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ABSTRACT: An adaptable, sulfur-accelerated photoaerobic sele-
nium-π-acid ternary catalyst system for the enantioselective allylic
redox functionalization of simple, nondirecting alkenes is reported. In
contrast to related photoredox catalytic methods, which largely
depend on olefinic substrates with heteroatomic directing groups to
unfold high degrees of stereoinduction, the current protocol relies on
chiral, spirocyclic selenium-π-acids that covalently bind to the alkene
moiety. The performance of this ternary catalytic method is
demonstrated in the asymmetric, photoaerobic lactonization and
cycloamination of enoic acids and unsaturated sulfonamides,
respectively, leading to an averaged enantiomeric ratio (er) of 92:8.
Notably, this protocol provides for the first time an asymmetric,
catalytic entryway to pharmaceutically relevant 3-pyrroline motifs,
which was used as a platform to access a 3,4-dihydroxyproline derivative in only seven steps with a 92:8 er.
KEYWORDS: enantioselectivity, photoredox catalysis, chiral selenium-π-acids, alkenolides, 3-pyrrolines, 1,1′-spirobiindane

■ INTRODUCTION
The design of highly enantioselective catalytic procedures for
the economic manufacture of chiral molecules represents an
integral and swiftly proliferating area within modern chemical
synthesis.1 Throughout the last decades, a rapidly increasing
number of efforts toward the development and customization
of chiral catalyst motifs has led to stereochemically well-
controlled transformations in many relevant reaction catego-
ries. A striking exception to this state of affairs in chemical
methodology are enantioselective photoredox-catalytic func-
tionalizations of simple, nondirecting alkenes. Looking at
asymmetric photoredox catalysis in its current state,2 most
protocols predicate on the covalent or noncovalent binding of
the photocatalyst or a cocatalyst to a heteroatomic binding site
within the substrate. Most prominent examples include�but
are not limited to�carbonyls,3 heteroarenes,4 β-ketoesters,5
amides,6 imines,7 and carboxylic esters8 (Scheme 1). Elegant
early contributions to this field were made, inter alia, by Bach
and co-workers who reported on the asymmetric intra-
molecular conjugate addition of pyrrolidin-2-yl radicals onto
Michael acceptors.6a Stereocontrol was accomplished by means
of a H-bonding catalyst derived from Kemp’s acid (Scheme
1a). Subsequently, other radical conjugate addition reactions
governed by complementary stereocontrolling principles such
as asymmetric iminium/enamine catalysis (Scheme 1b),9

Lewis/Brønsted-acid catalysis (Scheme 1c),10 and enzyme
catalysis11 were put on record. Two early and very instructive

examples, emphasizing the decisive impact of the nature of
substrate−catalyst interactions in enantioselective photoredox
catalysis, were described by Ooi et al. and Nicewicz et al. in
their reports on asymmetric [3 + 2] and [4 + 2]-
cycloadditions, respectively (Scheme 1g,h).12,13 Each method
predicated on a chiral counteranion as the stereocontrolling
element. In the former case, a photoredox-active iridium(III)
complex, harboring a chiral borate anion, was used as a
catalyst.12 The anion was able to sustain an H-bond interaction
with one of the reactants (Scheme 1g), which was crucial for
the high enantiomeric ratio (er) of up to 98.5:1.5. In the
second case, the authors employed a triphenylpyrylium catalyst
possessing a chiral phosphoric amide counterion, which
interacted with transient radical cationic intermediates
dominantly through electrostatic forces (Scheme 1d,h) and
furnished the cycloadducts in er values of ≤75:25.13,14 These
results emphasize the challenges caused by alkenes lacking any
heteroatomic binding sites for a catalyst. Two rare yet very
noteworthy tactics to address even nondirected alkenes were
recently reported. On the one hand, certain copper catalysts
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were used in asymmetric ATRA reactions, in which Cu
covalently binds to a carbon-centered radical intermediate,
which derived from the alkene (Scheme 1e).15a−bcd On the
other hand, List et al. reported on the asymmetric counterion-
directed photoredox catalytic [2 + 2] cycloaddition of alkenes,
in which sterically confined imidophosphorimidates served as
highly efficient stereoinducing cocatalysts.15e Each of these
protocols is very substrate-specific, insofar as they are
compatible with only terminal and/or conjugated olefins.
Consequently, more structure-tolerant solutions for asymmet-
ric, photoredox-catalytic functionalizations of nondirected,
internal alkenes remain elusive.
Recently, selenium-π-acids16 were introduced as efficient

