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Abstract: Vision-based sensors are widely used in lateral control of autonomous vehicles, but the
large computational cost of the visual algorithms often induces uneven time delays. In this paper,
a hierarchical vision-based lateral control scheme is proposed, where the upper controller is designed
by robust H∞-based linear quadratic regulator (LQR) algorithm to compensate sensor-induced
delays, and the lower controller is based on logic threshold method, in order to achieve strong
convergence of the steering angle. Firstly, the vehicle lateral model is built, and the nonlinear
uncertainties induced by time delays are linearized with Taylor expansion. Secondly, the state
space of the system is augmented to describe such uncertainties with polytopic inclusions, which is
controlled by an H∞-based LQR controller with a low cost of online computation. Then, a lower
controller is designed for the control of the steering motor. According to the results of the vehicle
experiment as well as the hardware-in-the-loop (HIL) experiment, the proposed control scheme
shows good performance in vehicle’s lateral control task, and exhibits better robustness compared
with a conventional LQR controller. The proposed control scheme provides a feasible solution for the
lateral control of autonomous driving.

Keywords: autonomous driving; hierarchical controller; robust control; linear quadratic regulator
(LQR); lateral tracking control; vision sensors; uneven sensor delays

1. Introduction

Autonomous driving is an effective way to reduce traffic accidents and to enhance driving
experience. The basic purpose of the autonomous vehicle is to automatically drive the vehicle
along specific trajectories without the driver’s intervention [1]. Taking into account a simple case,
lane tracking, the task can be roughly summarized as making the vehicle follow the lane centerline or
any other planned path by determining and performing the desired input [1,2], and this is required by
all of levels of autonomous vehicles according to the outline of SAE-J3016 [3].

Assuming that all localization information is available, the path tracking becomes a motion control
problem of the vehicle, which mainly includes lateral control and longitudinal control [2]. The lateral
control aims to track a planned trajectory [4] through steer-by-wire (SBW) system or differential
braking system [5–9], while the longitudinal control is to achieve closed-loop velocity control through
drive-by-wire (DBW) and brake-by-wire system (BBW) [10]. Considering that longitudinal control
already has mature commercial applications, such as cruise control (CC) and adaptive cruise control
(ACC) [10,11], this study will mainly focus on the lateral control strategies.

There are a variety of lateral controllers, such as geometric and kinematic controller, dynamic
controller, optimal controller, model-based controller, and intelligent controller [1]. Geometric and
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kinematic controllers, such as pure pursuit [12], are developed based on the geometric model with
Ackermann steering configuration. This kind of controller is very popular in industry due to its
stability and low online computation, but its parameters may suffer from over-tuning [1], and such
a controller takes no consideration of vehicle dynamic forces. The dynamic properties of a vehicle
can be handled by a dynamic controller [13], in which both wheel slip and wheel cornering are
considered. The optimal controller, especially the linear quadratic regulator (LQR) with discrete
linear model, is widely reported [14], where the feedback gain is determined by linear quadratic
optimization, and it can be computed offline without need of high-cost hardware. In order to estimate
the ideal control inputs in various vehicle conditions, model-based controllers are developed [1]. Model
predictive control (MPC) is a well-known algorithm, which usually adopts a plant model to predict
the response of the vehicle and then chooses the best control input [15]. Due to its complex algorithms,
high performance computers are needed. Adaptive and other kinds of intelligent controllers are also
investigated [16].

Most of the above control strategies do not take into account the time delays induced by sensors,
which has a large impact on the quality and stability of lateral control. Vision-based sensors, such as
monocular cameras, are widely used in lane detecting or vehicle localization due to their low cost,
and the vehicle-lane information can be obtained reliably through visual algorithms [17–22]. However,
the computational cost of the visual algorithm is relatively large. Until now, the computing performance
of most of the commercialized sensor chips cannot process real-time road information, and uneven time
delays occur frequently, where the delays are correlated with the complexity of the scenarios [23–25].

For uneven sensor time delays, a feasible method is to increase the update rate of lane information
using multi-sensor information fusion and multi-rate Kalman filtering (KF), thus reducing the influence
of time delays on the vehicle lateral control [23–29]. Wang proposed a series of methods for vision-based
lateral state estimation of autonomous vehicles considering multi-rate and uneven measurement delay
issues, and his proposed algorithm could reduce the root-mean-square error (RMSE) of the vehicle
states, such as yaw rate and velocity [23–25]. Chung’s team has done valuable work in vehicle state
estimation and control method of the scenarios with vision-induced delays [27–30]. Robust multi-rate
lane keeping control scheme is proposed, and multi-rate KF has been developed to estimate vehicle
states at a fast rate, in order to resolve the problems caused by slow lane detection [27]. According
to experiments, such a control scheme can effectively improve vehicle’s lane keeping performance
and reduce the ripple in the yaw rate. In this method, the signal of the inertial measurement unit
(IMU) is used in the updating of the lane information. Consider that the signal noise of the IMU is
large [31], a high-quality filter is needed. On the other hand, the real-time computing is increased and
may enhance the requirement of hardware [32].

In order to balance the robustness under uneven time-delay disturbances and the computational
cost, a robust controller is investigated [33–38]. There are some successful applications of robust control
in vehicle stability control. Shuai [33] and Zhu [34] designed active steering controllers for a four-wheel
drive (4WD) vehicle for the random time delay in the network and the effectiveness of the proposed
controllers are verified by simulation. Jing and Wang [35] applied a robust output-feedback controller
for the vehicle lateral motion control to deal with network-induced delay, and it also considered the
effects of tire force saturation. However, insufficient studies have been conducted in robust control of
autonomous path tracking under uneven time-delay. In this study, a robust control scheme is designed
to compensate sensor-induced uncertainties and improve control performance.

