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Abstract

In inflammation, pro-inflammatory cytokines and bacterial products induce the production of high amounts of NO by
inducible nitric oxide synthase (iNOS) in inflammatory and tissue cells. NO is an effector molecule in innate immunity, and it
also has regulatory and pro-inflammatory/destructive effects in the inflammatory process. Protein kinase Cd (PKCd) is an
important signaling protein regulating B lymphocyte functions, but less is known about its effects in innate immunity and
inflammatory gene expression. In the present study we investigated the role of PKCd in the regulation of iNOS expression in
inflammatory conditions. NO production and iNOS expression were induced by LPS or a combination of cytokines IFNc, IL-
1b, and TNFa. Down-regulation of PKCd by siRNA and inhibition of PKCd by rottlerin suppressed NO production and iNOS
expression in activated macrophages and fibroblasts. PKCd directed siRNA and inhibition of PKCd by rottlerin suppressed
also the expression of transcription factor IRF1, possibly through inhibition of STAT1 activation. Accordingly, down-
regulation of IRF1 by siRNA reduced iNOS expression in response to inflammatory stimuli. In addition, inhibition of PKCd
showed anti-inflammatory effects in carrageenan induced paw inflammation in mice as did iNOS inhibitor L-NIL. These
results suggest that inhibitors of PKCd have anti-inflammatory effects in disease states complicated by enhanced NO
production through iNOS pathway.
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Introduction

Nitric oxide (NO) is a gaseous signaling molecule that regulates

various physiological and pathophysiological processes in the

human body. The production of NO is increased in inflammation,

and it is known to act as a regulatory and pro-inflammatory

modulator in several inflammatory diseases [1–4]. NO is

synthesized from L-arginine by three nitric oxide synthase (NOS)

enzymes; endothelial NOS (eNOS), inducible NOS (iNOS), and

neuronal NOS (nNOS). eNOS and nNOS are constitutively

expressed and responsible for the low physiological production of

NO. Expression of iNOS is induced in response to e.g. bacterial

products and pro-inflammatory cytokines. Once expressed, iNOS

produces high amounts of NO for a prolonged period of time

[2,5]. iNOS expression is regulated mainly at transcriptional level,

but also post-transcriptional regulation has been reported [1,3,6].

Nuclear factor kB (NF-kB), and interferon response factor-1

(IRF1) are important transcription factors in iNOS expression [7–

11]. Compounds that inhibit iNOS activity or iNOS expression

have anti-inflammatory properties in various in vitro and in vivo

models [12].

Protein kinase C (PKC) is a family of serine-threonine protein

kinase isoenzymes that represent one of the major signal

transduction systems in inflammation. Based on the differences

in the chemical structure and substrate requirements, the PKC

isoenzymes have been classified into three groups. Conventional

isoenzymes (a, bI, bII, and c) are calcium dependent, and they

require diacylglycerol and phosphatidylserine for activation. Novel

isoenzymes (d, e, g and h) are calcium independent, but need

diacylglycerol and phosphatidylserine for activation. Atypical

isoenzymes (j and ĩl) are independent of both calcium and

diacylglycerol for activation [13,14].

The most extensively studied isoenzyme of the novel group is

PKCd. It is ubiquitously expressed and has been shown to regulate

cell growth, differentiation and apoptosis, and immune response

[15,16]. Studies with PKCd knockout mice show that PKCd is an

important regulator of B lymphocyte functions [17,18]. PKCd
knockout mice develop and reproduce normally but have

increased number of B cells in spleen and other peripheral organs.

The mice die prematurely due to a severe autoimmune disease,

and the alterations in B cells suggest that PKCd plays a role in the

production of immunological tolerance [19]. Less is known about

the role of PKCs, especially PKCd in innate immunity and in the

regulation of expression of inflammatory genes in activated

macrophages and tissue cells. The aim of the present study was

to investigate the hypothesis that PKCd is involved in the

regulation of iNOS expression in inflammatory conditions. The

results suggest that PKCd up-regulates the expression of

transcription factor IRF1, possibly through activation of tran-
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scription factor STAT1 (signal transducer and activator of

transcription 1). This is further reflected as enhanced expression

of iNOS in activated macrophages and fibroblasts. The role of

PKCd in the development of acute inflammation also in vivo was

supported by the present finding that PKCd inhibitor rottlerin

suppressed carrageenan induced paw inflammation in the mouse,

as did iNOS inhibitor L-NIL.

Materials and Methods

Materials
Reagents were purchased as follows: rabbit polyclonal iNOS, b-

actin, lamin A/C, and PKCd antibodies and HPR-conjugated

goat polyclonal anti-rabbit IgG antibodies were from Santa Cruz

Biotechnology Inc. (Santa Cruz, CA, USA). IRF1 antibody was

from R&D Systems Europe Ltd (Abingdon, UK). PKCd siRNA,

IRF1 siRNA, non-targeting control siRNA, and DharmaFECT

transfection reagents were from Thermo Fisher Scientific (Lafay-

ette, CO, USA). Rottlerin and all other reagents were from Sigma-

Aldrich (St. Louis, MO, USA).

