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Schizophrenia is a neuropsychiatric illness with no single definitive aetiology, making its

treatment difficult. Antipsychotics are not fully effective because they treat psychosis

rather than the cognitive or negative symptoms. Antipsychotics fail to alleviate symptoms

when patients enter the chronic stage of illness. Topical application of niacin showed

diminished skin flush in the majority of patients with schizophrenia compared to

the general population who showed flushing. The niacin skin flush test is useful for

identifying patients with schizophrenia at their ultra-high-risk stage, and understanding

this pathology may introduce an effective treatment. This review aims to understand the

pathology behind the diminished skin flush response, while linking it back to neurons

and microglia. First, it suggests that there are altered proteins in the GPR109A-COX-

prostaglandin pathway, inflammatory imbalance, and kinase signalling pathway, c-Jun

N-terminal kinase (JNK), which are associated with diminished flush. Second, genes from

the GPR109A-COX-prostaglandin pathway were matched against the 128-loci genome

wide association study (GWAS) for schizophrenia using GeneCards, suggesting that G-

coupled receptor-109A (GPR109A) may have a genetic mutation, resulting in diminished

flush. This review also suggests that there may be increased pro-inflammatory mediators

in the GPR109A-COX-prostaglandin pathway, which contributes to the diminished

flush pathology. Increased levels of pro-inflammatory markers may induce microglial-

activated neuronal death. Lastly, this review explores the role of JNK on pro-inflammatory

mediators, proteins in the GPR109A-COX-prostaglandin pathway, microglial activation,

and neuronal death. Inhibiting JNK may reverse the changes observed in the diminished

flush response, which might make it a good therapeutic target.

Keywords: diminished GPR109A-flushed effect, niacin, microglia, JNK treatment, schizophrenia, c-Jun N-terminal

kinase (JNK) pathway, neuron

INTRODUCTION

Our society has neglected satisfactory categorisation of mental illness for over 2,000 years (1).
In the past, schizophrenia had failed to be defined and understood as its own entity (2).
The term schizophrenia was coined by Blueler (3, 4). Blueler and Kraepelin described the
symptoms and aetiology of the illness (5). Schizophrenia is diagnosed by its symptoms, where
positive symptoms include hallucinations, delusions, disorganised thoughts, and speech; negative
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GRAPHICAL ABSTRACT | The cellular pathway behind diminished skin flush. The GPR109A-COX-prostaglandin pathways shows how niacin binds to G-coupled

receptor-109A (GPR109A) on the cell membrane of leukocytes, and stimulates a cascade of signals, which activates enzymes to release vasodilators, prostaglandin

D2 and E2. This pathway induces pro-inflammatory mediators, which can then activate M1 microglia to induce neuronal apoptosis. JNK inhibitors have been observed

to act as an anti-inflammatory agent, reduce excessive pro-inflammatory mediators, and prevent microglial induced neuronal apoptosis.

symptoms include anhedonia, apathy, and social withdrawal;
and cognitive symptoms include inattention, impaired working
memory, and dysfunctional executive functions, which affect
thoughts, intelligence, and ability to plan. Most individuals
diagnosed with schizophrenia undergo a prodromal stage
before full-blown psychotic symptoms appear, where individuals
experience changes in both cognition and behavioural function
(6, 7). The early onset of symptoms usually occurs between the
ages of 14 to 29 (4); therefore, identifying the ultra-high-risk
population is crucial for initiating early intervention.

Schizophrenia represents one percent of the global population
and remains one of the top 25 leading disability worldwide
(8). The World Health Organisation estimated that the direct
cost for schizophrenia ranges from US$94 million to $102
billion (9). However, the substantial burden of the illness
has been linked to its early onset and incurable nature with
persistent symptoms (10). Heterogeneous illnesses have other
problems, where a majority of research focuses on the altered
neurotransmitter function of schizophrenia, typically dopamine
or glutamate, in which treatments associated with this paradigm
(currently dopamine antagonists) fail to alleviate negative and

cognitive symptoms in 30–60% of the patients (11–14). Current
antipsychotics increase the risk of other comorbidities associated
with the heart (15) or diabetes (16).