In this paper, a hierarchical vision-based lateral control scheme is proposed for lateral tracking
control of autonomous vehicle, where the upper controller is an H∞-based LQR controller and the
lower controller is based on the logic threshold method. The purpose of the controller is to reduce the
disturbance induced by the uneven time delays of visual sensors and give the control of the steering
wheel angle strong convergence. On the other hand, the online computing load is kept on a low level,
which guarantees its real-time performance. The remaining part of this paper is organized as follows:
In Section 2, the vehicle lateral control problem with uneven time delays is introduced and formulated
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mathematically, and the polytopes of matrices are used to express the nonlinear uncertainties due
to time delays. In Section 3, an H∞-based LQR controller is presented and solved by linear matrix
inequality (LMI) approach. In Section 4, the proposed method is verified by a HIL bench, whereas
Section 5 draws the conclusion.

2. Problem Formulation

2.1. Lane and Vehicle Trajectory Modeling

In camera-based lateral motion control systems, the camera detects vehicle-lane information in
the vehicle’s coordinate system {x, y}, as shown in Figure 1. The parameters detected by the camera
include the lane curvature c2, the heading angle c1 (the orientation error of the vehicle with respect to
the road), and the lateral offset c0 (the distance of the vehicle’s c.g. from the centerline of the lane) [39].
The lane centerline y(x) can be expressed with polynomial form

y(x) = c2x2 + c1x + c0. (1)

From the geometric relations [39], we have

c2 =
1

2R
, c1 = ψ , c0 = y(0) (2)

where R is the radius of the lane. The lane polynomial parameter remains unchanged until the next
frame of the signal arrives. Assuming that the vehicle is running at constant velocity Vx and constant
yaw rate

.
ψ, the vehicle trajectory fv(x) can be obtained by

fv(x) =
ρv

2
x2 =

.
ψ

2Vx
x2 (3)

where x is the longitudinal distance, and ρv is the curvature of the vehicle trajectory.
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2.2. Vehicle Modeling for Tracking Control

From Equation (3), the expected lateral displacement of the vehicle eyLd at a preview distance L,
and the desired yaw rate

.
ψd can be derived as

eyLd =
ρv

2
L2 =

.
ψ

2Vx
L2 (4)
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.
ψd =

Vx

R
= 2c2Vx (5)

where the vehicle is considered as traveling on a road of constant radius R. Then the desired
acceleration can be written as

V2
x

R
= Vx

.
ψd. (6)

The lateral error ey and the yaw error eψ [40] at the current position of the vehicle are defined by

..
ey = (

..
y + Vx

.
ψ)− V2

x
R

=
..
y + Vx(

.
ψ−

.
ψd) (7)

eψ = ψ− ψd (8)

By integrating Equation (7), we have

.
ey =

.
y + Vx(ψ− ψd)

ey = y(0).
(9)

In path tracking, the trajectory of the vehicle may oscillate if only the lateral offset under the
current vehicle position is used as control feedback [39]. To solve this problem, the point in front of
the vehicle at a certain preview distance L is regarded as the preview point, and then the problem is
transformed into the tracking control with preview distance. Considering road geometry, lateral error
of the vehicle at the preview point eyL (assuming that the vehicle is running without any yaw rate) can
be defined as

eyL = ey + L(ψ + 2c2L) = 2c2L2 + c1L + c0. (10)

In fact, taking into account of the preview distance is somewhat similar to the driver’s steering
control strategy, considering that driver usually prefers to control the lateral position error at a point
(or within a certain distance) in front of the vehicle rather than focusing on the current position [41].
A larger preview distance is usually better than a shorter one, but it is limited by the camera’s detection
capability [28]. One feasible way is to set a fixed preview time T so that the preview distance L can
be determined by L = VxT, which is automatically adjusted according to vehicle speed. At higher
speeds, a larger preview distance is used to ensure stability; and at lower speeds, a smaller preview
distance is used to suppress the tracking error. After many tests, the preview time was selected as 0.7 s,
which could achieve a balance between the vehicle’s driving stability and the tracking error. In fact,
in this paper the longitudinal velocity is fixed as 70 km/h during the test, thus the preview distance L
is here fixed at about 14 m.

A bicycle model with 2-DOF is used for the lateral dynamics, assuming that a longitudinal
controller is working so that the longitudinal velocity keeps constant for a finite period of time.
Define the vehicle states as tracking error variables

x =
[

eyLeI eyLe

.
ey eψ

.
eψ

]T
(11)

where eyLe = eyL − eyLd , represents the lateral error of the vehicle at the preview point [27],
which includes the vehicle yaw rate and the geometry of the road; and eyLeI =

∫ t
0 eyLe dτ, represents
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the integration of the lateral error at the preview point. Neglecting the road bank, and the state space
model in tracking error variables x is derived as [27]

.
x =


0 1 0 0 0
0 0 1 0 L
0 0 A33 A34 A35

0 0 0 0 1
0 0 A53 A54 A55


︸ ︷︷ ︸

A

x +


0
0

B31

0
B51


︸ ︷︷ ︸

B

u +


0 0
−1 L
0 −Vx + A35

0 0
0 A55


︸ ︷︷ ︸

Bw

[ .
eyLd.
ψd

]
︸ ︷︷ ︸

w

y =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

C

x

(12)

where

A33 = − 2Cα f +2Cαr
mVx

, A34 =
2Cα f +2Cαr

m , A35 = − 2Cα f l f−2Cαr lr
mVx

, A53 = − 2Cα f l f−2Cαr lr
IzVx

,

A54 =
2Cα f l f−2Cαr lr

Iz
, A55 = −

2Cα f l2
f +2Cαr l2

r
IzVx

, B31 =
2Cα f
mVx

, B51 =
2Cα f l f

Iz
.

