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ABSTRACT: Owing to the growing elderly population, age-related problems are gaining increasing attention 

from the scientific community. With senescence, the intestine undergoes a spectrum of changes and infirmities 

that are likely the causes of overall aging. Therefore, identification of the aged intestine and the search for novel 

strategies to rescue it, are required. Although progress has been made in research on some components of the 

aged intestine, such as intestinal stem cells, the comprehensive understanding of intestinal aging is still limited, 

and this restricts the in-depth search for efficient strategies. In this concise review, we discuss several aspects of 

intestinal aging. More emphasis is placed on the appraisal of current and potential strategies to alleviate intestinal 

aging, as well as future targets to rejuvenate the aged intestine. 
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Because of the growing elderly population, age-related 

healthcare issues are gaining increasing interest from the 

scientific community. Recent advances highlight efficient 

strategies, such as diet restrictions[1], rapamycin[2], and 

nicotinamide adenine dinucleotide (NAD) replacements 

[3] to prevent and ameliorate the overall dysregulation in

various aging processes.

The intestine is considered a pervasive and important 

player involved in an array of biological events, including 

digestion, absorption, and immune modulation. Its wide-

ranging function determines its profound impact on 

overall health [4,5]. Similar to other body organ systems, 

the intestine also undergoes senescence. Increasing age 

enhances intestinal disease incidence, such as 

malnutrition [6], chronic constipation [7], and colorectal 

cancer [8]. Central to understanding the underlying 

mechanisms, is to clarify age-related changes in 

commensal microbiota, the immune system, intestinal 

stem cell (ISC), the epithelial function, and the enteric 

nervous system (ENS). These changes not only account 

for localized gastroenterology disorders, but are 

associated with a decline in multiple systems throughout 

the body, including the nervous [9, 10], cardiovascular 

[11], endocrine [12-14], and skeletal [15] systems (Fig.1). 

Therefore, it is important to explore strategies to rescue 

the aged intestine. Over the last few decades, a vast 

number of studies have shown the capacity to delay 

intestinal aging through a variety of mechanisms. 

However, it is still far from our aspiration of strategies 

with high and all-round effects against intestinal aging, as 

well as security.  

The advancement of metabolomics, in conjunction 

with transcriptomics and proteomics, expands our 

knowledge on the aged intestine. Results from a 
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metabolomic analysis serve as a reservoir from which to 

identify novel targets against intestinal aging. On the 

contrary, an unprecedented number of intrinsic and 

extrinsic compounds pose an enormous challenge for 

accurate verification.  

In this review, we describe changes occurring in the 

aged intestine, including dysbiosis, immune imbalance, 

stem cell exhaustion, barrier dysfunction, and enteric 

neurodegeneration. Additionally, particular focus is 

placed on strategies and potential molecular targets that 

contribute to the alleviation of intestinal aging.  

 

 
 
Figure 1. The Age-related Changes in the Intestine. During senescence, the intestine gains changes in terms of the 

intestinal microbiota, immune system, intestinal stem cells, epithelial functions, and the enteric nervous system. These 

changes in the aged intestine are responsible for many overall age-related diseases, such as the brain, heart, bone, and 

endocrine system. The Geroscience perspective that makes it more comprehensive to understand anti-aging mechanisms, 

would enlighten us on the development of strategies to rejuvenate the aged intestine.  

 

1. Age-related Changes in the Intestine 

 

Intestinal function has a profound impact on aging. In 

terms of longevity, for example, the intestine of 

Caenorhabditis elegans is the key longevity signaling 

center that is signaled by the brain and further propagates 

longevity signals to other tissues in the body[4]. As for 

progeroid mice, their lifespan can be prolonged through 

the transplantation of fecal microbiota in wild-type mice 

[5]; therefore, indicating that commensal microbiota 

inside the intestine can serve as a target against aging. 

Moreover, several studies have confirmed a strong 

association between the gastrointestinal tract and age-

related complications, such as Alzheimer's disease [9], 

cognitive decline [10], obesity and insulin resistance [12-

14], cardiovascular disorder [11], arthritis [15], and 

overall frailty[16], in other organs and systems.  

Besides disturbing overall health, the aged intestine 

also suffers from morphological and functional changes 

over time. These relationships have been well established 

between aging and the intestinal age-related changes, 

including alterations in the microbiota, immune system, 

ISCs, epithelial functions, and ENS. Further studies show 

interactions among these changes. Thus, fully 

understanding the complex crosstalk between intestinal 

age-related changes and aging, is essential to develop 

intestinal aging interventions. 
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1.1 Morphological and Functional Changes in the 

Aged Intestine 

 

The intestine is an important digestive apparatus in 

digestion and absorption across species. Its morphology 

and function vary with age, which has been supported by 

studies in several models and humans.  

Combining transmission electron microscopy with 

confocal microscopy with 3-D volumetric 

reconstructions, McGee et al. illustrated loss of intestinal 

nuclei and microvilli of aging C. elegans, in addition to 

increased variability of the shape and size of the intestinal 

lumen that age-related germline swelling was partly 

blamed for [17]. An abnormal intestinal structure also 

occurs in aging mammals. Morphological changes in aged 

mouse and rat models have been described as thicker 

muscular layers, distorted villi, more secretory Paneth and 

goblet cells, and impaired junctions between adjacent 

enterocytes [18-24]. Mice have wider and higher villi with 

increasing age [22], while rats have wider and shorter 

ones [23]. Furthermore, rats have darkly stained nuclei in 

their aged intestines [23]. Human studies showed no 

significant changes in the duodenum [25]. However, 

abnormal hyperproliferation and apoptosis were found in 

enterocytes of a normal elderly group, which resulted in 

impaired function of the aged intestine [26, 27].  