Cell culture
Murine J774.2 macrophages (European Collection of Cell

Cultures, Porton Down, Wiltshire, UK) were cultured at 37uC in

5% CO2 atmosphere and grown in Dulbecco’s modified Eagle’s

medium with Ultraglutamine 1 (Lonza, Verviers Sprl, Verviers,

Belgium) supplemented with 5% heat-inactivated foetal bovine

serum (Lonza), 100 U/ml penicillin, 100 mg/ml streptomycin and

250 ng/ml amphotericin B (all from Invitrogen, Paisley, UK).

Murine L929 fibroblasts (CCL-1; American Type Culture

Collection, Manassas, VA, USA) were cultured at 37uC in 5%

CO2 atmosphere and grown in Eagle’s minimum essential

medium with L-glutamine containing 10% heat-inactivated foetal

bovine serum and supplemented with sodium bicarbonate

(0.15%), non-essential amino acids (1 mM each), sodium puryvate

(1 mM) (all from Lonza) and 100 U/ml penicillin, 100 mg/ml

streptomycin and 250 ng/ml amphotericin B (all from Invitrogen).

Cells were seeded on 24-well plates for siRNA and Western blot

experiments, RT-PCR, ELISA, and nitrite measurements, and on

10 cm dishes for extraction of nuclear proteins. Cells were grown

for 48 h (L929) or 72 h (J774) to confluence prior to the

experiments.

Cytotoxicity of tested compounds was ruled out by measuring

cell viability using Cell Proliferation Kit II (Roche Diagnostics,

Mannheim, Germany).

NF-kB, GAS (STAT1) and IRF1 reporter experiments
The luciferase reporter constructs to study NF-kB [pNFkB(luc)-

neo] and STAT1 [pGAS(luc)neo] mediated transcription were

provided by Professor Hartmut Kleinert at the Johannes

Gutenberg University, Mainz, Germany. pNFkB(luc)neo con-

tained five NF-kB binding sites and pGAS(luc)neo four STAT1

binding c-activated sites (GASs) to drive luciferase expression. The

plasmids contained a neomycin resistance gene under the control

of TK promoter for mammalian selection.

For NF-kB reporter experiments, L929 cells were stably

transfected with pNFkB(luc)neo reporter plasmid using Lipofecta-

mine 2000 (Invitrogen) according to the manufacturer’s instruc-

tions. Transfected cells were selected with G 418 disulphate salt

(800 mg/ml) treatment (Sigma–Aldrich). After the selection, the

survived clones were pooled to give rise to L929 pNF-kB cell line

and further cultured in the presence of 400 mg/ml of G 418.

For STAT1 reporter experiments, L929 cells were transiently

transfected with pGAS(luc)neo reporter plasmid using Lipofecta-

mine 2000 according to the manufacturer’s instructions. Briefly,

transfection complexes were prepared by mixing 0.8 mg of plasmid

DNA and 2 mL of Lipofectamine 2000 in 100 mL of serum-free

culture medium without antibiotics, and the mix was incubated in

room temperature for 30 min. The mix containing transfection

complexes was then added to the cells, and the cells were further

incubated for 24 h before the experiments were started. After the

experiments, luciferase activity was measured by luminometer

using Luciferase Assay System (Promega, Madison, WI, USA).

IRF1 reporter experiments were carried out by using IRF1

CignalTM Pathway Reporter Kit (QIAGEN, Helsinki, Finland).

L929 cells were transfected with IRF1 reporter according to the

manufacturer’s instructions. Transfection complexes were pre-

pared by mixing 0.2 mg of plasmid DNA and 0.5 mL of

Lipofectamine 2000 in 50 mL of serum-free culture medium

without antibiotics, and the mix was incubated in room

temperature for 30 min. Transfection complexes were then added

to the cells, and the cells were further incubated for 24 h before

the experiments were started. After the experiments, firefly and

Renilla luciferase activities were measured by luminometer using

Dual-GloHLuciferase Assay System (Promega).

Down-regulation of PKCd and IRF1 by siRNA
PKCd expression in L929 cells was down-regulated using

Dharmacon ON TARGET plus SMARTpool siRNA oligos. Cells

were grown to ,80% confluence and transfected with PKCd-

specific siRNA or non-targeting control siRNA using Dharma-

FECT 1 transfection reagent according to manufacturer’s

instructions (Thermo Fisher Scientific).

In J774 cells the expression of PKCd and IRF1 were down-

regulated using Dharmacon ON TARGET plus siRNA oligos (J-

040147-06 and L-046743-01, respectively). Cells were grown to

,80% confluence and transfected with PKCd or IRF1siRNA or

non-targeting control siRNA using DharmaFECT 4 transfection

reagent according to manufacturer’s instructions (Thermo Fisher

Scientific). After 24 h incubation, the transfection medium was

replaced with fresh culture medium.

Forty-eight hours after the transfection, the experiments were

started and stimulants with or without rottlerin were added in

fresh culture medium. Down-regulation of the target geneby

siRNA was determined from samples extracted at the beginning of

the experiments. Down-regulation of PKCd and IRF1 by siRNA

was approximately 80% as compared to those with non-targeting

control siRNA (Figure S1).

Nitrite assays
The effects of the tested compounds on the ability of the cells to

produce NO was determined by measuring the accumulation of

nitrite, a stable metabolite of NO, in the culture medium by the

method of Griess [20].