In Equation (12), Cα f (Cαr) is the cornering stiffness of front (rear) tires, m the vehicle mass,
l f (lr) the distance from the vehicle c.g. to front (rear) axis, Iz the vehicle’s yaw moment of inertia.
The tracking control can be regarded as a problem of stabilizing the dynamics given by Equation (12),
in order to achieve

lim
t→∞

eyLe = 0, lim
t→∞

.
ey = 0, lim

t→∞
eψ = 0, lim

t→∞

.
eψ = 0. (13)

Note that w is a disturbance vector which disturbs the tracking control [27], especially on a curved
lane. Thus, the integrator eyLe is applied to suppress the steady-state error caused by w. The input
vector u is the steering angle of the front wheel θ f .

Taking into account that the actual vehicle controller works at a fixed control cycle, the state-space
equation needs to be converted to a discrete form [34], which can be written as

xk+1 = Adxk + Bduk + Bwdwk,
Ad = eATs , Bd =

∫ Ts
0 eA(Ts−τ)dτ · B, Bwd =

∫ T
0 eA(Ts−τ)dτ · Bw

(14)

where xk is the state vector, uk is the control input, wk is the disturbance at time kTs, and Ts is the
sample period.

2.3. Control Model with Time-Varying Delays

In an ideal situation, the states of the system can be obtained in real time. However, there are
always time delays in the actual system. The signals of vision sensor are usually transmitted via the
controller area network (CAN) on a vehicle, and the time delays induced can be measured by the time
stamp of the CAN messages. Furthermore, for the control system, the delays are not only caused by the
computing unit of the visual sensors. In fact, there are also random delays in the signal transmission
of the CAN [33], and actuators such as the SBW system have response delays [37]. The uneven time
delays are shown in Figure 2.
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The sum of these delays can be denoted as

τk =
n

∑
i=1

τk,i (15)

where τk is the total time delay at sample period k, and τk,i is the ith component of time delay (such
as sensor-induced delay, network-induced delay). In this paper, the total time delays are considered
in the following controller. According to the experimental results, it is reasonable to assume the time
delays are bounded. Then, the total time delay τk can be assumed be distributed in a bounded interval,
which can be expressed as

0 ≤ τk ≤ τupper (16)

where τupper represents the upper bound of the time delay, and it can be written as

τupper = (λ + ξ)Ts (17)

where λ ∈ Z+ and ξ ∈ R[0,1).
Based on the above assumptions, it can be seen that at the time kTs, the input uk, uk−1, · · · , uk−λ−1

may have influence on the system based on the length of time delay, which means that in each control
cycle, the system may be affected by the several previous control commands. Therefore, the control
model can be transformed into

xk+1 = Adxk + Bduk + Bwdwk + ∆0,k(uk−1 − uk) + ∆1,k(uk−2 − uk−1) + · · ·+ ∆λ,k(uk−λ−1 − uk−λ)

(18)
where

∆i,k =


0, τk−i − iTs ≤ 0∫ τk−i−iTs

0 eA(Ts−τ)dτ · B, 0 ≤ τk−i − iTs ≤ Ts∫ Ts
0 eA(Ts−τ)dτ · B, Ts ≤ τk−i − iTs

. (19)

The above uncertainties in Equation (19) can be expressed as a general integral form, where

Γ(x) =
∫ x

0
eA(Ts−τ)dτ. (20)

In order to express the system with uncertainties more concisely, the state vector xk can be
augmented as ζk, where

ζk =
[

xT
k uT

k−1 · · · uT
k−λ−1

]T
(21)

then the system can be expressed in an augmented form

ζk+1 = Ad,augζk + Bd,auguk + Bwd,augwk (22)
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where

Ad,aug =


Ad ∆0,k − ∆1,k · · · ∆λ−1,k − ∆λ,k ∆λ,k
0 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

,

Bd,aug =
[

Bd − ∆0,k I 0 · · · 0 0
]T

,

Bwd,aug =
[

Bwd I 0 · · · 0 0
]T

.

Until now, the control problem has been described by an augmented discrete model under uneven
time delays. Then, the system uncertainties need to be mathematically described.

2.4. Description of Time-Delay Uncertainties

In the control design of complex systems, simplification of dynamic characteristics and unknown
changes of the parameters will induce uncertainties of the system model. In the system modeling, the
system is usually divided into two parts: (1) the nominal system model that ignores the uncertainties;
and (2) the uncertainties which are used to describe the uncertain factors. The nominal system
model is usually required to be as concise as possible so long it can describe system characteristics;
and the uncertainties can be allowed to be complex enough to accommodate as many uncertain factors
as possible.