In rodents, the intestinal functions are also affected 

by aging, including degenerative digestion and absorption 

[28], as a result of the reduced activity [29] or lower 

production [30] of related enzymes. In aged mice, 

impaired adaptive mechanisms to diet were also found 

[31]. However, researchers have rarely reported changes 

in intestinal secretions and absorption in elderly people 

[32]. Nevertheless, multiple studies have confirmed 

humans share similar age-related changes with rodents,  

ranging from reduced absorption [33] to lower digestive 

secretions[34], and declined motility [35]. Although more 

evidence is needed to clarify the conflicting results, the 

idea is still acceptable that the elderly suffer from an 

elevated incidence of gastrointestinal disorders such as 

associated cancer [8] and infections [36] 

(comprehensively reviewed by Dumic et al.[37]).  

 

1.2 The Intestinal Microbiota 

 

Bacteria, fungi, protozoa, and viruses are located in the 

intestine at high quantities. They play critical roles in 

human physiology and disease, due to their abilities to 

limit pathogenic growth, ferment food, as well as produce 

mucus and lipid metabolites[38]. As reported, gut 

microbes vary with age, not only in terms of composition 

imbalances [39], such as fewer Bacteroidetes and more 

Firmicutes [40], but also in terms of degraded intrinsic 

functions, such as evolution and mutations [41]. A study 

containing four age groups, covering almost the entire 

adult lifespan, showed the sustained reduction of 

particular microbiota with age [42]. Intriguingly, among 

the healthy aging people, aged 70–82 years, and an elderly 

cohort with diabetes or other age-associated disorders, no 

gut microbiome changes were observed, except the 

proportion of the genus Akkermansia [43]. Together, both 

indicated that the altered microbiome may account for 

senescence itself rather than age-related infirmities, with 

bacterial taxa contributing to respective disorders.  

Besides expanding lifespan [5], the imbalances of 

intestinal microbiota can induce or reduce aging[39], and 

age-related illnesses [44,45]. Current studies confirmed 

that only in combination with dysbiosis, can the 

diminished intestinal barrier lead to systemic 

inflammation [46] This is a key hallmark and driver of 

senescence [47], supporting the indispensable importance 

of gut flora in aging. An intestinal microbiota that was 

reported to change with age, Akkermansia muciniphila, 

has been linked to colitis-associated tumorigenesis [48] 

and cancer therapy [49], indicating the relationship 

between age-associated changes in intestinal microbiota 

and the elevated incidence of cancer.  

However, the general mechanisms by which 

microbiota affects the host are still unclear. It is widely 

accepted that the consequent changes in microbiota-

derived metabolites, especially small-molecule 

metabolites, could be the main contribution of microbiota 

to host biology [50], which lays a preliminary theoretical 

foundation for the investigation of bacterially derived 

metabolites against intestinal aging.  

 

1.3 The Intestinal Immune System 

 

“Immunosenescence” refers to immune changes related to 

poor clinical outcomes in the elderly compared to that in 

young individuals, such as inflammageing [51,52]. 

Interleukin (IL)-10-producing T follicular helper cells 

[53] and the imbalance of immunological mediators [52] 

are involved in this systemic immune degeneration.  

The intestinal immune system is the largest immune 

compartment, consisting of gut-associated lymphoid 

tissues (GALT) as well as effector cells. Its mucosal 

immune responses are important for defense against 

pathogens, including antigen uptake by M cells, 

presentation in Peyer’s patches, differentiation and 

migration of B immunoblasts, and production and 

transport of antibodies [54]. Over the years, the intestine 

experiences immune degeneration and aggravates 

systemic aging. Aging impairs the migration of IgA 

immunoblasts [54] to the intestinal lamina propria and 

lowers antibody titers [55], resulting in a diminished 

mucosal immune response [56]. Consequently, it is more 

common for the elderly to suffer from bacterial or viral 
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gastrointestinal infections [36]. In addition, aging 

reshapes the gut microbiota, making it a modulator of age-

related changes in the immune system. For example, the 

age-related decline in Firmicutes and an increase in 

Enterobacteriaceae exacerbate inflammageing [57]. The 

additional consumption of tryptophan by aged gut 

microbiota is speculated to enhance inflammation in 

centenarians [58].  

 

1.4  Intestinal Stem Cells 

 

For maintaining tissue homeostasis, ISCs are highly 

active in supporting the repair of damaged tissues, and the 

continuous and rapid cell turnover of intestine [59, 60]. 

As long as rapid replication occurs, ISCs are exposed to 

age-related risks. The features of aged ISCs are identified 

as altered numbers and declined functions. No conflicts 

have been reported in the weakening regenerative 

capacity [24, 61], but the quantitative issue is unclear. In 

old Drosophila, the intestinal epithelium exhibits an 

increased number of proliferating cells [62]. However, 

there are competing data in aged mice. No change in the 

established marker Lgr5 ISCs has been reported [24], 

while others had an increased population of cells 

expressing sub-low SOX9 [61], a marker of progenitor 

cells in old mice [63]. At the mercy of biomarkers selected 

for investigation, different studies exhibit competing 

changes in the quantity variance of ISCs upon aging. 

Some researchers have described it as a constant absolute 

number of ISCs with alternative expression of markers  

[24]. However, the overall understanding of the effect of 

aging on ISCs is awaiting more data, especially human 

studies. On the contrary, the loss of regulation of ISC 

proliferation for self-renewal results in disrupted organ 

homeostasis and impaired self-repair function after 

damage, even shortening lifespan[64].  

 

 
 
Figure 2. The Factor Network Contributing to the Intestinal Stem Cell Aging. An intracellular 

and extracellular network contributes to the senescence of ISCs, including telomere dysfunction, 

DNA damage response, DNA mutation, mitochondrial dysfunction, oxidation stress, autophagy 

dysregulation, and senescence-associated secretory phenotype. Several cellular signaling pathways 

are also involved, such as the Wnt and mTOR pathways. ATM/R, protein kinases ATR and ATM; 

AKT, protein kinase B; mTOR, mammalian target of rapamycin; ROS, reactive oxygen species; 

PGC1α, peroxisome proliferator activated receptor-γ co-activator 1-α. 