Western blotting
At indicated time points, cells were rapidly washed with ice-cold

phosphate-buffered saline (PBS) and solubilized in cold lysis buffer

containing 10 mM Tris-base, pH 7.4, 5 mM EDTA, 50 mM

NaCl, 1% Triton X-100, 0.5 mM phenylmethylsulfonyl fluoride,

1 mM sodiumorthovanadate, 20 mg/ml leupeptin, 50 mg/ml

aprotinin, 5 mM NaF, 2 mM sodiumpyrophosphate and 10 mM

n-octyl-b-D-glucopyranoside. After incubation for 15 min on ice,

cell lysates were centrifuged (13 4006 g, 4uC, 10 min), superna-

tants were collected and stored in SDS sample buffer in 220uC.

An aliquot of the supernatant was used to determine protein

concentration by the Coomassie blue method [21].

Regulation of IRF1 and iNOS by PKCd
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Protein samples (20 mg of lysates) were analyzed according to

standard Western blotting protocol as described previously [22].

The membrane was incubated with the primary antibody in the

blocking solution at 4uC overnight, and with the secondary

antibody in the blocking solution for 1 h at room temperature.

Bound antibody was detected using Super SignalH West Pico or

Dura chemiluminescent substrate (Pierce, Rockford, USA) and

Image Quant LAS 4000 mini imaging system (GE Healthcare Bio-

Sciences AB). The quantitation of the chemiluminescent signal was

carried out with the use of Image Quant TL software (GE

Healthcare).

Electrophoretic mobility shift assay (EMSA)
Nuclear extracts for NF-kB EMSA were extracted as described

previously [23]. Cells were incubated with lipopolysaccharide

(LPS, 10 ng/ml) in the absence and presence of rottlerin (10 mM)

for 1 h prior to the extraction of nuclear proteins.

Transcription factor consensus oligonucleotides for NF-kB

(Promega, Madison, WI, USA) were 59-32P-end-labeled with

DNA 59-End Labeling Kit (Roche Diagnostics, Indianapolis, IN,

USA). For binding reactions, 5 mg of nuclear extract was

incubated in 20 ml of total reaction volume containing 0.1 mg/

ml (poly)dI-dC, 1 mM dithiothreitol, 10 mM Tris-HCl, pH 7.5,

1 mM EDTA, 40 mM KCl, and 10% glycerol for 20 min in room

temperature. 32P-labeled oligonucleotide probe (0.2 ng) was added

and the reaction mixture was incubated for 10 min. Protein -

DNA complexes were separated from DNA probe by electropho-

resis on a native 4% polyacrylamide gel. The gel was dried and

autoradiographed using intensifying screen at 270uC.

RNA extraction and quantitative RT-PCR
Total RNA extraction was carried out with the use of

GenEluteTM Mammalian Total RNA Miniprep Kit (Sigma-

Aldrich). Reverse-transcription of RNA to cDNA and PCR

reactions were performed as previously described [23]. For

luciferase mRNA experiments, total RNA was treated with DNase

I (Fermentas UAB, Vilnius, Lithuania) prior to conversion to

cDNA.

Primers and probes (Table S1) for luciferase, iNOS, interleukin-

6 (IL-6), tumor necrosis factor a (TNFa), and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH, used as a control gene) were

designed using Primer ExpressH Software (Applied Biosystems,

Foster City, CA, USA) and supplied by Metabion (Martinsried,

Germany). Expression of IRF1 mRNA was measured using

TaqManH Gene Expression Assay (Applied Biosystems, Foster

City, CA, USA).

Actinomycin D assay
Actinomycin D assay was performed to study the decay of iNOS

mRNA. L929 fibroblasts were incubated with a mixture of

cytokines interleukin-1b (IL-1b), interferon c (IFNc), and TNFa
(each 10 ng/ml) in the absence and presence of rottlerin (3 mM)

for 6 h before the addition of actinomycin D (2 mg/ml), an

inhibitor of transcription. Thereafter, RNA was extracted at

indicated time points and subjected to quantitative RT-PCR to

measure the remaining mRNA.

IL-6 and TNFa ELISA
IL-6 and TNFa were measured in the culture medium by

enzyme linked immunosorbent assay (ELISA) using reagents from

R&D Systems Europe Ltd (Abingdon, UK).

Carrageenan induced paw edema in mice
Anti-inflammatory effects of rottlerin in vivo were studied by

measuring carrageenan induced paw edema in male C57BL/6

mice (bred at the University of Tampere). The study was carried

out in accordance with the legislation for the protection of animals

used for scientific purposes (directive 2010/63/EU) and approved

by the National Animal Experiment Board (approval number

ESLH-2009-07700/Ym-23, granted September 23, 2009). Paw

edema was induced under anesthesia and all efforts were made to

minimize suffering.

Animals were housed under conditions of optimum light,

temperature and humidity (12:12 h light–dark cycle, 2261uC, 50–

60%) with food and water provided ad libitum. Mice were

randomly divided into three groups: control group, L-NIL group

(50 mg/kg) and rottlerin group (10 mg/kg), with 6 mice in each

group. Two hours before carrageenan the mice were treated with

200 ml of normal saline or the drug tested by intraperitoneal

injection. The mice were anesthesized by intraperitoneal injection

of 0.5 mg/kg of medetomide (DomitorH 1 mg/ml. Orion Oyj,

Espoo, Finland) and 75 mg/kg of ketamine (KetalarH 10 mg/ml,

Pfizer Oy Animal Health, Helsinki, Finland), and thereafter the

mice received a 30 ml intradermal injection in one hindpaw of

normal saline containing l-carrageenan (1.5%). The contralateral

paw received 30 ml of saline and it was used as a control. Edema

was measured before and three and six hours after carrageenan

injection by using plethysmometer (Ugo Basile, Comerio, Italy).

