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Abstract: In this study, the degradation mechanism of chloroacetanilide herbicides in the presence of
four different nucleophiles, namely: Br−, I−, HS−, and S2O3

−2, was theoretically evaluated using
the dispersion-corrected hybrid functional wB97XD and the DGDZVP as a basis set. The comparison
of computed activation energies with experimental data shows an excellent correlation (R2 = 0.98 for
alachlor and 0.97 for propachlor). The results suggest that the best nucleophiles are those where a
sulfur atom performs the nucleophilic attack, whereas the other species are less reactive. Furthermore,
it was observed that the different R groups of chloroacetanilide herbicides have a negligible effect
on the activation energy of the process. Further insights into the mechanism show that geometrical
changes and electronic rearrangements contribute 60% and 40% of the activation energy, respectively.
A deeper analysis of the reaction coordinate was conducted, employing the evolution chemical
potential, hardness, and electrophilicity index, as well as the electronic flux. The charge analysis
shows that the electron density of chlorine increases as the nucleophilic attack occurs. Finally, NBO
analysis indicates that the nucleophilic substitution in chloroacetanilides is an asynchronous process
with a late transition state for all models except for the case of the iodide attack, which occurs through
an early transition state in the reaction.

Keywords: chloroacetanilide herbicides; nucleophilic substitution; reaction force; electronic flux;
DFT calculations

1. Introduction

The presence of weeds and grasses competing with plants for resources such as
nutrients, water and sunlight has become a serious agricultural problem that hampers
high yields in crops [1]. Reductions in the production yields as high as 80% resulted in big
concerns regarding the growth control of these undesirable plants from the farm fields [2].
The use of chemical herbicides is considered one of the most efficient methods to prevent
weed invasion, being an essential and common practice in modern agriculture [1–3].

Chloroacetanilides, first synthesized in the 1960s, represent a family of herbicides that
includes products such as: metolachlor, acetochlor, butachlor, and alachlor. Additionally,
this family of compounds represents one of the most widely used pesticides worldwide to
fight small-seeded broadleaf weeds and annual grasses [4,5]. The use of these compounds,
and accordingly their production, has significantly increased since 1980. Moreover, they
are used in the production of several economically important crops such as corn, sugar
cane, cotton, beetroot, maize, rice, sunflower, and soybean crops [6,7]. The particular case
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of acetochlor, metolachlor, and alachlor reach the 4th (~33 million lb), 10th (~18 million lb),
and 16th (~8 million lb) place in the most widely used agricultural chemicals in the US,
according to the United States Environmental Protection Agency (US EPA) [7,8]. In addition,
their use has been observed to reach countries in Africa, Europe, Latin America [3,9]. China
is also a great consumer of chloroacetanilide herbicides, using around 10,000 metric tons
every year [4].

It has been suggested that weeds have become more resistant to these substances.
This has resulted in the need for larger amounts of pesticides to achieve the same weed
control. The latter represents a risk not only to the agricultural land but to the environment
itself, where an accumulation have been determined in continental and marine natural
waters [1,10]. Chloroacetanilide and its metabolites have been found in ground and
surface water due to their relatively high water solubility [4,10]. Acetochlor has been
detected in shallow groundwater up to one year after its application, being the third
most frequently detected herbicide behind glyphosate and atrazine [5,10,11]. Due to its
transport mechanism, which includes surface runoff, soil erosion and leaching, scientists
estimate that around 95% of freshwater streams near farming fields contain detectable
quantities of acetochlor [8,12]; thus, strict regulations have been imposed for acetochlor,
whose concentration in water cannot exceed 2 ug/L. Maximum concentration values
for other chloroacetanilides have not been established; however, other members of the
chloroacetanilides family, as metolachlor, are already present in the EPA’s “Drinking Water
Contaminant Candidate List” [11]. Given the latter, the removal of these type of herbicides
from wastewater and aquatic ecosystems has become imperative [4].