Both cell-intrinsic and extrinsic factors contribute to 

ISC aging. Telomere dysfunction induced by ISC 

replication [65] triggers DNA damage response (DDR) 

pathways [66] and mitochondrial dysfunction [67]. DDR 

further activates the innate immune response as a 

senescence-associated secretory phenotype (SASP) [68], 

which spreads senescence to neighboring ISCs [65, 66] in 

a paracrine manner [69]. Mitochondrial dysfunction, 
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including impaired lipid metabolism [70, 71] and 

mitophagy [72] produces oxidative stress to accelerate 

aging. Accumulation of DNA mutations by age drives the 

dysregulation of ISC proliferation [73]. Abnormalities in 

cell signaling pathways, such as target of rapamycin 

(TOR) and Wnt also participate in aged ISCs [74] (Fig.2).   

Intestinal cancer is strongly associated with age and 

originates mainly from ISCs [75]. Although more work is 

required to elucidate the importance of age-related risks 

in the carcinomatous transformation of ISCs, rejuvenation 

of ISCs, including remodeling related signaling pathways 

such as Wnt signaling, could be a promising strategy to 

revive the aging intestine, at least reducing age-related 

intestinal cancer.  

 

1.5  Intestinal Epithelial Barrier Function 

 

The integrity of the intestinal epithelial barrier function 

requires a contiguous cell layer, an intracellular junctional 

complex of molecules [76], expression of mucus, defensin 

secretion from multiple cells with respective functions 

[77], including ISCs, immune cells, and goblet cells, 

which is pivotal to ensure that the intestine is a 

semipermeable membrane that exerts the admission of 

nutrients and the prevention of pathogens or toxins. Age-

related intestinal barrier dysfunction in elderly organisms 

can be observed in species varying from rats [78] to 

baboons [79]. In two cohorts of healthy adults, the older 

group exhibited increasing levels of zonulin, an intestinal 

permeability biomarker [80].  

The age-related increase in gut permeability 

accounts for chronic and systemic mild inflammatory 

responses [81] that accelerate aging in mammals [82]. 

This inflammation, as above, arises owing to dysbiosis 

[46]. In the context of dysbiosis, the degraded intestinal 

barrier permits the translocation of gut contents, such as 

bacteria and their products, into the circulatory system 

[46], which shortens the lifespan of C. elegans [76], and 

foreshadows the death of Drosophila [83].  

 

1.6  Enteric Nervous System 

 

Considered as the second brain, the ENS consists of more 

than 500 million neurons to form the myenteric and 

submucosal plexus [84]. Similar to the brain, ENS suffers 

from neurodegeneration during aging, which is a cause of 

constipation in the elderly [85]. The prevalence of 

constipation in patients with Parkinson’s disease [86] 

supports this idea. The accumulation of age witnesses a 

significant loss of enteric neurons [87], especially choline 

acetyltransferase positive ones [88]. Whether a decrease 

in the neuron density or the decreasing number played a 

more prior role [89], we could highlight the age-related 

changes of ENS. However, except for 5-

hydroxytryptamine (5-HT) [90], more therapeutic 

approaches to protect ENS from aging are vague.  

Collectively, age-related phenomena and 

mechanisms of the intestine rely on the combination of 

gut microbiota, immune system, ISCs, intestinal barriers, 

and ENS, but more efforts are needed to better understand 

these mechanisms. From the Geroscience perspective, 

aging research was conducted in seven areas: adaptation 

to stress, epigenetics, inflammation, macromolecular 

damage, metabolism, proteostasis, and stem cell 

exhaustion [91]. A comprehensive view about age-related 

intestinal changes also covers oxidative stress responses 

[92], genomic modifications [73], heterochromatin 

maintenance [93], lipid metabolism [70], mitophagy and 

autophagy[94], etc (Fig.1).  

It should be noted that the degeneration phenomena 

differ among organisms. Taking intestinal architecture as 

an example, a quantitative histology performed on patient 

jejunal biopsy specimens showed no significant 

differences in surface to volume ratios and enterocyte 

height between elderly patients and the younger ones [95]. 

In the mouse intestine, aging causes a decreased number 

of crypts; however, an increase in the number of cells per 

crypt, in addition to an elevated villus height [24]. The 

same issue also arised, when the age-related trend of the 

ISC number across species was identified [24, 61, 62]. 

More data are required to delineate the complex changes 

in the human intestine during aging to select targeted 

aging models. 

 

2.  Strategies to Rejuvenate the Aged Intestine 

 

The intestine is a key interface between the host and 

nutrient substances or microbiota. Several studies are 

emerging showing that appropriate means, such as diet 

control and pharmaceutical intervention, motivate people 

to fight against intestinal aging. Furthermore, the changes 

in intestinal and microbial metabolites caused by these 

means could be valuable to the interpretation of the 

underlying mechanisms. In this section, we discuss diet 

regimens and pharmaceutical interventions as well as 

metabolites derived by the host and microbiota to 

elucidate on the potential strategies to rescue the aged 

intestine.  

 

2.1  Dietary Restriction Regimens 

 

Dietary restriction regimens (DR) such as caloric 

restriction, ketogenic diet, and intermittent fasting, are 

strongly proven anti-aging interventions in a wide range 

of species [96]. Multiple mechanistic pathways are 

involved in its effects on expanding lifespan and 

alleviating age-related diseases, such as hindering 

oxidative damage, suppressing TOR, and the 
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insulin/insulin-like growth factor 1 (IGF-1) pathway [97]. 

In the intestine, however, DR impairs the mucus in the 

small bowel and decreases the number of several cells in 

gut-associated lymphoid tissue, which was intensely 

reviewed by Genton [98] indicating the possible harmful 

effects of DR on the intestine. On the contrary, by 

rebalancing apoptosis with intestinal cell repair, DR 

enhances the intestinal barrier in Drosophila [99]. In 

mice, DR boosts ISC competition to drive-out fewer fit 

cells, with the mutation retention decreasing [100]. The 

effect of DR on ISCs brings hope for cancer prevention 

and aging postponement in the intestine. In addition, DR 

provides mice with alternative microbiota as well as 

altered fecal metabolites [101]. In short, DR plays 

differential roles in various aspects of intestinal aging and 

requires further assessment.  