Edema is expressed as the difference, in ml, between the volume

changes of the carrageenan treated paw and the control paw.

Statistics
Results are expressed as mean+standard error of mean (SEM).

Statistical significance of the results was calculated by one-way

ANOVA with Dunnett’s or Bonferroni’s post test. Differences

were considered significant at *p,0.05, **p,0.01, ***p,0.001.

Results

Effects of PKCd on nitric oxide production and iNOS
expression

NO production and iNOS protein expression was induced by

incubation with bacterial endotoxin LPS (10 ng/ml, J774 macro-

phages) or with a mixture of cytokines (IL-1b, IFNc, and TNFa,

10 ng/ml each, L929 fibroblasts). To determine the effect of

PKCd inhibition on NO production and iNOS expression, the

cells were treated with LPS or the mixture of cytokines in the

absence and presence of rottlerin, an inhibitor of PKCd for 24 h.

Rottlerin decreased NO production (Fig. 1A–B) and iNOS

expression (Fig. 2A–B) in a dose-dependent manner.

The effect of PKCd on NO production and iNOS expression

was also studied by silencing PKCd with siRNA. PKCd siRNA

resulted in .80% suppression in PKCd protein levels (Figure S1).

Silencing of PKCd clearly decreased NO production (Fig. 1C–D)

and iNOS expression (Fig. 2C–D) in response to inflammatory

stimuli as compared to cells treated with non-targeting control

siRNA. In addition, when PKCd was down-regulated with siRNA,

rottlerin had no effect on NO production or iNOS expression

suggesting that the inhibitory action of rottlerin on iNOS

expression and NO production was most likely dependent on its

inhibitory effect on PKCd.

Effects of PKCd on the degradation of iNOS protein
In order to find out whether PKCd inhibition affects iNOS

synthesis or degradation of iNOS protein, the effect of PKCd
inhibitor rottlerin on iNOS protein degradation was studied. Since

Regulation of IRF1 and iNOS by PKCd
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iNOS protein has been shown to be degraded by the proteasome

[24–26], we investigated the effect of rottlerin on LPS-induced

iNOS expression in the presence of a proteasome inhibitor

lactacystin. LPS increased the expression of iNOS protein and this

was further enhanced by lactacystin (Fig. 3). However, rottlerin

decreased the expression of iNOS protein in LPS treated cells as

well as in LPS and lactacystin treated cells suggesting that rottlerin

does not alter proteasome-mediated degradation of iNOS protein.

Effects of PKCd on iNOS mRNA expression and stability
In the further studies, we investigated the effect of PKCd

inhibition on cytokine-induced expression of iNOS mRNA.

Rottlerin had no effect on iNOS mRNA expression when

measured at an early time point (4 h), but when measured at a

later time point (10 h), rottlerin decreased iNOS mRNA

expression significantly (Fig. 4A). Next we studied the effect of

PKCd down-regulation by siRNA on LPS-induced iNOS mRNA

expression and in these experiments, we noticed a similar pattern.

At an early time point PKCd siRNA did not affect the level of

iNOS mRNA, but at a later time point PKCd siRNA decreased

the level of iNOS mRNA when compared to cells transfected with

non-targeting control siRNA (Fig. 4B).

In addition to the transcriptional regulation, iNOS expression is

regulated also at the level of mRNA stability [27–30]. Therefore,

the effect of PKCd inhibition on the degradation of iNOS mRNA

was studied in an actinomycin D assay. Cells were treated with the

mixture of cytokines in the absence and presence of rottlerin

(3 mM) for 12 h before the addition of actinomycin D (2 mg/ml),

an inhibitor of transcription. Thereafter the cells were further

incubated for 2, 4, 6, and 18 h before the total RNA was

extracted. PKCd inhibition had no effect on iNOS mRNA decay

in quantitative RT-PCR analysis (Fig. 4C).

Figure 1. Effect of PKCd on NO production. (A) Effects of rottlerin on LPS-induced NO production in J774 macrophages was measured after 24 h
incubation as nitrite accumulated in the culture medium by the method of Griess. Values are mean+SEM, n = 4. (B) Effects of rottlerin on cytokine-
induced (IL-1b, IFNc, and TNFa) NO production in L929 fibroblasts after 24 h incubation. Values are mean+SEM, n = 4. (C) J774 macrophages were
transiently transfected with PKCd siRNA using DharmaFECT 4 transfection reagent. Treatment with non-targeting siRNA was used as control.
Macrophages were stimulated with LPS for 24 h before the NO production was measured. Values are mean+SEM, n = 3. (D) L929 fibroblasts were
transiently transfected with PKCd siRNA using DharmaFECT 1 transfection reagent and treatment with non-targeting siRNA was used as control. L929
fibroblasts were stimulated with a combination of cytokines (IL-1b, IFNc, and TNFa) and treated with PKCd inhibitor rottlerin for 24 h before NO
production was measured. Values are mean+SEM, n = 7,** p,0.01.
doi:10.1371/journal.pone.0052741.g001

Regulation of IRF1 and iNOS by PKCd

PLOS ONE | www.plosone.org 4 January 2013 | Volume 8 | Issue 1 | e52741



Effects of PKCd on transcription factor NF-kB
To evaluate whether the effect of PKCd inhibition on iNOS

mRNA expression could be due to its effects on nuclear factor kB,

which is an important transcription factor for iNOS [8], we

measured the effect of PKCd inhibition on the activation of NF-kB

by EMSA. Rottlerin had no effect on LPS-induced NF-kB

activation or binding activity (Fig. 5A).