Alternative approaches should be considered when treating
this complex disorder. Both Kraepelin and Bluer identified
that the aetiology of schizophrenia is a consequence of gene-
environment interactions (5). Dr. Hoffer proposed megavitamin
B3 therapy, in which niacin (vitamin B3) intake over time
reduces symptoms of schizophrenia (17). The general population
exposed to niacin showed skin flush as a side effect (18), whereas,
niacin exposure in the majority of schizophrenia patients
showed diminished skin flush (19–22). The diminished flush
response serves as an endophenotype and separates patients with
schizophrenia from other mood disorders such as depression
(23), bipolar disorder (24, 25), and social phobia (26).

Prostaglandins in the cyclooxygenase (COX) pathway have
been connected to flushing (Figure 1). However, it is unclear
how these prostaglandins are deactivated or reduced in patients
with schizophrenia. Other factors that have been thought to
influence diminished flush include smoking (32, 33), alcohol
consumption, caffeine intake, use of medicine (34), and altered
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chemical mediators such as nitric oxide (NO) (35, 36), histamine,
and adrenaline (37). The aberrant immune response observed in
these patients may be related to a diminished flush response (38–
44). While current studies link the diminished flush in peripheral
immune cells, this review aims to investigate possible links
between diminished niacin-GPR109A flush responses mediated
via the GPR109A-COX-prostaglandin pathway in microglia and
neuronal cells. This study aimed to investigate the link between
altered protein expression or activity in the GPR109A-COX-
prostaglandin pathway with associated inflammatory mediators
and the c-Jun N-terminal kinase (JNK) signalling pathway in
patients with schizophrenia. Furthermore, GeneCards were used
to manually identify chromosome numbers of genes from the
GPR109A-COX-prostaglandin pathway with a 128-loci GWAS
for schizophrenia (45).

NEUROINFLAMMATION

A meta-analysis observed a neuroinflammatory imbalance
in patients in the early stage of schizophrenia (46, 47).
There have been alterations in inflammatory markers such
as cytokines, reactive oxygen species (ROS), reactive nitrogen
species (RNS), and nitrogen oxygen species (NOS) (47).
This section provides evidence for altered neuroinflammatory
markers in schizophrenia and links it to neuronal and microglial
cells. Inflammatory markers play an important role in regulating
flush response and microglial activation. Furthermore, it has
been observed that the cytokine subtype released (Figure 2) and
oxidants levels (Figure 3) regulates the activation of microglia
(80). This may raise questions as to how peripheral cytokines
may enter the brain. It may be assumed that patients with
schizophrenia have poor blood-brain barrier; however, cytokines
can enter the brain in different ways (Figure 4). The brain is
vulnerable to oxidative stress, such as ROS, NOS, and superoxide
species (75). Oxidative stress is defined as the imbalance between
pro-and anti-oxidative processes, and there is an imbalance of
oxidative stress throughout the different stages of schizophrenia
(74, 89–91). Likewise, there is evidence of abnormal antioxidants
in the peripheral blood (92–94), CSF (65) and post-mortem brain
tissue (74, 95) of patients with schizophrenia. In conclusion,
this evidence suggests that the lack of balance between the
pro-oxidant and anti-oxidant may contribute to the neuronal
abnormalities observed in schizophrenia patients.

Microglia Activation
The microglia hypothesis (43, 44) suggests that activated
microglia are present from prenatal infection to adolescence.
When the immune system is challenged, microglial cells are
exacerbated, and therefore, prolonged microglial hyperactivity
causes cellular or neuronal apoptosis (96). The two-hit process
supported by this hypothesis may explain why people who may
have exposure to infection in childhood may not go to develop
the illness.

Microglia have been shown to be more activated in
schizophrenia than in control subjects (97). Studies using
positron emission tomography (PET) and peripheral
benzodiazepine receptor ligand, (11)C-(R)-PK11195, detected

microglial activation in the hippocampus (38) and grey matter
(97) of patients with schizophrenia. Bloomfield et al. (98)
observed that ultra-high-risk individuals showed increased
microglial activation.