 

2.2  Resveratrol 

 

Resveratrol (RSV), a natural non-flavonoid polyphenolic 

compound, is widely found in food such as wine and 

mulberries [102]. Since the report about RSV extending 

the lifespan of Saccharomyces cerevisiae as a remarkable 

stimulus of Sirtuin1 (SIRT1) [103], numerous studies on 

the anti-aging benefits of RSV have emerged over the last 

decade. Through adenosine 5’-monophosphate-activated 

protein kinase (AMPK), Sirtuins, and AKT, RSV 

contributes to anti-oxidant, anti-inflammation [104], anti-

infection [105], calorie restriction mimetic, telomere 

maintenance [104], mitochondrial fission [106], and 

endoplasmic reticulum stress (ER stress) [107], thus 

preventing aging in multiple body systems [104]. At the 

same time, AMPK [108] and SIRT1 [109] signaling 

pathways are the underlying mechanisms of RSV 

mitigating adult stem cell aging, in addition to activating 

nuclear factor erythroid-2-related factor 2 (Nrf2) [110]. 

The scientific community pays more attention to the anti-

inflammatory effects in the intestine. Dozens of drug-

induced colitis studies in animals have pushed forward 

research on RSV and human inflammatory bowel disease 

[102]. RSV also confers intestinal permeability benefits 

by increasing tight junction protein expression. In mice 

fed with a high fatty diet, resveratrol co-administration 

was found to improve dysbiosis and the leaky gut by 

impairing the loss of tight junction protein, and then 

ameliorate systemic inflammation and endotoxemia  

[111]. Furthermore, the current study in the highly fatty-

diet rats showed that it was the gut endocannabinoid 

system that mediated the maintenance of intestinal barrier 

function by RSV[112]. Furthermore, knockdown of Nrf2, 

as well as inhibition of PI3K/AKT, abolished the RSV-

induced increase of tight junction protein expression 

against oxidative stress [113], indicating that more 

mechanisms remain to be explored. By demonstrating that 

RSV rehabilitates the debris of villus structures and goblet 

cells by heat-stress responses [114], a study on black-

boned chickens highlighted the potential benefits of RSV 

on the morphological changes in the aging intestine.  

 

2.3  Metformin 

 

Metformin, the prescribed oral antidiabetic therapy, 

delays aging in C. elegans [115] and mice [116], with 

beneficial effects on diabetes, cognitive function, and 

cancer in humans, and is involved in the complex of IGF-

1, mTOR, AMPK, regulation of reactive oxygen species 

(ROS) production, and DNA damage [117], and age-

related cellular processes such as mitochondrial function, 

ER stress [107], inflammation, autophagy, and cellular 

senescence [117]. As for intestinal aging, metformin is 

considered sufficient to mitigate restoration-related 

deterioration in a variety of ways (Fig.3). Metformin 

remodels the metabolism of intestinal bacteria to retard 

aging, that is accounted for by altered microbial folate 

metabolism [115] and the increased yield of beneficial 

microbial productions by metformin [118]. 

Administration of metformin activates AMPK and 

inhibits P53, leading to less colonic pathological 

inflammation [119]. Moreover, improvement of 

superoxide leakage by increasing the expression of related 

mitochondrial genes is another efficient way for 

metformin to inhibit chronic inflammation [116]. A series 

of studies in the Drosophila midgut, revealed that 

metformin inhibits ISC aging, described as 

hyperproliferation, by improving DNA damage and 

genomic instability [120], further being accounted for by 

AKT/TOR signaling modulation [121] and Atg6-

dependent autophagy [122]. In the mouse intestine, 

metformin treatment recovers the tight junction protein 

expression abated by a high liquid controlled diet [123], 

as well as lipopolysaccharide (LPS) [124], where in part 

an AMPK/JNK-dependent signaling pathway participates 

[125]. By modulating the differentiation of ISCs in older 

mice by suppressing Wnt signaling, metformin raises the 

number of goblet cells, in which metformin further 

increases Muc2 [118]. The combined action on tight 

junctions, ISCs, and goblet cells endows metformin with 

the ability to reinforce the intestinal barrier. The 

restoration of autophagy and NAD levels in senescent 

cells [126] contributes to a more comprehensive 

understanding of metformin in aging.  

 

2.4 Bile Acids 

 

Bile acids (BAs), small steroid molecules synthesized in 

the liver and modified by intestinal microbiota, are of 

various kinds. What distinguishes between BA types in 

terms of molecular structure lies in the existence, position, 
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and conformation of the hydroxyl group, in addition to the 

binding of taurine or glycine, that are responsible for 

diverse extensions of solubility, metabolism processes, 

and physiological functions [127]. A recent study reported 

extraordinary BAs conjugated to phenylalanine and 

leucine, denoting a continually rising number of BA 

types, as more data emerge [128]. Despite individual 

differences in the composition of BAs in feces, 

unconjugated BAs account for the major components, 

such as deoxycholic acid (DCA) and lithocholic acid 

(LCA) [129]. Through activation or resistance, especially 

the farnesoid X receptor (FXR), transmembrane G 

protein-coupled receptor 5 (TGR5 or GPBAR1), 

pregnane X receptor (PXR), and vitamin D receptor 

(VDR), BAs take part in various physiological processes 

such as synthesis modulation of their own, lipid 

absorption, metabolism, and the immune system [127].  