In addition to the environmental issues, some chloroacetanilide herbicides have been
identified as probable human carcinogens. In this sense, alachlor and acetochlor have
been classified as B2 class substances (i.e., likely human carcinogens) by the US EPA, while
metolachlor is classified as a C class substance (possible human carcinogen) [13,14]. Their
accidental consumption has been associated with eye, liver, kidney, spleen problems and
anemia [7]. Indeed, recent studies have shown significant rates of the carcinogenic nature
of acetochlor in rats, tadpoles and minnows causing stomach, liver, bone, thyroid and
lung tumors [3]. Furthermore, these substances exhibit moderate to high chronic toxicity
to aquatic vertebrates and invertebrates; and high toxicity to aquatic plants and some
green algae [8,15]. Currently, the carcinogenic mechanism of chloroacetanilide compounds
has not been elucidated; however, in vitro ecotoxicological evidence suggests that the
carcinogenic properties are related to the ability of the herbicide to undergo a nucleophilic
reaction, causing changes and damages in the DNA [13]. This has increased the concern of
being able to identify and determine the effect of these compounds and their metabolites
in the environment [3,8].

It is important to point out that chloroacetanilides are recalcitrant substances; thus,
their degradation occurs very slowly in soil–water systems, while in aquifer environ-
ments, is almost negligible [5,12,13]. The oxanilic acid and ethane sulfonic acid (ESA)
derivatives of alachlor, acetochlor and metolachlor are usually detected in higher concen-
trations, being identified as the major byproduct of chloroacetanilide herbicides in water
bodies [4,16,17]. Still, their transformation rate is estimated to be very slow under natural
conditions. Recent studies have reported that some sulfur compounds could rapidly react
with chloroacetanilide herbicides, turning them into less toxic products [18,19], and this
mechanism has been suggested as an effective approach for chloroacetanilide remedia-
tion in soil and aqueous environments. In these regards, the degradation mechanism of
chloroacetanilide compounds can be simply foreseen as the substitution of the chlorine
atom by a different functional group through an intermolecular SN2 process [9,14]. In
order to support this statement, a computational study of chloroacetanilide herbicides
degradation mechanism using HS− ion as a nucleophile, by means of electronic structure
calculations performed at the wB97XD/6-311++G(2d,2p) level, was presented in a previous
study in order to obtain insights into the degradation process. Three different mechanisms
were evaluated being the bimolecular nucleophilic substitution (SN2) mechanism, with the
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most favorable one having activation free energies around 20 kcal/mol [13]. Under this
approach, other anionic nucleophiles present in water bodies such as iodide and bromide
ions have been experimentally considered for the SN2 nucleophilic substitution reaction of
chloroacetanilide [20].

In this study, the effect of the nucleophile nature in the SN2 mechanism, which has been
reported as the most favorable mechanism for these reactions (Scheme 1), was theoretically
evaluated in detail by employing the Density Functional Theory (DFT) with the long-
range dispersion-corrected Head–Gordon hybrid functionalωB97XD. Four well-known
chloroacetanilide herbicides were studied using four different nucleophiles, taking into
account the geometrical and electronic rearrangement occurring on the reaction pathway.
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Scheme 1. SN2 reaction mechanism of chloroacetanilides.

2. Results and Discussion

Following Scheme 1, the reaction of each chloroacetanilide with the four different
nucleophiles was studied and their activation free energies calculated. It is known that
nucleophiles act differently in protic and aprotic solvents. In protic solvents, I− ion is
a better nucleophile than Br−, while the opposite is expected in aprotic solvents [21].
The results obtained using the solvation model density (SMD) did not agree with the
aforementioned because Br− presented a lower activation barrier (~10 kcal/mol) than I−