NEURONS

Patients with schizophrenia have a selective loss of grey matter
volume, including the left superior temporal gyrus (STG), left
Heschl gyrus (HG), left planum temporale (PT), and reduced
spine density in the frontal cortex and hippocampus (99–
103). The frontal cortex and hippocampus are associated with
cognitive functions and reduction in neurons in brain regions,
resulting in the cognitive deficits observed in schizophrenia
(104). In the cellular pathology of diminished flush response,
there are elevated levels of IL-1B and TNF-α, which might mean
that microglia are activated. Active microglia and increased pro-
inflammatory levels alter the functioning role of LTP, and AMPA
and GABA receptors result in neuronal damage. Cognitive
deficits may be due to impaired microglia-neuronal function,
as microglia and neurons share bidirectional communication
(Figure 5).

JNK

Schizophrenia is a complex disorder that involves disruption of
metabolism, neurotransmission, and cell signalling, and requires
the coordination of kinase-mediated signalling events. There
has been a signalling imbalance, which may be associated with
diminished flush in schizophrenia. MAPKs are a family of
serine/threonine protein kinases that are directly modified by
ROS/RNS. MAPK can be activated by its upstream MAPKK,
MAPKKK, or ROS/RNS (115). The MAPK pathway links
inflammation and microglial activation (116). The MAPK family
consists of the ERK, JNK, and p38 pathways. JNK has been the
most affected kinase in the anterior cingulate circuit (ACC) of
patients with chronic schizophrenia (117). This review focuses on
JNK, and (Figure 6) shows the characteristic profile of JNK. JNK
interacts with both microglia and neurons (Figure 7) through
inflammatory mediators.

NIACIN-GPR109A FLUSH RESPONSE

PGD2 and PGE2 are potent vasodilators, and studies have linked
them to diminished flush responses (27, 131). However, it is
not fully understood how they are reduced in patients with
schizophrenia. In addition, niacin is an antioxidant in many
diseases and has a high affinity for its receptor, GPR109A (132–
134). It is not well understood why niacin binding to GPR109A is
ineffective in lowering the levels of pro-inflammatory mediators
observed in schizophrenia. This indicates that there are other
potential mediators associated with this aberrant response.
This section will discuss (Figure 8) and explore inflammation
involvement with the cellular mechanism behind the diminished
flush response. It explores the link between the GPR109A-COX-
prostaglandin pathway and inflammatory mediators, all of which
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FIGURE 1 | Niacin binds and activates GPR109A receptors on dermal cells, epidermal langerhans cells, and adipose macrophages (27). In langerhans cells, the

activated receptor releases intracellular calcium (Ca2+) (28), which triggers phospholipase A2 (PLA2) to catalyse the breakdown of membrane phospholipid to

arachidonic acid (AA). Available AA is converted to eicosanoid, prostaglandin G2 (PGG2) and prostaglandin H2 (PGH2) via COX1/2 and hydrogen peroxidase

respectively. PGH2 is converted to various prostaglandins, prostacyclins, and leukotrienes. However, because this thesis focuses on the diminished flush observed in

schizophrenia, I will focus on prostaglandins (29). Mediators involved in the cutaneous flushing are vasodilators, prostaglandin D2 (PGD2), and E2 (PDE2 ), which

activates prostaglandin D2 receptor 1 (DP1) and prostaglandin E2/4 receptor (EP2/4 ), respectively (25). Moreover, these are biochemical alteration which may be

partially inherited (30, 31). However, the pathophysiology of the attenuated flush response is not fully understood.

are relevant to cellular biology behind diminished flush, signal
transduction, and inflammation.

Lipid Peroxidation and Inflammation
Membrane phospholipids contain polysaturated fatty acids
(PUFAs), which have a high content of n-6 arachidonic
acid (AA) (135). PUFAs contain phosphatidylethanolamine
(PE), phosphatidylserine (PS), phosphatidylcholine (PC), and
phosphatidylinositol (PI) (136). An inflammatory phospholipid,
lysophosphatidylcholine (LPC), is generated when cPLA2 cleaves
the acyl ester bond of PC (137). LPC uses ATP-gated P2X7
receptor (P2X7R), which is abundant in microglia, to induce
IL-1B, IL-18, ROS, and NOS and activate microglia (138).
PUFA exposure to oxidative stress is called lipid peroxidation,
which induces ROS (139). NOS, ROS, and RNS activate pro-
inflammatory mediators, NF-kB, and AP-1 (180) and mediate
GSH deficiency (72). The inflammatory imbalance activates
NF-κB. Active NF-κB can activate AP-1, which regulates the
transcription of Jun and Fos, which are responsible for cell
growth and differentiation (140, 141). In contrast, transcription
factors may be regulated by ROS-stimulated MAPK (142).
This means that the transcription factor may be controlled