There are mainly two types of model uncertainties: (1) dynamic uncertainty, such as changes
in dynamic behavior due to the failure to consider time-varying characteristics and nonlinearity in
the input; (2) parameter uncertainties, that is, some physical parameters that are difficult to describe
accurately, or the parameters themselves are variable. For the above two types of model uncertainties,
there are two methods for describing uncertain systems [33]: Method 1, the matrix polytope model;
and Method 2, the affine parameter dependence model. The main difference between them is that,
in Method 1, the matrix polytope model is a weighting of the system matrix, where the matrix usually
corresponds to uncertain states and has particular physical meaning, but the weighting coefficient
often does not have physical meaning. In Method 2, the coefficients in the affine parameter dependence
model usually have physical meanings, which are the uncertain parameters of the system. The matrix
multiplied with the coefficients usually has no physical meaning. In this paper, the vehicle model is
built without considering of time-varying characteristics, which satisfies the applicable scenarios of
Method 1 [42]. Therefore, in this study, Method 1 is adopted to describe model uncertainties.

According to the abovementioned description of uncertainties in system with time-varying delays,
there is a nonlinear relationship between uncertainties and time delay. Therefore, it is impossible to
apply the polytopic inclusion directly. Linearization is a feasible way to describe the uncertainties in a
linear form [43], and the Taylor series expansion is used here. In this way, the Equation (20) can be
expanded as

Γ(x) = Γ(0) +
.
Γ(0)x +

..
Γ(0)

x2

2!
+ · · ·+ dqΓ

dxq (0)
xq

q!
+ · · · = −

∞

∑
q=1

(−x)q

q!
Aq−1eATs . (23)

With the first h terms, Γ(x) can be expressed as

Γ(x) = −
h

∑
q=1

(−x)q

q!
Aq−1eATs + Θh (24)
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where Θh is a high-order remainder

Θh = −
∞

∑
q=h+1

(−x)q

q!
Aq−1eATs . (25)

With a proper h, the remainder Θh can be neglected, and the h-order approximation of the
uncertainties are approximated as a polynomial

Γh(x) = −
h

∑
q=1

(−x)q

q!
Aq−1eATs . (26)

For the convenience of the subsequent mathematical description of the uncertainties, the following
notations are defined as

Gq =
(−1)q+1

q!
Aq−1eATs (27)

and 

φj,1 =
[

ρh I ρh−1 I · · · ρ2 I ρI
]T

φj,2 =
[

ρh I ρh−1 I · · · ρ2 I ρj I
]T

φj,3 =
[

ρh I ρh−1 I · · · ρ2
j I ρj I

]T

...

φj,h =
[

ρh I ρh−1
j I · · · ρ2

j I ρj I
]T

φj,h+1 =
[

ρh
j I ρh−1

j I · · · ρ2
j I ρI

]T

(28)

where q = 1, 2, · · · h; j = 0, 1; ρ = 0; ρ0 = Ts; and ρ1 = ξTs, and then the uncertain terms ∆i,k can be
included into a polytope with vertices [42]. With the notations defined in Equation (27) and Equation
(28), the vertices of the convex polytope can be expressed as ∆0.i =

[
Gh Gh−1 · · · G2 G1

]
φ0,iB

∆1.i =
[

Gh Gh−1 · · · G2 G1

]
φ1,iB

(29)

where ∆0.i and ∆1.i can be regarded as a group of linear bases. Then, the uncertainties ∆i,k can be
expressed by the linear combination of the vertices

∆i.k =
h+1
∑

l=1
σi,l(k)∆0,l , i = 0, 1, · · · , λ− 1

∆i.k =
h+1
∑

l=1
σi,l(k)∆1,l , i = λ

h+1
∑

l=1
σi,l(k) = 1

σi,l(k) > 0
, ∀l = 1, 2, · · · , h + 1, ∀k ∈ Z+

(30)

where σi,l(k) is the time-varying coefficient, without any physics meaning. Note that for the h-order
approximation of the uncertainties, the convex polytope has (h + 1)λ+1 vertices{

Ad,aug,i, Bd,aug,i, Bwd,aug,i

}(
i = 1, 2, · · · , (h + 1)λ+1

)
(31)
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where

Ad,aug,i =


Ad ∆0,l0 − ∆1,l1 · · · ∆0,lλ−1

− ∆1,lλ ∆1,lλ
0 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

,

Bd,aug,i =
[

Bd − ∆0,l0 I 0 · · · 0 0
]T

,

∀l0 = 1, 2, · · · , h + 1, ∀l1 = 1, 2, · · · , h + 1.

Now the linear description of uncertainties has been obtained, and control method will be given
in Section 3.

3. Control Synthesis

As shown in Figure 3, the lateral tracking control of autonomous vehicle scheme is handled by
a hierarchical structure, which includes: (1) an upper controller to determine the desired steering
wheel angle based on H∞-based LQR control method, where the delay uncertainties are described by
polytopic and the feedback series are solved in the form of LMIs; and (2) a lower controller, where the
logic threshold algorithm is adopted for the closed-loop steering angle control, and the control output
is transmitted to the servo motor.
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3.1. Upper Controller

The upper controller is designed to calculate the desired front wheel angle (or desired steering
wheel angle) based on the vehicle status and road parameters. In this paper, an H∞-based LQR
controller is developed for the lateral tracking task under the uneven time delays. The input of the
upper controller is the tracking error, while the output is the desired steering wheel angle θsw,des(k).
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3.1.1. H∞-Based LQR Control

The purpose of the lateral control is to minimize both the tracking error and the control input.
A performance index J is adopted in quadratic form, which is expressed as

J =
∞

∑
k=0

(
eT

k Qek + uT
k Ruk

)
(32)

where ek is the tracking error at sample time k, and Q, R are weighted matrices. Furthermore, the index
can be transformed into the 2-norm of the zk, where

zk = Qaugζk + Rauguk,

Qaug =

[
Q1/2 0 · · · 0

0 0 · · · 0

]
, Raug =

[
0

R1/2

]
.