in all studied models. Probably, this failure is due to the absence of local interactions with
the protic solvent molecules within the SMD approach. To circumvent this problem, the
effect of including water molecules to simulate an explicit solvent around the reactant,
nucleophile, and transition state (Figure S1) is evaluated. In the chloroacetanilides and
transition states, the effect of an explicit solvent is very small (Table S1) because they are
not charged species cancelling out when estimating the activation free energy. In order
to reproduce the solvation effect, systems with different numbers of water molecules
around the nucleophile were built and tested. Regarding the latter, the model with four
water molecules generated the most stable complexes, forming a tetrahedral environment
around the anion (Figure 1). From five molecules onwards, water molecules showed a
preference to form internal hydrogen bonds rather than interact with the ion. All four
nucleophiles presented an analogous energy profile, where the electronic solvation energy
of −17.7 kcal/mol was estimated for Br−, −7.51 for I−, −17.6 kcal/mol for HS−, and
−16.54 kcal/mol for S2O3

−2.
Considering the solvation free energy value of the different models employing a

four water molecule system, the activation free energies were estimated (Table 1). For
the thiosulfate nucleophile (S2O3

−2), two options were taken into account: one where the
nucleophilic attack occurs through the sulfur atom, and the other through the oxygen atom.
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Figure 1. Solvation electronic energy of bromide (a), iodide (b), bisulfide (c), and thiosulfate (d) ions using a different
number of water molecules.

Table 1. Activation free energy in kcal/mol of the SN2 reaction of chloroacetanilides in water.

Nucleophile Acetochlor Alachlor Metolachlor Propachlor

Br− 23.81 23.84 22.98 22.18
I− 21.80 22.04 22.53 21.22

HS− 20.45 19.33 20.25 18.36
S2O3

−2 (S) 18.73 20.08 20.29 19.09
S2O3

−2 (O) 26.28 26.37 26.77 26.68

Regarding acetochlor, the most favorable SN2 reaction with thiosulfate occurs through
the sulfur atom instead of the oxygen one having a difference in activation free energy
of around 7 kcal/mol. This was expected, as in protic solvents, sulfur is always a better
nucleophile than oxygen. On the other hand, comparing the two halogens studied, the
iodide anion presents lower activation free energies, acting as a better nucleophile than
bromide. The bisulfide anion was observed to be slightly less reactive than the thiosulfate
ion. The opposite was observed for the other chloroacetanilides, where this anion was
observed to produce the lowest activation energies with values close to ~20 kcal/mol, and
it was in good agreement with experimental reports [14]. In this regard, the calculated
activation free energy for alachlor and propachlor were compared with the logarithm of
the experimental rate constant (Knuc) values obtained by Lippa et al. [14]. As a result, a
linear relationship was found with a coefficient of determination (r2) of 0.98 for alachlor
and 0.97 for propachlor (Figure 2) which means that the model proposed in this article
adequately describes these particular reactions. The obtained linear equations with a slope
near to 1 and an intercept of about 17–18 suggest that both systems are degraded by the
same mechanism, with the HS− being the best nucleophile with a high knuc. The intercept
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values for both systems are similar and are related to the entropy changes occurring during
the formation of the transition state, which imply a bimolecular reaction with a great loss in
translational degrees of freedom. It is important to indicate that, for the case of acetochlor
and metolachlor, experimental results for the attack of all nucleophiles considered in this
work are not reported.
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Figure 2. Log knuc vs. activation free energy for alachlor and propachlor. R2 = coefficient of
determination, y = activation free energy, x = log knuc.

Each one of the previous reactions was further analyzed through an intrinsic reaction
coordinate (IRC) calculation, the reaction force (RF), as well as the reaction electronic flux
(REF) descriptors. The IRC plots show the energy profile of the nucleophilic substitution
mechanism from the reagents to the products. From the IRC graph, the RF plot is obtained
(Figure 3). Due to the similarity of the models, only alachlor and propachlor plots are
shown. The figures for the other two models are presented in the Supporting Information
(Figures S2 and S3).
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Looking at the electronic energy profile, only the I− model produce products that are
less stable than its reagents. The HS− ion produces the most stable product and presents
the lowest activation energy, being the best nucleophilic agent followed by the S2O3

−2

anion. The RF plots obtained agrees with a classical concerted mechanism, where four
reaction works, two describing geometrical rearrangements and two describing electronic
changes (see the definition in the Section 3), were estimated. The reaction works for all
the models were calculated and tabulated in Tables S2–S5. Values for the different works
in alachlor and propachlor are depicted in Figure 4. The graphs for the other models are
available in the Supporting Information (Figures S4 and S5).
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Figure 4. Reaction force works for the nucleophilic substitution reaction of alachlor (a) and propachlor (b).