by MAPK independent of the oxidative species. HNE, a
biomarker of lipid peroxidation, has been observed to activate
both NF-κB, AP-1, and c-Jun expression, and cell signalling
pathways, JNK and p38, when exposed to ROS (143, 144, 180).
Therefore, pro-oxidants activate HNE-induced activation of the
cell signalling pathway.

(15d-PGJ2) and (PPARγ ) in
Anti-inflammation
15d-PGJ2 increased the transcriptional activity of PPARγ .
This downregulates the pro-inflammatory markers, COX-2,
iNOS, AP-1, Stat-1, NF-kB, TNF-α, IL-1β, and PGE2, and
increases antioxidant enzymes, hemeoxygenase-1 (HO-1)
and GSH by PPARγ and 15d-PGJ2, respectively. PPAR-
y and 15d-PGJ2 negatively regulate microglial activation
and prevent neuronal apoptosis (145–153). NF-κB may be
activated by ROS, cytokines, JNK (154), AP-1, and COX-2
(155). 15d-PGJ2 participates in the feedback mechanism
(156) by PPARy, which inhibits activated NF-κB by
increasing IKB expression (157, 158). PPAR-y activates
antioxidant enzymes such as SOD, HO-1, and GSH to
reduce ROS.
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FIGURE 2 | This figure shows function of cytokine (48–51). Tumour necrosis factors-a (TNF-a), Interleukin-1B (IL-1B), Interferon necrosis- y (IFN-y), Interleukin-2 (IL-2),

Interleukin-12 (IL-12), Intereukin-4 (IL-4), Interleukin-10 (IL-10), Interleukin-13 (IL-13). Understanding the cytokine function will help to understand inflammation’s

involvement in diminished flush response and its role in activating microglia, respectively. Elevated pro-inflammatory levels, IL-1B and IL-6, and decreased

anti-inflammatory levels have been observed in schizophrenia (52–54). Raison et al. (55) reported increased IL-1B and TNF-a observed in negative and cognitive

symptoms of schizophrenia. Goldsmith et al. (56) and Wang and Miller (57) meta-analysis showed consistent upregulated pro-inflammatory cytokine, but variation in

anti-inflammatory cytokine levels. Variation in anti-inflammatory markers, may be due to confounding factors, such as stage of illness, gender, age and medication

status. Miller et al. (40) and Khandaker et al. (58) showed alternated cytokine levels in different stages of illness, which includes early-onset childhood, acute and

relapse phase.

Transduction Signal Role in GPR109A
Components
Gi, GRK2, and B-arrestin 3 are important for receptor
internalisation (159). Upon activation of the GPR109A receptor
by niacin, the Gi subunit is released from the GBY subunit,
followed by desensitisation, which catalyses and phosphorylates
the activated receptor by G protein-coupled receptor kinase
(GRK2). Activated GPR109A promotes translocation and
binding of B-arrestin 3 to the plasma membrane, resulting
in receptor internalisation (159). Gi is involved in GRK2
recruitment to phosphorylate the C-terminus of GPR109A
and subsequent ERK1/2 activation (160, 161). Phosphorylated
ERK1/2 has been observed to potentiate GRK2 activity, resulting
in the inhibition of leukocyte migration. In comparison, p38
blocks GRK2 function and facilitates cell migration (162, 163).
The ERK pathway uses GRK2 to activate GPR109A; conversely,
the ERK pathway is GPR109A independent, when activating
B-arrestin 1. B-arrestin 2 phosphorylates and activates JNK3
in endosomes (164). It has also been observed that disrupted,

ubiquitinated B-arrestin 2 promotes NF-κB signalling (165). ERK
has been associated with B-Arestin 1, whereas it may be inferred
that B-arrestin 2 may be associated with the JNK pathway, as it is
both a precursor for c-Jun and an activator of NF-kB.