In addition, the effect of rottlerin was studied on NF-kB

mediated transcription in L929 pNFkB cell line, which was stably

transfected with luciferase reporter gene under the control of NF-

kB-responsive promoter. Similarly to results obtained from

EMSA, inhibition of PKCd by rottlerin had no effect on NF-kB-

dependent transcription induced by the mixture of cytokines, while

IkB kinase inhibitor BMS3445541 inhibited luciferase mRNA

expression (Fig. 5B).

Effects of PKCd on transcription factors IRF1 and STAT1
IRF1 is an important transcription factor for iNOS, but in

contrast to NF-kB, IRF1 has been shown to act as a later phase

transcription factor [7,9]. Since the pharmacological inhibition or

siRNA-mediated down-regulation of PKCd decreased iNOS

mRNA levels particularly in the later time points, we studied the

Figure 2. Effects of PKCd on iNOS protein expression. (A) J774 macrophages were stimulated with LPS and treated with increasing
concentrations of rottlerin. (B) L929 fibroblasts were stimulated with a combination of cytokines (IL-1b, IFNc, and TNFa) and treated with increasing
concentrations of rottlerin. (C) J774 macrophages were transiently transfected with PKCd siRNA using DharmaFECT 4 transfection reagent and
treatment with non-targeting siRNA was used as control. Thereafter the macrophages were stimulated with LPS and treated with rottlerin. (D) L929
fibroblasts were transiently transfected with PKCd siRNA using DharmaFECT 1 transfection reagent and treatment with non-targeting siRNA was used
as control. Thereafter L929 fibroblasts were stimulated with a combination of cytokines (IL-1b, IFNc, and TNFa). After 24 h, incubations were
terminated and immunoblots were run using iNOS specific antibody. Actin was determined as a loading control. Chemiluminescent signal was
quantified as described under the Methods section. Values are mean+SEM, n = 3 (n = 4 in A), **p,0.01.
doi:10.1371/journal.pone.0052741.g002

Regulation of IRF1 and iNOS by PKCd
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effects of PKCd on IRF1. Silencing of PKCd by siRNA as well as

PKCd inhibitor rottlerin suppressed IRF1 expression in cells

activated with LPS (Fig. 6A–B). To study if the inhibition of IRF1

expression would have expected functional consequences, we

measured the effect of PKCd inhibitor rottlerin on the transcrip-

tional activity of IRF1 in L929 cells transfected with constructs

containing luciferase reporter gene under the control of IRF1-

responsive promoter. Rottlerin clearly inhibited cytokine-induced

IRF1-dependent transcription in the reporter gene experiments

(Fig. 6C).

In cells exposed to inflammatory stimuli, IRF1 has been shown

to be up-regulated partly directly and partly through enhanced

STAT1 activation [31]. Therefore we investigated the effects of

PKCd inhibitor rottlerin on STAT1 mediated transcription in

L929 cells. Cells were transiently transfected with a construct

containing luciferase reporter gene under the control of STAT1-

responsive promoter. STAT1-mediated transcription was signifi-

cantly increased when cytokines were added into the culture and

PKCd inhibitor rottlerin inhibited the CM-induced STAT1-

dependent transcription when measured by the reporter gene

assay in L929 cells (Fig. 6D).

Effects of IRF1 siRNA on the expression of iNOS, IL-6 and
TNFa

To confirm the role of transcription factor IRF1 in iNOS

expression, we studied the effects of down-regulation of IRF1 by

siRNA on iNOS mRNA and protein expression. IRF1 siRNA

resulted in more than 80% suppression in IRF1 protein levels in

LPS treated cells (Figure S1). Down-regulation of IRF1 by siRNA

clearly inhibited LPS-induced iNOS mRNA (Fig. 7A) and protein

expression (Fig. 7B). We investigated the effects of IRF1 down-

regulation also on IL-6 and TNFa expression because IRF1 has

been shown to be an important transcription factor for IL-6 but

not to regulate TNFa expression [7,32]. Indeed, down-regulation

of IRF1 by siRNA inhibited also LPS-induced IL-6 but not TNFa
mRNA expression (Fig. 7C–D).

Effects of PKCd on IL-6 and TNFa production
In order to study whether PKCd affects the production of other

IRF1-responsive inflammatory factors, we measured the produc-

tion of IL-6 in cells treated with PKCd siRNA. Down-regulation of

PKCd by siRNA decreased LPS-induced IL-6 production when

compared to cells treated with non-targeting control siRNA

(Fig. 8A). In contrast, down-regulation of PKCd by siRNA had no

effect on LPS-induced TNFa production (Fig. 8B) mimicking the

effects of IRF1 down-regulation.