The results show that for all models, the geometrical changes contribute around 60%
(associated to w1, black bar in Figure 1) and the electronic changes 40% (associated to
w2, blue bar in Figure 1). The main geometrical changes occur on the carbon atom where
the two hydrogens align to the plane in order to let the chlorine atom leaves and the
nucleophiles enter the system in a forward mechanism [22]. The distance between the
nucleophile and the carbon where the attack is being performed was found to be the same
at the transition state (TS) structure independently of the chloroacetanilide studied. This
distance is directly influenced by the atomic radius of the element performing the attack.
In this sense, an r2 value of 0.95 was found when correlating the distance at the transition
state with the atomic radius of the element. Electronic changes occur when the nucleophile
enters in the system and is close enough (i.e., C-Cl distance of ~2.0 Å and C-Nu distance
of ~2.75 Å) to produce charge rearrangements. Here, the C-Cl bond started weakening,
resulting in its cleavage, while the C-Nu interaction became stronger, forming a bond. The
smallest values of w1 and w2 were obtained for the case of the HS− as nucleophile, in
consonance with the smallest activation energies found for those systems.

In order to obtain further insights in the changes described above and evaluate the
reactivity of the system and some electronic events occurring as the reaction proceeds,
three molecular descriptors, chemical potential (µ), hardness (η), and electrophilicity (ω),
were plotted along the reaction coordinate. Figure 5 shows the plots for the alachlor and
propachlor systems at the transition state region (see the definition in the Section 3), while
the complete plots can be found in the Supporting Information (Figure S6), along with the
graphs for the other systems (Figures S7 and S8).

It is observed that the chemical potential and the hardness are linearly related, while
electrophilicity is inversely related. Furthermore, energy (E) is also inversely related to µ
and η. In this sense, E and ω reach a maximum at the TS, while µ and η reach a minimum.
As the chemical reaction proceeds, µ, η, andω remain stable during the reagent’s region,
confirming, that in this region, geometrical rearrangements are mainly taking place. During
the TS region, where all the electronic changes occur, there is a small increase in µ and η,
followed by a rapid decrease up to the TS structure. In ω, the behavior is the opposite.
From a thermodynamic point of view, this decrease in µ infers the chemical process is
spontaneous [23]. Regarding η, the decrease was expected because, during the TS, the
system is in a meta-stable state where the HOMO-LUMO gap is the shortest, fulfilling
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the Maximum Hardness Principle [24]. Once in the products region, the three descriptors
stabilize again, and a geometrical relaxation process occurs.
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The TS structure has the lowest η value, indicating is the most unstable structure [23].
Each descriptor affects the mechanism in a different level and to a different extend. That
is why E and µ values at the TS structure are not correlated at all. In this sense, although
the HS− model has the lowest activation energy, its µ at the transition state structure is
not highest, nor the lowest. It has been reported that the activation process is governed
by changes in µ, while the relaxation process is governed by by changes in η [25]. The TS
can be considered the structure with maximum energy and electrophilicity, and minimum
chemical potential and hardness.