main group complements to redox-active transition metals in
photoredox-catalytic alkene functionalizations.16,17 Mechanis-
tically, Se-π-acids proved effective for certain alkene motifs
(e.g., acyclic, nonconjugated, 1,2-dialkylated [alkyl > Me]) that
were not tolerated by previous catalytic protocols.17 More
concretely, photoaerobic selenium-π-acid multicatalysis oper-
ates by a radical−polar crossover mechanism,16a,acde,−,18,18

which allows for an overall ionic, two-electron oxidation of
alkenes under single-electron-transfer conditions. This circum-
stance entails the advantage that O2 (or even air) can be used
as a terminal oxidant19 since O2-sensitive, carbon-centered
radicals or radical ions, which normally epitomize customary
photoredox-catalysis, are not formed under operating con-
ditions. Furthermore, selenium-π-acids interact with their
olefinic substrates through dynamic covalent binding to the
carbon−carbon π-bond (Scheme 1f), which opens the

opportunity to induce stereochemical information by means
of chiral selenium species under photocatalytic conditions.
However, previous efforts in this direction only met with
limited success, leading to average er values distinctly below
75:25.20,21 As a viable solution to previously encountered
difficulties, we now report the design of a modular, spirocyclic
selenium-π-acid motif, which allows for the photocatalytic,
enantioselective lactonization and amination of nondirecting,
internal alkenes under the assistance of sulfur cocatalysts to
provide access to various chiral alkenolides and�for the f irst
time�3-pyrrolines.

■ RESULTS AND DISCUSSION
From preliminary work on photoaerobic lactonizations, we
realized that the degree of stereoinduction of a given chiral
selenium-π-acid roughly correlated with its conformational
rigidity.20 This notion is in good agreement with very insightful
reports by Maruoka et al., Denmark et al., and others on
thermal selenium-π-acid-catalyzed alkene functionalizations.22

Hence, we decided to investigate the 1,1′-spirobiindane
skeleton23 as a versatile yet highly rigid platform to design a
structurally and electronically adjustable library of selenium-π-
acids (Schemes 2 and 3). Our initial efforts focused on two
objectives: (a) a divergent synthetic route to target catalyst 1
from common, readily available building blocks (Scheme 2I)
and (b) an easily adjustable periphery around the Lewis-acidic
selenium centers (Scheme 3).
Synthesis of catalyst 1a commenced with the exposure of

bisphenol A (2a) to a 20-fold excess of methanesulfonic acid,
which gave the corresponding racemic spirobiindane-6,6′-diol
in a 65% yield (Scheme 2II).24 Resolution of the racemate by
cocrystallization with N-benzylcinchonidinium chloride pro-
vided (+)-(R)-3a in a 99% yield and 99% ee upon workup.25

Oxidative selenation of 3a was subsequently accomplished with
KSeCN and iodine followed by substitution of the cyanide
groups with BnMgCl, furnishing 4a in an 80% yield.26

Completion of 1a involved the methylation of the 6/6′
hydroxy groups with Me2SO4 (75% yield), thus showcasing
that the desired catalyst motif 1 can be accessed expediently in
a total yield of 39% over six steps. This route was then used as
a blueprint for the synthesis of catalysts 1b−t shown in
Scheme 3 (for details, see the Supporting Information).27−29