Effects of rottlerin on carrageenan induced paw
inflammation in mice

In order to investigate if the anti-inflammatory effects of

inhibition of PKCd could be translated also to an in vivo situation,

we investigated the effects of rottlerin in comparison to iNOS

inhibitor L-NIL in carrageenan-induced paw inflammation in the

mouse. Intradermal injection of carrageenan has been reported to

cause an acute inflammatory response which is partly mediated by

increased NO production as evidenced by the anti-inflammatory

effect of iNOS inhibitors in the model [33,34]. That was also true

in our hands. Intraperitoneal administration of iNOS inhibitor L-

NIL (50 mg/kg) reduced carrageenan induced paw edema by

50% and 75% when measured three and six hours following

carrageenan injection, respectively. Interestingly, PKCd inhibitor

rottlerin (10 mg/ml) had also a very clear anti-inflammatory effect,

which resembled that of L-NIL and achieved over 75% inhibition

of the carrageenan induced paw inflammation when measured at

six hours following carrageenan injection (Fig. 9).

Discussion and Conclusions

PKCd is known to regulate lymphocyte functions, but less is

known about its effects in innate immunity and on the regulation

of the expression of inflammatory genes. In the present study, we

investigated the role of a novel isoenzyme PKCd in the regulation

of iNOS expression and NO production in inflammatory

conditions by using PKCd targeted siRNA and a pharmacological

PKCd inhibitor. The results suggest that PKCd contributes to the

induction of IRF1, possible through activation of STAT1, and by

this way enhanced the expression of iNOS. We also show that the

inhibition of PKCd attenuated the acute inflammatory response in

carrageenan induced paw inflammation in vivo as did the iNOS

inhibitor L-NIL.

Stimulation of J774 macrophages with LPS induced iNOS

expression and NO production and they were reduced by silencing

PKCd with siRNA and by inhibiting of PKCd by rottlerin. In cells

where PKCd had been down-regulated by siRNA, rottlerin had no

effect on iNOS expression. Rottlerin and PKCd siRNA had

similar effects also in L929 fibroblasts, where they were shown to

reduce cytokine-induced NO production and iNOS expression.

Rottlerin, a natural compound isolated from Mallotus phillippinensis,

was first described as a PKCd selective inhibitor by Gschwendt

and coworkers [35]. Later, it has been reported that rottlerin

inhibits also other kinases, e.g. PDK1 and PKA [36,37]. In the

current study, the inhibitory effect of rottlerin on iNOS expression

and NO production seemed to be mediated mostly through

PKCd, since the effects of rottlerin were in line with the effects of

PKCd specific siRNA in two different cell lines. Furthermore,

rottlerin did not have additional inhibitory effect on iNOS

Figure 3. Effects of PKCd inhibitor rottlerin on the degradation
of iNOS protein. J774 macrophages were treated with LPS and
rottlerin for 8 h before the addition of proteasome inhibitor lactacystin.
After 6 h, incubations were terminated and immunoblots were run
using iNOS specific antibody. Actin was determined as a loading
control. Chemiluminescent signal was quantified as described under
the Methods section. Values are mean+SEM, n = 3.
doi:10.1371/journal.pone.0052741.g003
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expression in cells in which PKCd had been down-regulated with

siRNA.

In the further experiments, the effect of PKCd silencing on the

expression of iNOS mRNA was evaluated. In these experiments,

rottlerin and PKCd siRNA had no effect on iNOS mRNA

expression when measured at the early time points, but reduced

iNOS mRNA expression at the later time points. It is known that

iNOS expression is regulated by post-transcriptional mechanisms,

especially through the regulation of iNOS mRNA stability.

Indeed, the 39-untranslated region of murine iNOS mRNA

contains adenylate- and uridylate- (AU-) rich elements, which are

Figure 5. Effect of PKCd on NF-kB activity. (A) J774 cells were
stimulated with LPS and treated with rottlerin for 30 min before the
preparation of nuclear extracts. NF-kB DNA binding activity was
analyzed by EMSA. Gels shown are representatives of three others
with similar results. (B) L929 cells were transfected with NF-kB reporter
to form L929 pNF-kB cell line. The transfected cells were stimulated
with a combination of cytokines (IL-1b, IFNc, and TNFa) and treated
with rottlerin for 1 h before the total mRNA was extracted and
subjected to RT-PCR. Luciferase mRNA levels were normalized against
GAPDH mRNA. IkB kinase inhibitor BMS3445541 was used as a control
agent to inhibit NF-kB mediated transcription. Values are mean+SEM,
n = 4. **p,0.01.
doi:10.1371/journal.pone.0052741.g005

Figure 4. Effect of PKCd on iNOS mRNA expression and
stability. (A) L929 fibroblasts were stimulated with a combination of
cytokines (IL-1b, IFNc, and TNFa) and treated with PKCd inhibitor
rottlerin for 4 or 10 h. At indicated time points incubations were
terminated and extracted total RNA was subjected to RT-PCR. (B) J774
macrophages were transiently transfected with PKCd siRNA using
DharmaFECT 4 transfection reagent. Treatment with non-targeting
siRNA was used as control. Macrophages were stimulated with LPS for 3

or 9 h before incubations were terminated and extracted total RNA was
subjected to RT-PCR. (C) L929 fibroblasts were activated by a
combination of cytokines (IL-1b, IFNc, and TNFa) and treated with
rottlerin. After 6 h, actinomycin D (2 mg/ml) was added into the cell
culture to stop transcription. Incubations were terminated at indicated
time points after actinomycin D and extracted total RNA was subjected
to RT-PCR. iNOS mRNA levels were normalized against GAPDH mRNA.
Values are mean+SEM, n = 3. *p,0.05.
doi:10.1371/journal.pone.0052741.g004
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known to control mRNA stability of many transiently expressed

genes [38–40]. We have previously shown that glucocorticoid

dexamethasone [27] and the inhibition of JNK signaling [29,41]

reduced iNOS expression by enhancing iNOS mRNA decay.