Function of Enzymes in Diminished Flush
Response and Inflammation
Phosphorylated cPLA2a releases AA to induce pro-inflammatory
markers, NADPH oxidase, superoxide, PGE2, INOS expression,
and NO production, which activate microglia cells (166, 167).
AA release produces ROS as a by-product, which activates JNK,
NF-κB, TNF-α, and IL-1 to further activate COX-2 (168–171).
Overactive COX-2 increases pro-inflammatory, iNOS, PGE2,
nitric oxide, and peroxynitrite anions, which attack membrane
phospholipids and lower their antioxidant defence (172). There
was a synergistic effect between COX-2 and PGE2 expression; an
increase in one would increase the expression of the other. PGE2
acts as a pro-inflammatory mediator and increases M1microglial
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FIGURE 3 | Matsubara and Ziff (59) and Meier et al. (60) reported an interaction between cytokines and oxidants, where they observed the role of TNF-α, IL-1, and

IFN-γ in ROS production. Janssen-Heininger et al. (61) Sidoti-de Fraisse et al. (62), and Loukili et al. (63) reported that ROS and TNF-α have a synergistic effect on cell

apoptosis via active transcription factors, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), and activator protein-1 (AP-1). The increased

pro-inflammatory expression, NF-kB, PGE2, iNOS, and COX-2 are unique in patients with schizophrenia compared to bipolar patients or healthy controls (64).

Oxidative stress reduces the levels of antioxidants such as glutathione (GSH) (65–69) and glutamate release from microglia (70). Depleted GSH levels cause NMDA

hypofunction in inhibitory GABAergic interneurons (71), which fail to mediate inhibitory and excitatory balance of the microcircuitry, resulting in the loss of synapses or

neuronal death (72). Incomplete reduction of oxygen generates superoxide anion (o−2 ), which is converted to hydrogen peroxide (H202) by superoxide dismutase

(SOD). SOD is an antioxidant enzyme that prevents oxidative damage from hydroxyl radicals and lipid peroxidation (73). A meta-analyses (74) confirmed that there is a

decrease in SOD activity in patients There is an interaction between cytokines, oxidants, and microglia, as TNF-α and NADPH oxidase have been observed to activate

microglia in patients with schizophrenia (75–79).

activation by increasing COX-2, IL-1B, and IL-6 levels (173–
176). Active PGE2 activates the EP2 receptor, which increases
cAMP production and activates cAMP response element-binding
protein (CREB), which is responsible for increasing COX-
2 expression (177–179). Different receptors induce different
functions; for example, EP2 receptors regulate TNF-α, whereas
EP4 receptors mediate IL-1B secretion (173). JNK inhibitor is
known to reduce COX-2 expression, mediated by IL-1B, and
it may be questioned whether this is also mediated through
the EP4 receptor. H202 partially activates JNK (180) and AP-1
protein (181) to increase c-Jun and c-Fos (182) and resulting in
cell apoptosis.

PHOSPHOLIPID ABNORMALITY

The membrane phospholipid hypothesis suggests that the
abnormality observed in schizophrenia may be due to altered
phospholipid metabolism (183, 184). LPC levels are disrupted
in schizophrenia (185–187). LPC inflammatory activity is
controlled by NLRP3 and NLRC4 genes (110).

FATTY ACID ABNORMALITY

Fusar-Poli and Berger (188) showed reduced PUFA levels
in patients with schizophrenia. PUFA is responsible for
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FIGURE 4 | This figure shows how peripheral cytokines can enter the blood brain barrier (BBB) to activate microglia. Peripheral cytokines may activate microglial cells

in the brain by passing through the BBB. Previous reports have found that TNF-α, IL-1α, and IL-1B can enter the brain through saturable transport systems (81, 82) or

through areas of the brain where the BBB is incomplete such as circumventricular organs (CVOs) (83), and lastly, circulating cytokines can activate IL-1 receptors

located on perivascular macrophages and endothelial cells of brain venules (84), which may allow entry of IL-1B cytokines to the brain. There are reports of exosomes

easily crossing the BBB (85). However, it is not known whether exosomes directly influence inflammation by activating microglia. Leukocytes can cross the BBB and

secrete exosomes, but a (86) has debunked this theory. The (86) study has showed that exosomes can be carried by hematopoietic cells into the blood circulation

and released into the brain cells. This can be taken up by membrane receptor-mediator (87) or by phagocytosis (88). However, it is not known whether exosomes

directly influence inflammation by activating microglia. Leukocytes can cross the BBB and secrete exosomes; however, a study has debunked this theory.