(33)

Since the disturbance w is bounded in l2 space, an H∞ performance index η is introduced as [33]

‖z‖2
2 < η2‖w‖2

2. (34)

Then the optimization control problem is converted into the design of the H∞ controller for the
following system

ζk+1 = Ad,augζk + Bd,auguk + Bwd,augwk

zk = Qaugζk + Rauguk.
(35)

The objective is to get the state-feedback gains, which can make the closed-loop system
asymptotically stable and minimize η while it satisfies Equation (35). In order to solve the minimization
problem, the following Lemma is introduced.

Lemma [44]: For the designed controller, the closed-loop system is stable with a given η if there
exist positive definite matrices P = PT > 0, and M which satisfies

−P 0
(

Ad,aug + Bd,augK
)

M Bwd,aug

∗ −I
(
Qaug + RaugK

)
M 0

∗ ∗ P−M−MT 0
∗ ∗ ∗ −η2 I

 < 0. (36)

3.1.2. Vehicle Lateral Controller

Based on the above Lemma, the vehicle lateral controller can be obtained. Consider that each
vertex corresponds to a system, (h + 1)λ+1 systems can be obtained

ζk+1 = Ad,aug,iζk + Bd,aug,iuk + Bwd,aug,iwk (37)

where i = 1, 2, · · · , (h + 1)λ+1. The purpose is to solve an feedback gain K, which satisfies the
conditions 

−P 0
(

Ad,aug,i + Bd,aug,iK
)

M Bwd,aug

∗ −I
(
Qaug + RaugK

)
M 0

∗ ∗ P−M−MT 0
∗ ∗ ∗ −η2 I

 < 0

∀i = 1, 2, · · · , (h + 1)λ+1.

(38)
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For the sake of simplicity, let Y = KM, and the design of the controller can be transformed as

min
P,M,Y,η

η2

s.t.


−P 0 Ad,aug,i M + Bd,aug,iY Bwd,aug
∗ −I Qaug M + RaugY 0
∗ ∗ P−M−MT 0
∗ ∗ ∗ −η2 I

 < 0

∀i = 1, 2, · · · , (h + 1)λ+1

(39)

where a smaller η accompanies a smaller z, which also means that the lateral tracking error is smaller.
Equation (39) is a minimization of a linear objective function with constraints of LMIs. Such problem
can be solved offline by MATLAB LMI Toolbox, and the state feedback matrix can be derived by
K = YM−1. Note that K is a constant matrix, which indicates that it can be solved offline without
increasing the computing load of the hardware. Then the desired steering angle of the front wheel at
sample time k can be obtained as θ f ,des(k), where

θ f ,des(k) = Kζk (40)

Assuming that the steering wheel angle is in linear relationship with the front wheel angle, the
desired steering wheel angle θsw,des(k) can be obtained

θsw,des(k) = µθ f ,des(k) (41)

where µ is the ratio of the steering wheel angle to the front wheel angle, and in this paper it is 17.4.

3.2. Lower Controller

The lower controller is used to calculate the desired speed of rotation of the steering motor based
on the desired front wheel rotation angle (or desired steering wheel angle) given by upper controller.
In this paper, a logic threshold-based controller is developed, which has strong convergence and good
robustness under different operating conditions. The algorithm framework is simple, easy to maintain,
and it is convenient for parameter calibration in real vehicles. Here, the input of the lower controller is
the desired wheel steering angle, and the output is the frequency of the square wave (to control the
motor speed) and the direction signal (to control the motor direction).

The angle difference ∆θ between the target steering wheel angle θsw,des(k)θtar and the real steering
wheel angle θsw,real(k) is obtained by

∆θ(k) = θsw,des(k)− θsw,real(k) (42)

Then the desired speed of the steering wheel can be obtained based on angle difference ∆θ(k)

.
θdes(k) =



|∆θ(k)|
λupper×Ts

, |∆θ(k)| > Θupper
|∆θ(k)|

λmid×Ts
, Θupper ≥ |∆θ(k)| > Θmid

|∆θ(k)|
λlower×Ts

, Θmid ≥ |∆θ(k)| > Θlower
|∆θ(k)|

λleast×Ts
, |∆θ(k)| ≤ Θlower

(43)

where Θupper, Θmid, and Θlower are the threshold of large angle difference, the threshold of middle
angle difference, and the threshold of small angle difference, respectively; λupper, λmid, λlower, and λleast

are the conversion factors of the motor speed corresponding to each threshold;
.
θdes(k) is the desired

steering wheel angle; Ts is the sampling period. Note that the value of λupper, λmid, λlower, and λleast
are successively larger. The purpose is to ensure that the steering motor can approach the desired angle
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quickly when the angle difference is large, and at the same time ensure that the steering motor can
smoothly and steadily approach the desired angle at a lower rotation speed to avoid any overshooting
or oscillation due to system inertia and excessive speed.