However, in the present study PKCd inhibitor rottlerin was not

found to affect iNOS mRNA decay, suggesting that PKCd does

not regulate iNOS mRNA stability in the inflammatory conditions

studied.

Regulation of protein degradation is another mechanism of

post-transcriptional regulation of iNOS expression. Since iNOS

protein has been shown to be degraded by the proteasome [24–

26], we studied whether the effect of rottlerin could be reversed

with proteasome inhibitor lactacystin [42]. Lactacystin itself

enhanced iNOS protein levels, as expected and as previously

reported [24–26]. Lactacystin, however, did not reverse or

diminish the effect of rottlerin. This suggested that the reduction

of iNOS expression by rottlerin is not due to enhanced

proteasomal degradation of iNOS protein.

The expression of iNOS is tightly regulated also at the

transcriptional level. One of the most important transcription

factors for iNOS, especially at the early phase of transcription, is

NF-kB [8,43]. In our hands, rottlerin had no effect on the

Figure 6. Effect of PKCd on the expression of transcription factor IRF1 and on IRF1 and STAT1 mediated transcription. (A) J774
macrophages were transiently transfected with PKCd siRNA using DharmaFECT 4 transfection reagent and treatment with non-targeting siRNA was
used as control. Macrophages were stimulated with LPS for 4 h before incubations were terminated and extracted total RNA was subjected to RT-
PCR. IRF1 mRNA levels were normalized against GAPDH mRNA. Values are mean+SEM, n = 6. (B) J774 macrophages were stimulated with LPS and
treated with rottlerin for 4 h before incubations were terminated and extracted total RNA was subjected to RT-PCR. IRF1 mRNA levels were
normalized against GAPDH mRNA. Values are mean+SEM, n = 3. (C) L929 cells were transfected with IRF1 reporter. At 24 h post transfection culture
media was changed and cells were incubated with compounds of interest for 6 h. Firefly and Renilla luciferase activities were then measured by
luminometer using Dual-GloHLuciferase Assay System. Firefly luciferase activity was normalized to Renilla luciferase activity. Values are mean+SEM,
n = 8–10. (D) L929 cells were transiently transfected with STAT1 reporter. At 24 h post transfection culture media was changed and cells were
incubated with compounds of interest for 6 h. Thereafter luciferase activity in cell lysates was measured by luminometer using Luciferase Assay
System. Values are mean+SEM, n = 4. *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0052741.g006
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activation of NF-kB or on NF-kB mediated transcription,

although PKCd has previously been shown to regulate iNOS

expression in an NF-kB dependent manner [44]. IRF1 is another

key transcription factor for iNOS. In macrophages and glial cells

from IRF1 knockout mice, LPS and IFNc-induced iNOS mRNA

expression was markedly reduced when compared to wild type

cells [7,9]. However, the role of IRF1 in iNOS induction seems to

be tissue-specific, since IRF1 is not required for iNOS expression

in murine chondrocytes or pancreatic islet cells [45,46]. Unlike

NF-kB, IRF1 is not constitutively present in the cytosol in an

inactive form, but it is synthesized de novo by inflammatory

stimulation [47]. Thus, the activation of IRF1 is usually slower

than that of NF-kB. In J774 macrophages, a marked increase in

IRF1 mRNA was seen 4 h after addition of LPS, so IRF1 can well

be considered as a later phase transcription factor for iNOS.

Interestingly, IRF1 expression was clearly reduced by both the

down-regulation of PKCd by siRNA and by the PKCd inhibitor

rottlerin. The signaling pathway leading to activation of IRF1 has

been studied with the emphasis on IFN stimulated cells [48,49]. It

has been shown, by using macrophages from STAT1 deficient

mice, that INFc, and to a lesser extent IFNãb, induce IRF1 gene

expression through activation of STAT1 [49–51]. Gao et al. [31]

proposed that when murine macrophages were stimulated with

LPS, IRF1 was activated partly directly and partly through

increased synthesis of IFNãb and activation of STAT1. Therefore,

we studied the effects of PKCd inhibitor rottlerin on STAT1

activation. We observed a reduction in STAT1 mediated

transcription as measured by STAT1 reporter assay. These results

suggest that the effects of PKCd on iNOS expression could be

mediated through activation of STAT1 leading to the enhanced

expression and activity of IRF1, and finally, induction of iNOS.