 

 
 

Figure 3. An integral view on the anti-aging effect of metformin in the intestine. Four main changes take 

place in the aging intestine, including the intestinal microbiota, immune system, ISCs, and epithelial 

functions. Metformin exerts its integral effects to mitigate age-related changes in the intestine. ①Metformin 

alters bacterial metabolism to improve the production of beneficial metabolites, as well as to interfere with 

folate metabolism, which leads to a changed microbial composition. ②The anti-inflammatory effect of 

metformin is mediated by the regulation of mitochondrial gene expression, activation of AMPK, and 

inhibition of P38. ③Through attenuating the age-related specific AKT overexpression, metformin relieves 

DNA damage and ISC hyperplasia in the midgut of Drosophila, favoring homeostasis of ISCs. ④Tight 

junctions and mucus produced by goblet cells are both important components in the maintenance of the 

intestinal barrier. The inhibition of JNK signaling and Wnt signaling by metformin contributes to the 

expression of tight junction proteins and the differentiation of ISCs to goblet cells, which, accompanied by a 

metformin-induced increase in Muc2 expression, reinforces the intestinal barrier. AMPK, adenosine 5’-

monophosphate-activated protein kinase; DSS, dextran sulfate sodium; AKT (PKB), protein kinase B; TOR, 

target of rapamycin; ISC, intestinal stem cell; EB, enteroblast; JNK, c-Jun N-terminal kinase.  
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Table 1. Age-related Changes of Bile Acids. 

 
 Total BA Unconjugated BAs Conjugated BAs Ref 

Rat 

Bile 

INCREASED DECREASED:  

αMCA, βMCA, ωMCA, CA, CDCA, 

DCA, UDCA 

INCREASED:  

T-CA, T-MCA 

DECREASED:  

G-DCA, G-LCA 

UNCHANGED:  

G-UDCA, G-CDCA, T-UDCA, T-CDCA, T-

DCA, T-LCA 

 

[132] 

Male 

Mouse 

Serum 

UNCHANGED Concentration: 

INCREASED:  

UDCA 

INCREASED and 

DECREASED 

therefore:  

βMCA, CA, HDCA 

UNCHANGED:  

CDCA, DCA 

 

Proportion:  

INCREASED:  

βMCA, 

HDCA, UDCA 

DECREASED:  

CDCA, DCA 

Concentration: 

UNCHANGED:  

T-αMCA, T-βMCA, 

T-CA, T-HDCA, T-

UDCA 

Proportion:  

INCREASED:  

T-βMCA, T-MDCA 

DECREASED:  

T-DCA, T-HDCA 

[133] 

Female 

Mouse 

Serum 

INCREASED Concentration: 

INCREASED:  

βMCA, CDCA, 

DCA 

UDCA 

UNCHANGED:  

CA, HDCA 

Proportion:  

INCREASED:  

βMCA 

DECREASED:  

DCA, HDCA 

Concentration:  

INCREASED:  

T-βMCA, T-ωMCA, 

T-UDCA 

UNCHANGED:  

T-αMCA, T-CA, T-

DCA, T-HDCA, T-

MDCA 

 

Proportion:  

INCREASED:  

T-βMCA, T-UDCA 

DECREASED:  

T-DCA, T-MDCA 

 

Male 

Mouse 

Liver 

UNCHANGED Concentration: 

INCREASED and 

DECREASED 

thereafter:  

βMCA 

UNCHANGED:  

αMCA, CDCA, 

DCA, HDCA, LCA, 

UDCA 

Proportion: 

INCREASED:  

βMCA 

DECREASED:  

ωMCA, CA, 

DCA, HDCA, 

MDCA, LCA, 

UDCA 

Concentration: 

INCREASED:  

T-αMCA, T-βMCA 

DECREASED:  

T-DCA 

UNCHANGED:  

T-ωMCA, T-CA, T-

CDCA, T-HDCA, T-

MDCA, T-LCA, T-

UDCA 

 

Proportion: 

INCREASED:  

T-αMCA, T-βMCA 

DECREASED: 

T-ωMCA, T-DCA, 

T-LCA 

 

Female 

Mouse 

Liver 

UNCHANGED Concentration: 

INCREASED:  

CA 

INCREASED and 

DECREASED 

thereafter:  

ωMCA 

UNCHANGED:  

αMCA, CDCA, 

DCA, HDCA, LCA, 

UDCA 

Proportion:  

DECREASED:  

αMCA, DCA, 

HDCA, LCA, 

MCA, MDCA 

Concentration:  

INCREASED and 

DECREASED 

thereafter:  

T-αMCA, T-βMCA, 

T-CDCA, T-LCA, T-

MDCA, T-UDCA 

UNCHANGED:  

T-ωMCA, T-CA, T-

DCA, T-HDCA 

Proportion: 

INCREASED:  

T-αMCA, T-βMCA 

DECREASED:  

T-DCA, T-HDCA, 

T-LCA, T-MDCA 

 

 

BA, bile acid; MCA, Muricholic acid; MDCA, Murideoxycholic acid; CA, cholic acid; CDCA, Chenodeoxycholic acid; DCA, Deoxycholic acid; 

HDCA, Hyodeoxycholic acid; LCA, lithocholic acid; UDCA, Ursodeoxycholic acid; T-, Taurourso-; G-, Glyco-. 

An analysis of metabolites in a Chinese cohort 

exhibited a higher level of total BAs in the feces of 

centenarians [130]. Changes take place in the reabsorption 

of BAs with advanced aging, rather than in biliary 

secretion [131]. Age-related alterations of the BA profile 

have been reported in rats [132] and mice [133] (Table 1), 

albeit in the absence of features of the elderly ones. 

Moreover, metabolomic analysis showed altered BA 

profiles accompanied by age-related dysbiosis in 

LmnaG609G/G609G and Zmpste24-/- mice, two typical 

progeroid animal models [5, 134], among which 

potentially anti-aging BAs would be discussed as follows.  
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The altered BA profiles play double-edged roles 

during aging. On the one hand, BAs exert beneficial 

effects in attenuating metabolic disorders [135], 

cardiovascular disease [136, 137], impairment of the 

nervous system function [138, 139], and deterioration of 

cartilage [140] and bone [141] common in the elderly. 