Next, we evaluated the catalytic performance of catalysts
1a−t in the photoaerobic asymmetric lactonization of 5-phenyl
pent-2-enoic acid (5a, Schemes 2III and 3). Acid 5a was
initially exposed to a small series of photoredox catalysts
(Scheme 2III, entries 1−4) in combination with Se-π-acid
catalyst 1a under air and 465 nm irradiation at 18 °C in MeCN
(0.1 M) for 24 h. 2,4,6-Tris(p-anisyl)pyrylium tetrafluorobo-
rate (TAPT) turned out to give the best yield (60%) of (S)-
butenolide 6a with an er of 80:20 (entry 2).30 A screening for
sulfur cocatalysts (entries 5−9)30 revealed that disulfides (5
mol %), thiols (10 mol %), and even elemental sulfur (10 mol
% of S8) significantly accelerated the title process, leading to
increased yields of up to 73% (entry 6) and er values of up to
87:13 (entries 2, 5−9). In this context, we noticed that under
disulfide cocatalysis, the reaction time can be reduced to 5 h
without negative effects on the yield or er values (entry 10,
yield = 77%, er = 89:11). Notably, in the absence of sulfur
cocatalysts or in the presence of any other non-sulfur additives
tested, the lactonization became very sluggish and unproduc-
tive with yields less than 36% within 5 h (Scheme S4, Table
S1). Initial kinetic rate studies (Figures S1−S4) indicate that

Scheme 1. Heteroatom-Dependent and -Independent
Binding Concepts in Asymmetric Photoredox Catalysisa

a(I) Simplified representations of heteroatom-dependent catalyst/
reactant binding modes in enantioselective photoredox-catalytic
alkene functionalizations. (II) Simplified representations of heter-
oatom-independent catalyst/reactant binding modes. (III) Exemplary
comparison of counterion binding modes in asymmetric photoredox-
catalysis ([B*]− = chiral borate anion, X = O or NTf).
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substoichiometric amounts of disulfide not only reduce the
initiation phase required for the conversion of the bis-selane
catalyst 1a into its active form but also increase the turnover
rate upon full liberation of the active selenium species.31 In
addition, we could confirm that no product formation was
observed when the Se catalysts or the photoredox catalysts
were omitted from the title reaction, as was the case when the
lactonization was attempted in the dark (Table S1).
At this stage, the impact of structural modifications on

catalysts 1b−t was evaluated. Electronic variation of the
benzylic Se-protecting groups (i.e., 7/7′ position, Scheme 3)

showed no particular trend with regard to the er values, which
remained between 88:12 and 91:9 (Scheme 3, 1a−f).
Changing the protection group to an aliphatic protecting
group had a more significant influence. More specifically, the
tert-butyl (1h) and methylene (1i) groups resulted in markedly
higher yields relative to the more stable iso-propyl residue
(1g). We suspect that the yield and stereoselectivity correlate
with the facility by which the Se-protecting groups can be
removed under the title conditions. More concretely, the more
stabilized the suspected cationic fragments from the former Se-
protecting groups are32 (i.e., selenocarbenium ion from 1i vs 2-
methylpropan-2-ylium ion from 1h vs propan-2-ylium ion from
1g), the more easily they furnish access to the active Se
catalyst. Overall, these results show that more fissile protecting
groups weakly correlate with increasing yields but do not affect
the stereoinduction.
Continuing with modifications at position 6/6′ revealed that

the oxygen atoms seem to play a significant role for the
stereoinduction. While the removal of the OMe group or its
replacement for an OH group (1j/k) had detrimental effects
on the er, other simple alkyl ether groups (1l/m) showed
performances similar to that of 1a. This observation is in line
with reports by Wirth and Tomoda et al., who demonstrated
that n → σ* O···Se nonbonding interactions typically result in
rigidified catalyst−substrate conformations and thus in higher
levels of stereoinduction.33 Changing to methoxymethyl
groups (1n) or bridging ether residues (1o/p) provided
poorer results, probably due to interference of these residues
with the alkene substrate. As anticipated, modification at the
distal 5/5′ position (1q/r) had no meaningful influence on the
reaction outcome. But in contrast to our intuition, further
rigidifying the catalyst skeleton through additional annulations
(1s/t) led to poorer stereoinduction. For 1s, we interpret this
outcome as a result of conformational restrictions at the 6/6′
O atoms, which potentially obviate efficient n → σ* O···Se
overlap. Regarding catalyst 1t, bite angles (i.e., relative
orientation of the indane planes at the C1 junction point) of
about 87−90° were reported for closely related 2,2′-annelated
spirobiindanes.24b,34 Considering that catalyst 1a possesses a
significantly narrower bite angle of only 73.19° (Figure S5),
this difference may be an explanation for the diminished
stereoinduction of 1t.
An important observation was made with catalyst 1a, which