IRF1 regulates also the production of IL-6 [32]. In our studies,

the down-regulation of IRF1 or PKCd by siRNA inhibited IL-6

expression. On the other hand, the production of TNFa has been

shown not to be regulated by IRF1 [7]. Accordingly, TNFa
expression in the present study was not affected in cells treated

with IRF1 siRNA or PKCd siRNA. These results further support

the conclusion that PKCd regulates the expression of transcription

Figure 7. Effect of IRF1 on the expression of iNOS, IL-6 and TNFa. (A) J774 macrophages were transiently transfected with IRF1 siRNA using
DharmaFECT 4 transfection reagent and treatment with non-targeting siRNA was used as control. Macrophages were stimulated with LPS for 4 h
before incubations were terminated and extracted total RNA was subjected to RT-PCR to measure iNOS mRNA expression. iNOS mRNA levels were
normalized against GAPDH mRNA. Values are mean+SEM, n = 4–5. (B) J774 macrophages were transiently transfected with IRF1 siRNA using
DharmaFECT 4 transfection reagent and treatment with non-targeting siRNA was used as control. Thereafter the macrophages were stimulated with
LPS. After 24 h, incubations were terminated and immunoblots were run using iNOS specific antibody. Gels shown are representatives of three others
with similar results. (C–D) J774 macrophages were transiently transfected with IRF1 siRNA using DharmaFECT 4 transfection reagent and treatment
with non-targeting siRNA was used as control. Macrophages were stimulated with LPS for 8 h (C) and 3 h (D) before incubations were terminated and
extracted total RNA was subjected to RT-PCR to measure IL-6 (C) and TNFa (D) mRNA expression. IL-6 and TNFa mRNA levels were normalized against
GAPDH mRNA. Values are mean+SEM, n = 4. ***p,0.001.
doi:10.1371/journal.pone.0052741.g007
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factor IRF1 and by this way contributes to the regulation of the

expression of IRF1-responsive inflammatory factors including

iNOS.

Further, we investigated whether the anti-inflammatory effects

of rottlerin seen in vitro could be translated to in vivo conditions. We

investigated the effects of rottlerin on carrageenan induced acute

paw inflammation model in the mouse. Intradermal injection of

carrageenan causes an acute inflammatory response, and this

response has been reported to be partly mediated by increased NO

production as shown by the anti-inflammatory effect of iNOS

inhibitors [33,34]. In the present study, iNOS inhibitor L-NIL

reduced the carrageenan induced acute inflammatory edema,

confirming that NO is involved in this inflammatory response.

Rottlerin showed to be effective also in vivo and it reduced the

carrageenan induced acute inflammatory paw inflammation

mimicking the effect of iNOS inhibitor L-NIL. In animal studies

using iNOS inhibitors or iNOS deficient mice, iNOS-dependent

NO production has been reported to contribute also to many

other inflammatory conditions, including lung inflammation and

the development of acute lung injury [52–54]. Also, lungs of the

patients with acute respiratory distress syndrome display high

levels of iNOS as well as extensive nitrotyrosine staining, which is a

marker of iNOS-dependent NO production in tissues [55].

Interestingly, the inhibition of PKCd has also been shown to

suppress acute lung inflammation. Intratracheal administration of

a specific PKCd-TAT peptide inhibitor lowered inflammatory

cytokine and chemokine levels in plasma and attenuated the

infiltration of inflammatory cells to the lung tissue and the

disruption of lung tissue architecture due to polymicrobial sepsis in

mice [56]. Our results support the assumption that PKCd
participates in the regulation of acute inflammatory response in

addition to adaptive immunity. Further, it is also possible that

PKCd inhibitors limit the development of tissue injury in acute

inflammation by attenuation of iNOS expression and NO

production. In the present study, we also found that PKCd
regulates the expression of IRF1 and IRF1 was found to mediate

the effects of PKCd on iNOS expression. IRF1 is also a key factor

in the regulation of adaptive immunity [57]. Whether PKCd
participates in the regulation of adaptive immune response

through IRF1, needs further studies.

In conclusions, we have shown that PKCd participates in the

regulation of NO production and iNOS expression in activated

macrophages and fibroblasts. We showed, for the first time, that

PKCd up-regulates transcription factor IRF1, possibly through

activation of transcription factor STAT1. IRF1 then enhances the

expression of iNOS, and most likely also other IRF1-dependent

genes, such as IL-6. In addition, inhibition of PKCd was found to

have anti-inflammatory properties also in vivo. Taken together,

these results suggest that PKCd inhibitors hold anti-inflammatory

properties in vitro and in vivo, making PKCd a potential target for

anti-inflammatory drug development.

Figure 8. Effect of PKCd on IL-6 and TNFa production. J774
macrophages were transiently transfected with PKCd siRNA using
DharmaFECT 4 transfection reagent. Treatment with non-targeting
siRNA was used as control. Macrophages were stimulated with LPS for
24 h before incubations were terminated and IL-6 (A) and TNFa
production (B) was determined by ELISA. Values are mean+SEM, n = 6
(A), n = 3 (B), ***p,0.001.
doi:10.1371/journal.pone.0052741.g008

Figure 9. Effect of rottlerin on carrageenan induced paw
inflammation model in mice. L-NIL and rottlerin were administered
i.p. 2 h prior to carrageenan (1.5%) was injected into a hind paw. Paw
edema was measured before, 3 h and 6 h after carrageenan injection.
Edema is expressed as the difference between the volume changes of
the carrageenan treated paw and the control paw (injected with saline).
Values are mean+SEM, n = 5–6, **p,0.01.
doi:10.1371/journal.pone.0052741.g009
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Supporting Information

Figure S1 Downregulation of PKCd and IRF1 by siRNA.
J774 macrophages (A) and L929 fibroblasts (B) were transiently

transfected with PKCd specific siRNA. (C) J774 macrophages

were transiently transfected with IRF1 specific siRNA. Non-

targeting siRNA (siCONTROL) was used as a control. The gels

shown are representatives of three others with similar results.

(TIF)

Table S1 Primer and probe sequences.
(DOCX)
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