REF profiles were plotted to obtain insights on the electronic rearrangement occurring
along the reaction. Alachlor and propachlor systems are shown in Figure 6, while acetochlor
and metolachlor are shown in Figures S9 and S10, respectively.
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By analyzing the REF for the different models with the different nucleophiles, it is
clearly observed that the shape of all the profiles is similar, meaning an analogous electronic
flux is followed by all the studied systems. A similar profile is reported in the literature [26]
suggesting that this type of profile is typically observed in SN2 reactions. The differences
found are attributed to the bond strengths caused by the atom’s nature. In the reactant
region (R–ξ1), no electronic flux was found. These results correlate with the RF profile,
where this portion is attributed to geometrical contributions, suggesting only electrostatic
interactions occur between the nucleophile and the carbon atom. When the reaction enters
into the TS region (ξ1–ξ2), where all the electronic redistribution takes place according to
the RF profile, an important increase in electronic flux can be seen. This event activates
the reaction which prepares the system for both the C-Nu bond formation and the C-Cl
bond cleavage. No electronic flux was observed at the transition state structure due to a
cancellation carried out by the equilibration between the nucleophile and the leaving group.
This occurs despite it being a thermodynamically unstable structure. In the subsequent
region, electronic flux is again observed until the reaction reaches the products region (ξ2–P)
where the flux disappears, letting electrostatic and geometrical changes relax the system
up to the final product. In a REF profile, positive values are associated with spontaneous
changes in the electronic density as in a bond strengthening process. For non-spontaneous
electronic processes, such as the ones that occur during bong weakening, the electronic
flux reflects negative values. In this sense, as the reaction proceeds, it is observed that there
is a spontaneous electronic change caused by the approach of the nucleophile towards
the carbon atom that causes the C-Cl bond to start weakening until its cleavage. This
process involves most of the electronic rearrangements; accordingly, it presents the highest
REF value in the graph. After this point, the flux tends to decrease up to the TS, where it
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becomes a non-spontaneous electronic process up to a minimum where the nucleophile
enters the system, and the chlorine atom leaves. Although there still is a flux, it is lower in
every case from the one occurring at the beginning of the TS region. After this minimum
point, a spontaneous process that includes the C-Nu bond strengthening occurs up to a
stable electronic conformation, where no more flux is observed.

A complementary charge analysis was performed for all models and tabulated in
Tables S6–S9. As the behavior in all models is very similar between the different models,
only alachlor and propachlor are plotted in Figure 7. As the nucleophilic substitution of
chloroacetanilides proceeds from the reagents to products, the chlorine atoms gain electron
density. The different R groups in chloroacetanilides have a negligible influence on the
mechanism itself; therefore, it was found that for all studied models, chlorine electron
density increases −0.88. On the other hand, the nucleophiles lose electron density, with
iodide being the one that loses the most (~1.11) followed by bisulfide (~0.99) bromide
(~0.97), thiosulfate attack through the sulfur atom (~0.75) and the oxygen atom (~0.33). In
the case of the carbon atom, it increases the electron density in all models except for the
oxygen attack of the thiosulfate.
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Figure 7. Charge change from reagent to the transition state (R-TS), and from the reagent to the
product (R-P) for the nucleophilic attack of alachlor (a) and propachlor (b).

Finally, Wiberg bond indexes (Tables S10–S13) were estimated to obtain synchronicity
and evolution percentage values. From the results, the C-Cl bond dissociation was found
to be the most important event to reach the TS with higher evolution than the C-NU bond
in all studied models. The synchronicity and average evolution percentage values for
alachlor and propachlor are shown in Table 2. The highest evolution for the C-Cl bond
was found for the iodide models which can be reflected in its synchronicity value (~0.92)
and the %Evav (~56.5%), which are the highest too. The evolution percentage for the C-Cl
compared to C-Nu bond shows a difference between 8% and 10% for all models except
S2O3

−2 (O) which presents a 15% difference. For the studied models, only iodide presents a
late transition state (%Evav < 50%) while the others present an early TS, with HS− being the
earliest (41.8%). All models are shown to be slightly asynchronous, with values between
0.839 and 0.928.

Table 2. Average evolution percentage (%Evav) and synchronicity (Sy) for the nucleophilic substitu-
tion of alachlor and propachlor.