furnished butenolide 6a after 5 h with an er of 91:9 and 33%
yield in the absence of a sulfur cocatalyst (Scheme S4). When
the same reaction was conducted for 24 h (Scheme 2, entry 2),
the er had dropped to 80:20. We speculate that this outcome
results from partial Se oxidation,35 giving access to oxygenated
selenium species that still retain some catalytic activity with
lower or opposite enantioselection. To test this hypothesis and
suppress the suspected Se oxygenation, we resorted to a recent
report by Iaroshenko et al. on the deoxygenative activity of
silanes and disilanes on N- and P-oxygenated compounds.36

To our delight, the combination of 1 equiv of hexamethyldi-
silane with 10 mol % of catalyst 1a furnished butenolide 6a in a
66% yield and an er of 93:7 (Schemes S6 and S7). Under these
modified conditions, catalysts 1d and 1i provided similar er
values (94:6 and 93:7, respectively), but catalyst 1i gave the
best yield under fully optimized conditions (Scheme 2, entry
19) and was therefore chosen for further investigations. It
should be mentioned that other chiral selenium catalysts
reported for thermal asymmetric lactonizations22b gave lower
er values under photocatalytic conditions (Scheme S7).20

Scheme 2. Catalyst Design Plan and Reaction
Optimizationa

a(I) General approach toward chiral selenium-π-acid catalysts. (II)
Exemplary synthetic route toward catalyst 1a. NBCC = N-benzyl
cinchonidinium chloride; HFIP = 1,1,1,3,3,3-hexafluoropropan-2-ol.
(III) Reaction condition: n(5a) = 0.3 mmol, c(5a) = 0.1 M, photocat.
(entries 1−9: 5 mol %; entries 10−19: 10 mol %), 1a (10 mol %),
cocatalyst (5 mol %), 18 °C, air, irradiation at 465 nm, isolated yield.
bIrradiation at 528 nm. c10 mol % of S8.

d(SiMe3)2 (1.0 equiv) was
added. eCatalyst 1d (10 mol %, Scheme 3) was used. fCatalyst 1i (10
mol %, Scheme 3) was used. g0.5 mmol of 5a [c(5a) = 0.1 M] was
used. TPT = 2,4,6-triphenylpyrylium tetrafluoroborate; TAPT =
2,4,6-tris(p-anisyl)pyrylium tetrafluoroborate; TXT = 1,3,6,8-tetrame-
thoxy-9-(o-tolyl)thioxanthylium trifluoromethanesulfonate.

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://doi.org/10.1021/acscatal.3c04443
ACS Catal. 2023, 13, 16240−16248

16242

https://pubs.acs.org/doi/suppl/10.1021/acscatal.3c04443/suppl_file/cs3c04443_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscatal.3c04443/suppl_file/cs3c04443_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscatal.3c04443/suppl_file/cs3c04443_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscatal.3c04443/suppl_file/cs3c04443_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acscatal.3c04443/suppl_file/cs3c04443_si_001.pdf
https://pubs.acs.org/doi/10.1021/acscatal.3c04443?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.3c04443?fig=sch2&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.3c04443?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


After having identified proper catalytic conditions, we
analyzed the scope of the title method using structurally and
electronically diversified alkenoic acids 5 as substrates (Scheme
4). Initially, a representative series of benzyl analogues of 5a

was tested. In general, both electron-rich and electron-deficient
alkenoic acids 5b−k provided high er values in the range of
91:9 to 94:6 (Scheme 4). These results already emphasize that
our aerobic enantioselective photoredox catalytic protocol is
not only distinctly carbon efficient37 (i.e., use of air instead of
carbonous oxidants) but also offers promising levels of
stereoinduction in the cyclofunctionalization of alke-
nes.17d,20,22,38 In terms of yield, substrates possessing func-
tional groups in the 4-position of the arene ring commonly led
to good or very good results (74−97%). Sterically more
demanding substrates (i.e., 6h−k) gave somewhat lower yields