Functions of the BA receptor are also involved in age-

related mechanisms or signaling pathways, such as 

AMPK [141, 143], Nrf2 [144], and autophagy [145]. On 

the other hand, cytotoxicity [146] and tumor promotion 

[147, 148] of BAs call our attention to prudent assessment 

of the situation of BAs in aging. In view of different 

natures, alongside different age-related trends of BAs, it 

is imperative to identify the anti-aging effects of a special 

kind of BA separately.  

In animal experiments, cholic acid (CA), whose 

activation ability to related receptors is weaker than that 

of others [127], is frequently administered. A diet 

enriched with CA extends lifespan and alleviates weight 

loss associated with intestinal aging in progeroid mice 

[134]. However, the mechanism behind this effect 

remains to be explored. DCA and LCA show biological 

toxicity due to their strong hydrophobicity. Such toxicity, 

on the contrary, means inhibition of both the infection 

[149] and growth of a tumor [148, 150], which disturbs 

the elderly. Previous studies have revealed the anti-aging 

effect of LCA in yeast and worms mediated by a 

mitochondria-centered mechanism, including remodeling 

lipid and carbohydrate metabolism, and attenuating 

mitochondrial network fragmentation [151, 152]. In 

addition, LCA has a unique effect of activation of VDR to 

augment tight junction proteins, preventing and 

ameliorating intestinal epithelial barrier injury [153]. The 

current study showed that incubation with bile extract or 

LCA promoted mouse intestinal organoid growth via 

activation of TGR5 in ISCs. Furthermore, elevating 

endogenous BAs by intraperitoneal injection of 

cholecystokinin contributes to intestinal cell renewal in 

vivo [154]. These data depict the possibility of the anti-

aging effect of DCA or LCA in the mammalian or human 

intestine. In the liver, interestingly, neither DCA [155] nor 

LCA [156, 157] delayed aging, and did not promote 

aging, indicating that organ specificity is essential to the 

anti-aging effect of DCA and LCA. Ursodeoxycholic acid 

(UDCA) and tauroursodeoxycholic acid (TUDCA), used 

as a remedy for cholestasis, has attracted attention for its 

cytoprotective effect against ER stress [158], especially in 

the nervous system [138]. UDCA and TUDCA alleviate 

age-related changes and diseases such as Alzheimer's 

disease [159], osteoarthritis [160], and cancer [161]. 

Notwithstanding the increase in progeroid mice [5], 

UDCA and TUDCA can also be regarded as anti-aging 

molecules worthy of further work.  

Because of the risk of toxicity that certain BAs have, 

multiple trace BAs have captured the attention of 

scientists, proposed to be more effective and harmless. 

For example, 12-keto-chenodeoxycholic acid decreased 

in progeroid mice and recovered after fecal microbiota 

transplantation to prolong life [5]. However, vast amounts 

of BAs can be used to estimate anti-aging effects.  

 

2.5 Short-Chain Fatty Acids 

 

As key metabolites in the intestinal lumina, short-chain 

fatty acids (SCFAs) are fermented from resistant starch, 

dietary fiber, and other complex carbohydrates by a 

system of multiple microbes. The major SCFAs in the 

body, acetate, propionate, and butyrate, are mainly 

involved in physiological functions as follows: 1) energy 

metabolism, such as butyrate and propionate consumed in 

the intestine and liver, respectively; 2) histone 

deacetylases (HDAC) inhibitors; and 3) G protein-

coupled receptor (GPCR) agonists, such as GPR43, 

GPR41, and GPR109A [162, 163]. SCFAs are implicated 

in a variety of neuropsychiatric disorders [164, 169], 

metabolic [170] and cardiovascular diseases [171], cancer 

[172, 173], and bone loss [174]. The fecal contents of total 

SCFA, consistent with acetate, propionate, and butyrate, 

are higher in centenarians than in those aged 80–90 years 

at the same area [130]. However, age-related decreases in 

serum acetate have been observed in Parkinson's disease 

patients [175]. No age-related changes were shown by 

SCFA analysis of the Balb/c mouse cecal contents [176]. 

In progeroid mice, butyrate declines markedly [5, 134]. 

Further analysis to clarify the age-related tendency of 

SCFAs to set forth their anti-aging effects is required. It 

encourages studies on the anti-aging effect of SCFAs in a 

high-fiber diet, an efficient way to promote SCFAs, 

suppressed the central and peripheral inflammation 

caused by LPS common in the elderly [176].  

The butyrate paradox that colorectal cancer is 

inhibited by butyrate but normal intestinal cells survive 

[177] is crucial to understanding the function of SCFAs in 

the intestinal tract. Butyrate is an energy source for 

colonocytes [162]. Meanwhile, SCFAs play a role as 

maintainers of intestinal homeostasis via regulation of 

autophagy [178], cell proliferation, and inflammation. For 

example, administration of a high-fiber diet reduces age-

related colonic inflammation in mice fed with a low-fiber 

diet [176], which resulted partly from upregulated anti-

inflammation factors such as age-related IL-10 [179] 

[180], as well as downregulated pro-inflammatory factors 

such as indoleamine 2,3-dioxygenase-1 (IDO-1) 

expression [181]. On the contrary, SCFAs facilitate 

immunological defense against pathogens by inducing 

antimicrobial peptide (AMP) production [182] and 

repairing intestinal tissue damaged by parasitic infection 
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[183]. In addition, the age-induced breakage of intestinal 

permeability in mice is aggravated by the intake of SCFAs 

[176], resembling what was confirmed in the stressed 

mice because in part SCFAs contributed to rescuing the 

function of tight junctions diminished by stress [169]. In 

addition, increasing goblet cells [183] and bolstering 

Claudin-1, a tight junction protein [184], are involved in 

the protective effects of butyrate on the intestinal 

epithelial barrier.  