System Br− I− HS− S2O3−2

(S)
S2O3−2

(S)

Alachlor
%Evav 49.1 56.8 40.8 45.0 45.8

Sy 0.904 0.928 0.899 0.892 0.839

Propachlor %Evav 49.2 56.4 41.2 46.4 46.5
Sy 0.903 0.917 0.895 0.892 0.833
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3. Materials and Methods

Four chloroacetanilide compounds were evaluated according to Scheme 1. To per-
form the nucleophilic substitution process, four anions were evaluated (bromide, iodide,
bisulfide and thiosulfate). All the calculations were performed using the DFT long-range
dispersion-corrected Head–Gordon hybrid functionalωB97XD [13,27–29], as implemented
in Gaussian 16 [30]. The DGDZVP basis set was used to express the wavefunction, since it
has been determined to correctly describe the H-Xe elements range [31–35]. Solvent effects
were also considered by employing both implicit method and explicit water molecules.
For the implicit method, a Polarizable Continuum Model (PCM) of water was used within
the solvation model density (SMD) approach [36,37]. On the other hand, as nucleophiles
behave differently in protic and aprotic solvents [21], solvation electronic energies were
obtained using water molecules in an explicit way to determine the most stable system
around the reactants. Figure 8 presents a schematic representation of this approach.
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Figure 8. Schematic representation of the solvation model approach used in this work.

For all the systems studied, the reagents (R), transition state (TS) and products (P)
structures were optimized. Frequency calculations were performed to characterize the
stationary points. The Berny algorithm was employed to find the correct TS where the only
imaginary frequency found had to be linked to the nucleophilic attack and chlorine atom
removal event [38]. The activation free energy was estimated by subtracting the Gibbs
free energy obtained for the transition state structure minus the Gibbs free energy of the
reactants. A molecularity correction of −1.89 kcal/mol was added to the activation free
energy, because it is a bimolecular system [39]. Computational results were compared
against experimental kinetic results obtained by Lippa et al. using pseudo-first-order
conditions with a nucleophile concentration ranging from 1.3 nM to 1M, and analyzed
using gas chromatograpgy [14].

Intrinsic reaction coordinate (IRC) calculations were conducted around all the TS
structures in order to obtain all the structures that connect the reagents with the prod-
ucts [40–42]. Then, the reaction force quantum mechanical descriptor was used to further
characterize the reaction. The reaction force (RF) profile of each reaction was obtained by
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taking the derivative of the energy profile, E(ξ), over the normalized reaction coordinate
(Equation (1)) [13,25,43,44].

F(ξ) = −dE
dξ

(1)

In a typical one step SN2 reaction, the RF plot has three regions separated by two
critical points (ξ1 and ξ2) with the TS between both (dotted lines in Figure 9). The first one
is called the reagents region, where geometrical rearrangements take place in order to go
from the reagent to an activated state of them. The second zone, called the transition state
region, starts at an activated state of the reagents, goes through the transition state, and ends
at an activated state of the products. This region starts at a minimum (ξ1) in the RF plot
and ends in a maximum (ξ2). Finally, the last section is called the products region, which
describes the relaxation process going from the activated products to the final basal state
of them [43,45–47]. By integrating each part of the profile, four different reaction works
(Equation (4)) associated with the geometric and electronic contribution can be estimated,
gaining an insight on the mechanism (Figure 9b). The first work (w1) is associated to
geometrical changes, and the second work (w2) to the electronic ones occurring to the
reagents in order to reach the TS. On the other hand, Work 3 (w3) estimates the electronic
contribution required in the relaxation process, while Work 4 (w4) the geometrical ones.
Negative signs in w3 and w4 means the system is relaxing [48–50].

Wx = −
∫ j

i
F(ξ)dξ. (2)
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Figure 9. Potential energy profile (a) and reaction force profile (b) for a single step reaction along
the IRC.