(46−66%) but were as stereoselective as the former analogues.
In addition to benzylic substituents, the title procedure also
provided good to high stereoinduction with aromatic and
aliphatic residues. In the case of aromatic derivatives 6l and
6m, yields of 55% and 54%, respectively (er = 93:7 each), were
obtained, which is suspected to result from steric factors. This
conclusion is supported by the observation that product 6p,
which embeds a bulky iso-propyl residue, was obtained in a
medium yield of 55% (er = 92:8), while unbranched and
conformationally less flexible analogues 6n/o and 6q−s gave
much better yields (71−97%, er = 87:13 to 93:7).39 In some
cases, substrate degradation was observed, which diminished
the product yield and resulted in the formation of carbonyl
byproducts. We suspect that this outcome is caused by
photocatalytically generated singlet oxygen.
To further explore and generalize the utility of our new

enantioselective photoredox-catalytic cyclofunctionalization
protocol, we focused on the asymmetric synthesis of 2-
substituted 3-pyrrolines (Scheme 5). This compound class has
been intensively investigated, inter alia, for their salient role in
biologically active natural compounds and pharmaceuticals.40

Throughout the last 25 years, numerous synthetic protocols for
the assembly of chiral 3-pyrroline scaffolds have been
reported.41−45 Most prominent tactics include asymmetric
intramolecular SN reactions,41 concerted and consecutive
cycloadditions,42 hydroaminations,43 Mizoroki−Heck reac-
tions,44 and ring-closing metatheses.45 Surprisingly, despite
the overwhelming progress made in this field, there are no
catalytic oxidative enantioselective cycloaminations on record
to form 2-substituted 3-pyrroline rings directly.46 Against this
background, we posited that our title method is likely to
provide a complementary and unprecedented as well as highly
redox-economic47 entryway. As listed in Scheme 5, sulfona-
mides 7a−l were exposed to 10 mol % of Se-catalyst 1a,48,49 10
mol % of p-chlorophenyldisulfide, and 5 mol % of TAPT in
MeCN under 465 nm irradiation and ambient air (for reaction
optimization, see Scheme S8). Gratifyingly, all tested substrates
resulted in good to high er values ranging from 85:15 to 97:3
and favoring the S-configuration within 8a−l.50 In terms of
structural variation within the sulfonyl moiety (Scheme 5, 8a−
d, Scheme S9), sterically more demanding residues typically
resulted in high er values (e.g., 8b, 95%, er = 91:9; 8c, 52%, er
= 97:3, Table S2), albeit in partially lower yields.

Scheme 3. Performance Evaluation of Catalyst Library and Additivesa

aReaction conditions: n(5a) = 0.3 mmol, photocat. = 10 mol %, sulfur cat. = 5 mol %, c(5a) = 0.1 M, Temp. = 18 °C, ambient air, 465 nm LED lamps;
yields refer to isolated compounds. bn(5a) = 0.5 mmol.

Scheme 4. Substrate Scope of Enantioselective Photoredox-
Catalytic Lactonizationa