The confusion comes up with deepening research on 

SCFAs in various organisms, besides the butyrate paradox 

in cancer. In contrast to a higher levels of fecal SCFAs in 

women with metabolic syndrome [185], active SCFA-

producing bacteria are linked to lower hemoglobin A1c 

levels [170]. Meanwhile, SCFAs promoted exercise 

damage in Parkinson's disease mice [166], however, 

improved clinical features in another drug-induced model 

mice [165]. The study also indicated a promoting nervous 

inflammation after treatment with SCFAs [166], in 

marked contrast to what is discussed above. Overall, it is 

noteworthy that the anti-aging effect of SCFAs varies in 

different species and animal models of a given species. 

Isobutyric acid, valeric acid, isovaleric acid, elevating in 

centenarians [130], also requires further study.  

 

2.6  Tryptophan and Indoles 

 

Tryptophan (Trp) is an essential aromatic amino acid. 

Dietary unabsorbed Trp follows three metabolic pathways 

in the intestine to kynurenine (Kyn), 5-HT, and indole 

derivatives [186]. Trp is prone to exert protection against 

aging as a kind of NAD precursor [187] although no 

evidence demonstrates the influence of it, to date. In the 

Kyn pathway, the key enzyme is IDO-1, which is thought 

to destroy the intestinal barrier by pro-inflammation [188, 

181]. 5-HT basically acts on the ENS [186].  

Produced by different bacterial strains with 

respective tryptophan enzymes, various indole derivatives 

participate in wide-ranged biological activities partly 

mediated by aryl hydrocarbon receptor (AhR) and PXR 

[186], further benefiting atherosclerosis [189], 

hypertension [190], fatty liver [191-194], tumor [195], 

and other age-related dysfunction. Indole extends the 

health span of C. elegans and Drosophila [196]. 

Moreover, dietary indole-3-carboxaldehyde (IAld) 

increased the survival rate of mice after total-body 

irradiation [196], validating the conservative protection 

effects of indoles. In the intestinal organoid system, IAld 

improves the proliferation of ISCs after damage through 

AhR [197]. Transcriptome analysis revealed that indole 

contributes to an increased expression of tight junctions in 

HCT-8 cells [198]. Emerging data showed indole acrylic 

acid (IA) and indole propionic acid (IPA) protect the 

intestinal epithelial barrier by enhancement of goblet cell 

function or moderation of inflammatory responses partly 

via PXR [50, 199-201]. Interestingly, both IA and IPA lie 

downstream of indole lactic acid (ILA), which 

Bifidobacterium species, a long-recognized probiotic 

genera [202], metabolizes tryptophan in vitro to produce 

only [203], denoting more benefits of those indoles that 

remain to be investigated.  

 

2.7 Nicotinamide Adenine Dinucleotide and its 

Precursors 

 

NAD is a vital coenzyme in all cells. As part of electron 

transfer, NAD participates in a vast body of internal 

reactions, particularly energy metabolism and sensing 

[187]. Three pathways guide five current, known 

precursors, Trp, nicotinic acid (NA), nicotinamide 

(NAM), nicotinamide riboside (NR), and nicotinamide 

mononucleotide (NMN) to NAD in cells [187]. Its nature 

as a substrate of poly-ADP-ribose-polymerases (PARPs) 

and sirtuins endows NAD with a target for aging 

anomalies [204]. In turn, aging witnesses a gradual 

depletion of cellular NAD in multiple tissues [205]. In 

goblet cells, in vitro, NAD treatment increases MUC2 

expression, a major component of mucus [206]. A recent 

study showed that the provision of NR in drinking water 

reverses the age-related changes in the mouse intestine, 

such as the number of ISCs, formation of in vitro intestinal 

organoids, and recuperation from drug damage. The 

recovery of exacerbated ISCs is abrogated by the inhibitor 

of mTORC1 or SIRT1 [207]. This study sheds light on the 

benefits of the NAD/SIRT1/mTORC1 axis in the 

rejuvenation of the aging intestine. NAD and its 

replacement therapies deserve further investigation by 

well-designed clinical trials to validate the anti-aging 

value. Owing to the fact that not all of these precursors 

share consistent efficiency for conversion[208], the best 

oral NAD supplement strategy waits for our test. Besides, 

both inhibition of NAD consumption enzymes, such as 

PARP and CD38, and reinforcement of the key enzyme of 

NAD salvage pathways, NAM phosphoribosyltransferase 

(NAMPT), are theoretical options for improving NAD. 

Anti-CD38 antibodies are approved for use in multiple 

myeloma[209]. Moreover, intraperitoneal injection 

starting at the age of 26 months of NAMPT-containing 

extracellular vesicles purified from young mice is 

reported to restore movement activity and extend lifespan 

in elderly mice [210].  

 

2.8 Urolithin A 

Among the five products from the gut microbial 

fermentative activity of ellagitannin abundant in 

pomegranate as well as in nuts and berries, urolithin A 

(UA) is the hottest spot for its benefits in cancer and 

inflammation [211]. An increasing body mass index is 
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followed by a decline in the distribution of UA, while a 

rising distribution of urolithin B. Similar changes occur to 

aging [212]. Treated with UA, C. elegans has a prolonged 

lifespan, and prevention or amelioration of age-related 

fitness decline, accompanied by activated mitophagy. 

However, in mev-1 (associated with mitochondrial 

function) mutants, improvement of UA vanishes entirely. 

Furthermore, in rats and mice fed with UA daily, muscle 

function is promoted by the induction of mitophagy in the 

elderly. The power UA has to refit muscle and brain aging 

[213, 214] is shown to be involved in diverse biological 

processes such as antioxidation [215], autophagy [216], 

and ER stress [217]. In human skin fibroblasts, an Nrf2-

dependent manner mediated UA’s antioxidative response 

to mitigate replicative senescence [218]. Through 

AhR/Nrf2, postinjury intake of UA protects mouse 

intestines from acute or chronic drug-induced damage by 

upregulation of tight junction proteins [219]. Moreover, 

the decrease in serum inflammatory markers [219] reveals 

that the gut protective effect of UA is attributed to 

suppression of systemic inflammation. Thanks to safety 

assessment guaranteeing the security of UA in clinical 

application [220], a promising avenue for UA intervention 

in the aging intestine comes into being.  
 