In actual scenarios, the rotation speed of the steering wheel is limited, and an excessive rotation
speed may damage the steering system or make the vehicle unstable; and on the other hand, if the
SBW system is frequently involved in the control while the angle difference ∆θ(k) is very small, it may

cause oscillations in the steering angle. Therefore, the desired speed is limited as
.
θdes(k), which can be

expressed as

.
θdes(k) =



.
Θupper,

.
θdes(k) >

.
Θupper.

θdes(k),
.

Θupper ≥
.
θdes(k) ≥

.
Θlower

0,
.

Θlower >
.
θdes(k) > −

.
Θlower.

θdes(k), −
.

Θlower ≥
.
θdes(k) ≥ −

.
Θupper

−
.

Θupper,
.
θdes(k) < −

.
Θupper

(44)

where
.

Θupper is the maximum limit of the rotation speed, and
.

Θlower is the minimum rotation speed.

Furthermore, the frequency of the square wave foutput(k) is calculated by
.
θdes(k)

foutput(k) =

.
θdes(k)Cmotimot

360◦
× Fcalb (45)

where Cmot is the factor of the motor rotation, and in this paper it is set to 10,000 (the steering motor
rotates 1 revolution while 10,000 pulses are received); imot is the transmission ratio between the
steering motor and the steering wheel, 16; Fcalb is the frequency coefficient, which is used to correct the
frequency error due to the output signal error of the hardware.

In addition, the direction of motor rotation is determined according to the angle difference

δ(k) =

 CW,
.
θdes(k) > 0

CCW,
.
θdes(k) ≤ 0

(46)

where CW represents clockwise rotation and the voltage of the direction signal is 5 V; and CCW
represents counter-clockwise rotation, where the voltage of the direction signal is 0 V.

4. Experiments and Discussions

4.1. Verification of the Lower Controller Based on Vehicle Experiment

The tracking accuracy of the lower controller needs to be verified in order to discuss the proposed
control scheme. The experiment was conducted on a vehicle equipped with SBW system. A step
desired steering angle and a random desired steering angle were applied to the lower controller to
verify its angular accuracy.

4.1.1. Platform and Test Conditions

The experiment was conducted on a test vehicle which was restructured from HAVAL H7, and
as shown in Figure 4a, a SBW system was designed by adding a group of worm gear and a servo
motor on the steering column. The dSPACE-MicroAutobox was used as the lower controller. In fact,
any cheap computing units such as microcontrollers could be used as the lower controller due to the
small amount of real-time computations. As shown in Figure 4b, the devices such as the controllers
and motor driver were mounted in the trunk of the test vehicle.

The calibrated parameters of the lower controller are listed in Table 1, and the experiments
with a step desired steering angle and a random desired steering angle were conducted to verify the
performance of the lower controller.
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Figure 4. Experiment platform: (a) Test vehicle restructured from HAVAL H7, which is equipped with
a servo motor-based SBW system; (b) The controller based on the dSPACE-MicroAutobox and the
servo motor driver, while most of the devices are mounted in the trunk of the test vehicle.

Table 1. Calibrated parameters of the lower controller.

Parameter Value Meaning

Θupper 180◦ Threshold of large angle difference
Θmid 90◦ Threshold of mid angle difference

Θlower 10◦ Threshold of small angle difference
Fcalb 1.028 Frequency coefficient

λupper 25 Conversion factor of the motor speed
λmid 60 Conversion factor of the motor speed

λlower 90 Conversion factor of the motor speed
λleast 110 Conversion factor of the motor speed
.

Θupper 830◦/s Maximum limit of the rotation speed
.

Θlower 0.1◦/s Minimum limit of the rotation speed

4.1.2. Results and Discussions

Experiments with a step desired steering angle and a random desired steering angle were
conducted, and the results are shown in Figures 5 and 6, respectively.
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Figure 5. Experiment results of the step desired steering angle: (a) real steering wheel angle compared
with the desired steering wheel angle; (b) frequency of the square pulse output by the lower controller;
(c) real steering wheel speed compared with the desired steering wheel speed; (d) voltage of the signal
of steer direction output by the lower controller.

According to the results of the above two cases of experiments, the lower controller could achieve
accurate tracking of the steering wheel angle with small steady state error and small overshooting
in dynamic process. Taking the step experiment as an example, the steering motor was set to the
highest speed while the desired steering angle turned 450◦, with a series of high frequency square
wave commands produced by the lower controller (in fact, the frequency of the square pulse is limited
to about 833 kHz). After reaching the desired angle, the frequency of the square wave decreased,
and the steering angle converged rapidly and stabilized near the desired angle. As seen from Figure 5c,
some oscillation occurs in the steering speed around 1.5–2.5 s and 7–8 s. This is mainly because that
the steering wheel rotates at a very high speed (higher than 800◦/s) in order to achieve the desired
angle quickly, and the steering load changes greatly due to nonlinear factors such as the self-aligning
torque of the tire. Furthermore, the steering speed is estimated by the differential of the steering angle,
which also increases the oscillation of the value of the steering speed. Besides, it can be seen from
Figure 5a that the steering angle changes smoothly and evenly, therefore the control performance is
quite acceptable.

According to Figures 5b and 6b, the controller almost stops sending control input to the motor
when the desired angle remains unchanged for a long period and the real steering angle has reached
steady state. This is due to the setting of the dead zone of the steering speed (−

.
Θlower,

.
Θlower),

which can decrease the oscillation of the steering motor. The detailed indices of the controller
performance are listed in Table 2.
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the signal of steer direction output by the lower controller.

