results in Microsoft Windows series platform (including Windows 7, 8, and Windows
Server 2008, 2012). To be specific, iMet-Q applies a tree structure to organize quantitation

Fig 3. The box plot of abundance correlation of 167 elucidated metabolites across replicates in the
public Arabidopsis data detected by the four quantitation tools.

doi:10.1371/journal.pone.0146112.g003
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results, where each node represents a project and sub-nodes of a project represent the quantita-
tion results (as shown in Fig 6).

iMet-Q provides three wizards to guide users easily executing the program as follows. First,
a project wizard guides a user to create a project and designate a folder to store the project. Sec-
ond, a quantitation wizard guides the user to quantify LC-MS-based data. The wizard only
requires the user to set up three quantitation parameters, i.e., mzWidth, mzTol, and rtTol;
other parameters are optional. Since multiple technical replicates may be conducted on a sam-
ple, iMet-Q pops up a table to guide users to group technical replicates by the sample. During
quantitation, iMet-Q sequentially detects peaks from each replicate and then aligns those
detected peaks across replicates/samples. Third, an export wizard guides the user to export
quantitation results in common output formats, including.csv and.txt. It also allows users to
name the quantitation, designate the file for exporting, and set up criteria for filtering out

Fig 4. Hierarchical clustering by using the quantitation results of iMet-Q, XCMS, MetAlign, and MZmine 2. Each entry in the tree leaves of a
dendrogram represents a replicate. For each tool, we first combined its quantitation results of positive- and negative-ion modes. Colors were assigned to
each replicate in the combined quantitation results according to the plant classes which the replicates originated from as follows: orange for cotyledon, red for
stem, green for leaf, blue for flower, light blue for shoot apex, yellow for root, pink for seed, and gray for silique. Next, the figure was produced using MATLAB
dendrogram function with PMMCC as the abundance correlation measure between any two replicates in the combined quantitation results.

doi:10.1371/journal.pone.0146112.g004
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unwanted peaks in order to focus on peaks of interest. With the conventional output formats,
the user can easily import the quantitation results to other available tools, such as Microsoft
Excel and Matlab, for further statistical analysis.

To compare abundances across samples, iMet-Q hierarchically displays a quantitation result
in the main interface, where the quantitation result is summarized in a summary table. The
summary table lists them/z, retention time, charge state, isotope ratio, and abundance of all
detected peaks in all samples for a quick overview. The user can click on a detected peak of
interest in the summary table, and the sample abundances of the selected peak will be plotted
in the upper panel above the summary table. Meanwhile, the detailed information of the
selected peak in the technical replicates of a sample will be listed in the panel below the sum-
mary table. The user can double-click a row in the replicate table to view the extracted ion

Fig 5. The box plot of abundance correlations between 19 verified metabolites and their in-source fragments detected in the public Arabidopsis
data.

doi:10.1371/journal.pone.0146112.g005
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chromatogram of the peak. In order to efficiently select peaks of interest in the summary table,
iMet-Q provides a search function using the range ofm/z, retention time, charge state, or iso-
tope ratio to narrow down the peaks listed in the summary table.

Conclusions
Many state-of-the-art quantitation tools have been proposed to allow users automatically
quantifying metabolites from large-scale label-free metabolomics data sets. The quantitation
ability of these tools is beyond doubt. However, a major concern of using these tools is the
parameter setting for peak detection. Since peak shapes vary greatly from one to another, it is
difficult for users to select an optimized parameter setting for peak detection. In addition, most
of the tools do not provide deisotoping, and thus users have to apply additional packages for
isotope pattern assembly. Therefore, in this paper, we introduced an intelligent quantitation
tool, iMet-Q, which is capable of dynamically determining the peak widths in liquid chromato-
gram dimension without input parameter, and automatically performing isotope pattern

Fig 6. Themain graphical user interface of Metab-Q. The Arabidopsis data from positive-ion mode is used as an example. After processing the data,
Metab-Q lists the detected peaks in the summary table where the peaks are sorted according to their retention time. When users select peaks of interest in
the summary table, the abundances of the selected peaks in different samples are plotted in the sample abundance plot and the detailed information of the
selected peak in the technical replicates of a sample is listed in the panel below the summary table. The left panel is the quantitation parameter explorer that
lists the parameters of a quantitation. Users can use the provided filter function to narrow down the number of peaks in the summary table.

doi:10.1371/journal.pone.0146112.g006
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assembly. In our evaluation, iMet-Q has the quantitation performance better than XCMS,
MetAlign, and MZmine 2 on standard and large-scale metabolome data sets. Besides, iMet-Q
provides both the charge states and isotope ratios of detected peaks. With the charge state
information, users can obtain accurate masses of detected peaks. Meanwhile, the isotope ratio
information provides users an opportunity to reduce metabolite candidates. Although our eval-
uation demonstrates that the metabolite isotope ratios calculated by iMet-Q are close to the
theoretical values, it is important to note that isotope ratio can be affected by noise interference,
saturation effects and different experimental conditions [36, 37]. In addition to providing accu-
rate quantitation, charge state, and isotope ratios, iMet-Q is equipped with friendly user inter-
faces so that quantifying metabolites become an easy task. The software program is now
publicly available for download at http://ms.iis.sinica.edu.tw/comics/Software_iMet-Q.html.
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