aReaction conditions: n(5b−s) = 0.5 mmol, photocat. = 10 mol % (Ar =
4-methoxyphenyl), 1i = 10 mol %, sulfur cat. = 5 mol %, c(5b−s) = 0.1
M (MeCN), (SiMe3)2 = 100 mol %, Temp. = 18 °C, ambient air, 465
nm LED lamps. All substrates are E-configured. Yields refer to isolated
compounds. bReaction was performed with 10 mol % of selenium
catalyst 1d.
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Overall, the mesityl group of substrate 7b turned out to be
the best compromise between yield and selectivity (Scheme
S9). Modification of the Ph residue (8b) with different
functional groups such as p-CO2Me (8e), p-CF3 (8f), p-Cl
(8g), and p-CN (8h) resulted in good selectivities (er = 92:8
to 94:6). In addition to secondary alkenes 7i−7k, tertiary
alkene 7l was also tolerated, which gave a 6.5:1 mixture of 3-
pyrroline 8l and its pyrrolidine isomer but otherwise similar
results to the former alkenes (i.e., yields from 41 to 71% and er
from 89:11 to 91:9). Two observations are noteworthy in this
context: (1) only trace amounts of products 8 were obtained
when the sulfur cocatalyst was omitted (e.g., 8a, 65% with S-
cat. vs 6% without S-cat.). This finding underscores the
importance of the sulfur species in the asymmetric, photo-
aerobic cyclofunctionalization of alkenes.31 (2) For substrates
7a−h, we found that our ternary catalyst system was able to
convert E/Z-mixtures with varying ratios (Schemes 5 and S9)
into products 8a−h with good enantioselectivity. To the best
of our knowledge, this feature is unique to this photocatalytic
protocol, as related methods strictly rely on purely E-
configured substrates.22 Control experiments showed that the
stereoconvergence most likely results from rapid Z-to-E-
isomerization of the substrates prior to selenium-catalyzed
conversion into products 8a−h (Scheme S9 and Figure S7).
To eventually showcase the practicality and applicability of

the asymmetric photoaerobic selenium-π-acid catalysis in a
synthetic context, we implemented the title protocol in a
concise enantioselective synthesis of protected trans-2,3-cis-3,4-
dihydroxyproline (11) (Scheme 6). 3,4-Dihydroxyprolines are
frequently found in living organisms serving as constituents, for
instance, in cell walls of diatoms, in fungal toxins, or in
adhesive proteins of mussels, and are also associated with

inhibitory activities toward glucosidase enzymes.51,52 Asym-
metric syntheses of 3,4-dihydroxyprolines have been accom-
plished, inter alia, by Martiń et al. in 200253 and Davies et al. in
200654 in 9 and 12 steps, respectively. We reasoned that 3-
pyrrolines 8b not only provide the full carbon skeleton of the
target compound but also offer an expedient functional group
pattern to install the requisite periphery around the pyrrolidine
core under substrate stereocontrol. We started with the
formation of a phosphonium salt derived from commercial 3-
bromopropyl hydrobromide (9), followed by the Wittig
reaction and N-sulfonylation to generate 7b in a 91% yield
as an isomeric mixture (E/Z = 1:5.7, Scheme 6). Upon
enantioselective cycloamination (81%, er = 91:9), 8b was syn-
dihydroxylated with OsO4 and potassium ferricyanide and
subsequently converted into acetonide 10 with an er of 91:9.
Oxidative degradation of the phenyl group into a free
carboxylic acid afforded target 11 in a total number of 7
steps and an overall yield of 20%, which represents the shortest
enantioselective synthesis of this compound class to date.

■ CONCLUSIONS
In summary, we have developed a modular approach toward
chiral, nonracemic spirobiindane selenium-π-acid catalysts,
which enable for the first time very enantioselective aerobic
photoredox-catalytic cyclofunctionalizations of simple, non-
directing alkenes. Through ternary disulfide cocatalysis, a
broad series of enoic acids and unsaturated sulfonamides were
cyclized into enantiomerically highly enriched butenolides and
3-pyrrolines, respectively, with very good tolerance for both
conjugated and nonconjugated alkene substrates as well as
excellent 5-endo-trig selectivity. Mechanistically, the sulfur
cocatalyst is proposed to serve two critical purposes (Schemes
S11 and S12):31 (1) in combination with the photoredox
cocatalyst, the disulfide is believed to function as an electron
transfer catalyst that interacts with selenenylated intermediates
in the catalytic cycle. (2) The disulfide presumably accelerates
the final step in the catalytic cycle (i.e., β-elimination),31,49

which seems rate limiting under the title conditions. Future
efforts will be directed toward a generalized applicability of
chiral selenium-π-acids in air-driven photoredox-multicatalytic
regimes such as enantioselective intermolecular allylic
functionalizations and 1,2-difunctionalizations.
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