Table 2. Control performance of the proposed lower controller in step input case.

Index Value Meaning

Overshoot 4.5% The percentage of the angle value that the real angle exceeds
the desired angle during the rotation of the steering wheel.

Steady-state angular error 0.1◦ Steady-state error when the real angle of the steering wheel
achieves to the desired angle.

Maximum time delay 70 ms
Maximum time difference between the time when the desired
angle command is transmitted on the CAN bus and the time

when the real angle starts to change.

4.2. HIL Experiment for the Lateral Control Scheme

The performance of the proposed control scheme for the vehicle lateral control is verified in this
subsection. Considering that experiments of path tracking at high speed can be dangerous, a HIL
platform was adopted to simulate the experiments, and the proposed H∞-based LQR controller was
compared with a conventional LQR controller.

4.2.1. Platform

In this paper, a HIL bench with wire-controlled chassis was used for experimental verification of
the proposed control algorithms, and the components of the bench is shown in Figure 7. A full-size
SUV (suburban utility vehicle) model was adopted provided by CarSim. As shown in Figure 8,
the bench is equipped with a SBW system, which is equipped with a high-precision servo steering
motor. The processor of the platform is made up of a host computer and a slave computer. The
host computer is an IPC (industrial personal computer) which is used to control the HIL bench and
display the real-time animation and data, and the user interface was designed by LabVIEW. The slave
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computer was a PXI (peripheral component interconnect extensions for instrumentation) system by
National Instruments. The signal acquisition was conducted by LabVIEW DAQ, and the controller
algorithm was implemented by Simulink and LabVIEW MIT. The CarSim real-time vehicle model
worked on the slave computer.
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4.2.2. Experiment Condition

As shown in Figure 9, a cycle lane shaped like a figure-eight is used as test road, while the
longitudinal velocity is fixed as 70 km/h, and the sampling time Ts is set as 60 ms. The weighted
matrices of the proposed controller are Q = diag

(
1000, 2500, 1, 100, 1

)
and R = diag(10000).

A conventional LQR controller was used for comparison, where the weighted matrices are
Q′ = diag

(
60, 2500, 1, 100, 1

)
and R′ = diag(10000). (Some modifications were made

in the Q′, because if Q′, R′ were made equal to Q, R, the control result of the conventional LQR would
not be convergent.)
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4.2.3. Results and Discussions

Comparison of the tracking performance between the proposed controller (Case 1) and the
conventional LQR controller (Case 2) is given in Figure 10, and the vehicle path is shown in Figure 11.
Both controllers can make good tracking to the centerline of the road. The average lateral error at
preview point is 0.0427 m for Case 1, and 0.0429 m for Case 2, while the peak value is 0.2962 m and
0.4011 m, respectively. Compared with the conventional LQR controller, the proposed controller has
fewer oscillations in the output of the steering wheel angle when the road curvature is large. Vehicle
states such as eyLe ,

.
ey, and

.
eψ have fewer oscillations, correspondingly. The performance was evaluated

by RSME, and as shown in Table 3, in most of vehicle states the proposed controller provides better
performance (while the RMSE of eψ has a slight increase), which shows the proposed controller’s better
robustness and performance. The overall comparison of the proposed controller and the conventional
LQR is shown in Table 4, while the comparison with other controllers (such as the kinematic controller,
model-based controller, etc.) can be found in [1].

Sensors 2018, 18, x FOR PEER REVIEW  17 of 22 

 

4.2.2. Experiment Condition 

As shown in Figure 9, a cycle lane shaped like a figure-eight is used as test road, while the 
longitudinal velocity is fixed as 70 km/h, and the sampling time sT  is set as 60ms. The weighted 
matrices of the proposed controller are ( )1000, 2500, 1, 100, 1Q diag=  and ( )10000R diag= . A 
conventional LQR controller was used for comparison, where the weighted matrices are 

( )60, 2500, 1, 100, 1Q diag′ =  and ( )10000R diag′ = . (Some modifications were made in the Q′ , 
because if ,Q R′ ′  were made equal to ,Q R , the control result of the conventional LQR would not be 
convergent.) 

 

Figure 9. Test road: A cycle lane shaped like figure-eight. 

4.2.3. Results and Discussions 

Comparison of the tracking performance between the proposed controller (Case 1) and the 
conventional LQR controller (Case 2) is given in Figure 10, and the vehicle path is shown in Figure 
11. Both controllers can make good tracking to the centerline of the road. The average lateral error at 
preview point is 0.0427 m for Case 1, and 0.0429 m for Case 2, while the peak value is 0.2962 m and 
0.4011 m, respectively. Compared with the conventional LQR controller, the proposed controller has 
fewer oscillations in the output of the steering wheel angle when the road curvature is large. Vehicle 
states such as 

eyL
e , ye , and eψ  have fewer oscillations, correspondingly. The performance was 

evaluated by RSME, and as shown in Table 3, in most of vehicle states the proposed controller 
provides better performance (while the RMSE of eψ  has a slight increase), which shows the 
proposed controller’s better robustness and performance. The overall comparison of the proposed 
controller and the conventional LQR is shown in Table 4, while the comparison with other 
controllers (such as the kinematic controller, model-based controller, etc.) can be found in [1]. 

(a) 
 

(b) 

Figure 10. Cont.