Three additional molecular descriptors, i.e., chemical potential (µ), hardness (η), and
electrophilicity (ω) described elsewhere [51], were used to obtain a deep understanding
of the electronic events and chemical reactivity occurring during the reaction mechanism.
Although the chemical potential (µ) is defined as the derivative of the electronic energy
against the number of electrons (N) [43,52], it can also be defined in terms of the energy
of the frontier Molecular Orbitals LUMO (Lowest Unoccupied Molecular Orbital) and
HOMO (Highest Occupied Molecular Orbital), applying Koopmans’ theorem and the finite
difference approximation described elsewhere [53,54]. The same can be carried out with
η ( ELUMO−EHOMO

2 ), defined as the first partial derivative of µ with respect to N, where a
hardness profile can be built [55]. Hardness is a good descriptor when describing reac-



Int. J. Mol. Sci. 2021, 22, 6876 12 of 15

tion mechanisms following the Maximum Hardness Principle, stating that at equilibrium,
chemical species are as hard as possible [24]. In most cases, there is a relation between
hardness and activation energy, where higher ηmeans lower activation energies and also
lower polarizability [56]. Furthermore, it allows one to study the solvent effect [57]. Finally,
electrophilicity is a widely used reactivity parameter defined by Parr et al. [58], being suc-
cessful in describing different organic systems, including Friedel–Craft, Diels–Alder, and
1,3 cycloaddition reactions [59–61]. A polarizable environment influences electrophilicity,
where solvation enhances neutral compounds’ electrophilicity while attenuating charged
ones [62].

Furthermore, the reaction electronic flux (REF) profile was constructed in order to gain
a better understanding of the electronic changes occurring during the SN2 reaction. The
REF was built by taking the derivative of µ over the normalized IRC (Equation (3)) [63,64].

J(ξ) = −dµ/dξ (3)

A natural bond orbital (NBO) analysis was also carried out on every system in order
to evaluate the bond order evolution during the nucleophilic attack as the reaction pro-
ceeds [65,66]. Wiberg bond indexes (Bi) [67–70] and the evolution percentage (%Evi) of the
bonds for the three atoms directly involved in the nucleophilic substitution were estimated
(Equation (4)). With this information, the average bond evolution percent (%EVav) can
be calculated, providing insights on how early or late in the reaction the transition state
occurs in the reaction.

%Evi =

[
BTS

i − BR
i

BP
i − BR

i

]
× 100 (4)

Equation (5) allows the calculation of the synchronicity (Sy) of the system. This
concept proposed by Moyano et al. describes if a process is synchronous (values around 1)
or asynchronous (values around 0) [49,71–73].

Sy = 1−

[
∑n

i=1
|%Evi − %Evav|

%Evav

]
2n− 2

(5)

4. Conclusions

The SN2 mechanism of four different nucleophiles studied at the wB97XD level of
theory and a DGDZVP basis set shows that sulfur atom attack is the most favorable mecha-
nism, followed by iodine, bromine, and oxygen atoms. Activation free energies computed
for all models are between 18 and 26 kcal/mol. A good correlation with experimental
data implies the confidence of this methodology in the study of this type of reactions. To
reach the transition state, all models show a 60% contribution of geometrical changes and
40% contribution of the electronic ones. The analysis of the reaction coordinate performed
using the evolution of µ, η, andω throughout the reaction shows the Maximum Hardness
Principle is achieved, with the TS structure having the lowest η value. η and µ are linearly
related, whileω and energy are inversely related. The most important electronic rearrange-
ment occurs when the nucleophile approaches the system in a spontaneous process while
the second one occurs during the carbon–nucleophile bond formation and carbon–chlorine
bond cleavage in a non-spontaneous event. Charge analysis shows there is a decrease in
electron density of the carbon atom up to the transition state. After the transition state is
reached, its electron density increases. For the leaving group and the nucleophile, there is a
constant increase and decrease in electron density throughout the reaction, respectively.
All models, except the iodide ones, involve an early transition state, with HS− being the
earliest (41.8%). Although different ions present in soil and water may help degrade
chloroacetanilide herbicides, the use and development of environmentally friendly sulfur
compounds seems to be the best strategy for these pesticides’ environmental remediations.
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