Table 2. Mechanisms of strategies underlying anti-aging effects in intestine. 

 
Strategy Target Mechanism Ref 

Diet 

restriction 

Intestinal barrier Enhancing gut barrier by upregulating MYC and rebalancing 

apoptosis 

[99] 

 ISCs Enhancing stem cell competition to reduce mutation retention [100] 

Resveratrol Immune system Resisting inflammation by inhibiting NF-κB activation [102] 

 Intestinal barrier Increasing tight junction proteins expression through PI3K/AKT 

pathway 

[111] [112] 

[113] 

 Morphological 

changes 

- [114] 

Metformin Intestinal microbiota Altering microbial metabolism [115] [118] 

 Immune system Resist colonic pathological inflammation by activating AMPK, 

inhibiting p53 activation 

[119] [116] 

 ISCs Improving DNA damage and genomic instability by AKT/TOR 

signaling 

[120] [121]  

  Retarding ISCs aging by Atg6-depend autophagy [122] 

 Intestinal barrier Increasing tight junction proteins expression through AMPK/JNK-

dependent signaling 

[123] [124] 

[125] 

  Improving mucus by suppressing Wnt signaling to raise the 

number of goblet cells 

[118] 

NAD Intestinal barrier Improving mucus by increasing MUC2 expression [206] 

 ISCs Improving ISC function by NAD/SIRT1/mTORC1 axis [207] 

Urolithin A Intestinal barrier Increasing tight junction proteins expression through AhR/Nrf2 

pathway 

[219] 

Spermidine Intestinal barrier Reducing epithelial cell permeability by preserving location of 

tight junction proteins 

[230] 

  Increasing tight junction proteins in terms of synthesis and stability [231] 
 

ISC, intestinal stem cell; NF-κB, nuclear factor kappa B; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; AKT, protein kinase B; AMPK, 

adenosine-5’-monophosphate-activated protein kinase; TOR, target of rapamycin; Atg6, autophagy related 6; JNK, c-Jun N-terminal kinase; MUC2, 

Mucin 2; NAD, Nicotinamide adenine dinucleotide; SIRT1, Sirtuin 1; mTORC1, mammalian target of rapamycin complex 1; AhR, aryl hydrocarbon 

receptor; Nrf2, nuclear factor E2-related factor 2. 

2.9 Spermidine 

 

Spermidine (SPD), a natural polyamine, elicits its 

essential effects on cell growth, proliferation, and tissue 

regeneration [221]. SPD pool in mammals is contributed 

by dietary supply and synthesis of the intestinal 

microbiota [221], which suffer from an aging-related 

decline [222, 223]  emphasizing the association between 
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SPD and aging. Highly conserved ability of SPD is wildly 

reported to extend lifespan of Saccharomyces, C. elegans, 

Drosophila [224], mice [225], and human cells [224]. 

Restoration of autophagy, improvement of mitochondrial 

function, and reduction of ER stress are believed to be key 

for SPD to improve aging impairments, especially 

neurodegeneration [226], metabolic diseases [227], and 

cardiovascular and muscle-related disorders [225, 228, 

229]. As a stimulus of T cell protein-tyrosine phosphatase, 

SPD rescues intestinal epithelial barrier dysfunction 

disrupted by inflammatory cytokine treatment in vitro 

[230]. It has been demonstrated in vitro that polyamine 

deprivation disturbs the synthesis and stability of a tight 

junction protein, occluding [231].  

 

Discussion 

Unlike obvious wrinkles in the aged skin, senescence-

associated deterioration in the intestine is too 

inconspicuous to draw people’s attention. However, the 

increased incidence of intestinal disease and 

morphological and functional changes of significance 

remind us of the damage of aging on the intestine. Notaly, 

progressive strategies help scientists trace slight 

modifications, especially dysbiosis, immune imbalance, 

stem cell exhaustion, barrier dysfunction, and enteric 

neurodegeneration, and further smooth out injury in the 

aged intestine.  

Through the cooperation of sample analysis data and 

experimental results, several strategies are emerging for 

their anti-aging effects. In this review, we have appraised 

several strategies that we consider as candidates to 

postpone or avert the aged intestine. Ranging from diet 

control to pharmaceuticals and compounds metabolized 

by both host and microbiota, we reviewed DR and 8 kinds 

of compounds, which are listed in Table 2, except for 

BAs, SCFAs, and Trp for their large amounts of different 

derivatives to enumerate.  

Among those means listed, we suggest that 

metformin should receive more focus as a highlighted 

strategy to rejuvenate the intestine under consideration of 

its power, covering comprehensive changes with the aged 

intestine. Metformin is a widely used antidiabetic drug for 

decades. After 2000, its pleiotropic effects beyond 

antidiabetic[232] have come to light. As mentioned 

above, we discuss the protective effect of metformin on 

intestine against aging. However, such anti-aging effects 

are mediated by multiple targets. The identification of a 

certain and integral action mode of metformin needs more 

studies. And further clinical data are also required to 

support metformin to be a treatment to rejuvenate the aged 

intestine in humans.  

The search for potential strategies, especially special 

metabolites, to rejuvenate the aged intestine is ongoing. 

The fact that SCFAs amplify the function of AhR, a 

receptor of indoles[233], illuminates the cooperative 

effect of multiple dietary supplements. Hang et al.[234] 

selected 3-oxo-LCA and isoallo-LCA from nearly 30 

types of BAs in the study, to search for the effect of BAs 

on the differentiation of immune cells[234], which 

inspired us to eliminate an integral screening process. 

However, it is worthwhile to consider several concepts. 

First, the age-related decreasing trend does not equal the 

anti-aging benefits. Moreover, aging in the intestine has 

many aspects. Confirmation in vitro does not always 

reappear in vivo. Concerning future directions, we 

highlight the convergence of deep metabolomic studies 

and experiments with speed and efficiency. It is 

anticipated to achieve a dozen well-received strategies to 

maintain the young intestine.  
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