Sensors 2018, 18, 2544 18 of 21
Sensors 2018, 18, x FOR PEER REVIEW  18 of 22 

 

(c) (d) 

(e) 
 

(f) 

Figure 10. Experiment results of the proposed upper controller, compared with a conventional LQR 
controller: (a) desired steering wheel angle and the real steering wheel angle; (b) lateral error at the 
preview point; (c) integration of the lateral error at the preview point; (d) differential of the lateral 
error; (e) heading error; (f) differential of the heading error. 

Table 3. Control performance (RMSE) of the proposed controller compared with LQR controller 

Controller RMSE of 
eIyLe  RMSE of 

eyL
e  RMSE of ye  RMSE of eψ  RMSE of eψ  

H∞-based LQR 1.9598 0.0706 0.4283 0.0374 0.0623 
Conventional LQR 2.3415 0.0770 0.5107 0.0370 0.0667 

Optimization 16.3% 8.3% 16.1% −1.3% 6.6% 

 

Figure 11. Vehicle path with the designed target lane shaped like figure-eight. 

Figure 10. Experiment results of the proposed upper controller, compared with a conventional LQR
controller: (a) desired steering wheel angle and the real steering wheel angle; (b) lateral error at the
preview point; (c) integration of the lateral error at the preview point; (d) differential of the lateral error;
(e) heading error; (f) differential of the heading error.

Table 3. Control performance (RMSE) of the proposed controller compared with LQR controller.

Controller RMSE of eyLeI RMSE of eyLe RMSE of
.
ey RMSE of eψ RMSE of

.
eψ

H∞-based LQR 1.9598 0.0706 0.4283 0.0374 0.0623
Conventional LQR 2.3415 0.0770 0.5107 0.0370 0.0667

Optimization 16.3% 8.3% 16.1% −1.3% 6.6%

Sensors 2018, 18, x FOR PEER REVIEW  18 of 22 

 

(c) (d) 

(e) 
 

(f) 

Figure 10. Experiment results of the proposed upper controller, compared with a conventional LQR 
controller: (a) desired steering wheel angle and the real steering wheel angle; (b) lateral error at the 
preview point; (c) integration of the lateral error at the preview point; (d) differential of the lateral 
error; (e) heading error; (f) differential of the heading error. 

Table 3. Control performance (RMSE) of the proposed controller compared with LQR controller 

Controller RMSE of 
eIyLe  RMSE of 

eyL
e  RMSE of ye  RMSE of eψ  RMSE of eψ  

H∞-based LQR 1.9598 0.0706 0.4283 0.0374 0.0623 
Conventional LQR 2.3415 0.0770 0.5107 0.0370 0.0667 

Optimization 16.3% 8.3% 16.1% −1.3% 6.6% 

 

Figure 11. Vehicle path with the designed target lane shaped like figure-eight. Figure 11. Vehicle path with the designed target lane shaped like figure-eight.



Sensors 2018, 18, 2544 19 of 21

Table 4. Comparison between the proposed controller and the conventional LQR controller.

Controller H∞-based LQR Conventional LQR

Performance
It shows better path-tracking performance, and
has smaller position error, less chattering
during driving.

The path-tracking can be completed with
acceptable position error, but the vehicle
chatters a lot, which may reduce ride comfort.

Implementation considerations

Calculations can be implemented offline, with
no need for high computational performance of
hardware. However, the range of the sensor’s
time-delay needs to be known by prior
experiments.

Calculations can be implemented offline,
and real-time computing load is almost the
same as the proposed method in this paper.

Complexity Mathematical principle is more complicated,
but the control law in real-time is simple.

Mathematical principle is simpler, and the
control law in real-time is simple.

Stability

Both controllers are stable because they are mathematically proven. However, since the dynamic
model of the vehicle is linear, when the vehicle is running under extreme non-linear conditions,
the model may have a large error compared with vehicle’s response characteristics in real
scenarios and the controller may be unstable.

Re-usability

The controller is reusable in other plants when
the response characteristics of the vehicle and
the time-delay characteristics of the vision
sensor experience no significant changes.

The controller is reusable when the response
characteristics of the vehicle do not change
significantly.

5. Conclusions

In this paper, a hierarchical steering control scheme to compensate visual sensor-induced uneven
time delays is proposed for the lateral tracking control of the autonomous vehicle. An upper controller
is designed with an H∞-based LQR algorithm, aiming to determine the steering wheel angle with
low cost in online computation, where the nonlinear uncertainties induced by uneven time delays
are linearized by Taylor expansion, and the system is augmented to describe the uncertainties with
polytopic inclusions. A lower controller with logic threshold method is used for the high-precision
tracking of the steering wheel angle. Vehicle experiments were conducted, and the lower controller
was proven capable of achieving accurate tracking of the steering wheel angle with small error and
overshooting, while the steady-state angular error is less than 0.1◦ and the overshooting is less than
4.5%. The upper controller was verified with HIL experiments. According to the experiment results,
the proposed controller shows better tracking performance compared with the conventional LQR
controller, while the average lateral error at preview point is reduced from 0.0429 m to 0.0427 m,
and the peak value is reduced from 0.4011 m to 0.2962 m, respectively. Moreover, the proposed
controller has fewer oscillations than the conventional LQR in both the controller’s output and the
vehicle states, which may improve the ride comfort of the autonomous vehicle. Compared with other
kinds of conventional controllers (such as kinematic and dynamic controller, model-based controller),
the proposed control scheme well balances the predicted performance with the amount of online
calculation, and thus provides a potential low-cost solution for lateral control of autonomous driving.
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