both membrane fluidity and its ligand-receptor interaction;
it increases the concentration of receptors in the membrane
and allows the ligand to interact with the receptor (189).
Disrupted ligand-receptor interaction might be a reason
for the reduced binding between GPR109A and its ligand,
niacin, and therefore, its inability to release PGD2 and
PGE2, resulting in a diminished flush response. Niacin has
anti-inflammatory properties, and less exposure to niacin
may contribute to the inflammatory imbalance observed in
schizophrenia. Smesny et al. (190) suggested that structural
changes observed in grey matter may be due to lipid
membrane alterations, and that antipsychotics may influence
lipid metabolism. A meta-analysis (191) showed that PUFA
supplement intake and omega-3 or 6 reduced TNF-α levels
and delayed onset of illness in ultra-high-risk patients with
schizophrenia (192).

Biomarkers of Lipid Peroxidation
Lipid peroxidation is described as an oxidant that attacks PUFAs
by inserting oxygen into the carbon-carbon double bond and
altering the membrane structure (193). Lipid peroxidation can
form secondary products such as malondialdehyde (MDA),
propanal, and 4-hydroxynonenal (4-HNE) (91, 194). It has been
observed that 4-HNE at low levels is metabolised, and therefore
maintains a homeostatic environment, but at high levels, it can
cause cell death and damage cell signalling proteins (195). HNE
increases intracellular calcium levels in neurons (196), whichmay
activate MAPK proteins, activate the COX pathway, or induce
neuronal toxicity (197). Uchida et al. (180) confirmed that JNK is
an important signalling mediator in cellular defence against toxic
products generated from lipid peroxidation. MDA is a specific
biomarker for lipid peroxidation in omega-6 fatty acids (198).
MDA exposure alters membrane fluidity, resulting in the loss
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FIGURE 5 | This figure shows the selective roles that neurons and microglia share as a result of the diminished GPR109A-COX pathway. Neurons secrete soluble

factors such as cytokines to regulate or maintain microglia activation sites (105–107), the release of neurotransmitter, such as glutamate from neurons influence

microglial motility (108, 109). Adenosine triphosphate (ATP) in microglia mediates through P2X7 receptor and produce pro-inflammatory cytokine (110). Likewise,

active microglia secrete cytokine, prostaglandin which modulate neuronal function. For example, low levels of IL-1B are required for long term potentiation (LTP)

(111, 112), while basal levels of TNF-α are necessary for AMPA and GABAA receptor trafficking (111). IL-1B and TNF induce neurotoxicity through elevated glutamate

production resulting in neuronal excitotoxic death (113, 114).

of membrane integrity (199). However, there is a heterogeneous
distribution of MDA in schizophrenia, which may be due to
confounders such as antipsychotics, which were not separated in
the study (200). The sensitivity of biomarkers can also be an issue
when measuring lipid peroxidation. There have been reports of
increased F2-isoprostane (201) and microRNAs (miRNAs) in
schizophrenia (202–205), which are more sensitive biomarkers of
lipid peroxidation (201, 206–208).

Arachidonic Acid
Glen et al. (209), McNamara et al. (210), and Yao et al. (211)
reported AA depletion in red blood cells (RBCs) in patients
with schizophrenia. There is a controversy about the cause of
the depleted AA; some researchers suggest that it may be due
to niacin blunted response (212), whereas others would argue

that niacin blunted response has been observed at normal AA
levels, and insteadmay be due to disrupted AAmetabolism (213).
Skosnik and Yao (11), Horrobin (214), and du Bois et al. (215)
suggested that oxidative stress reduces AA levels and modifies
the signal transduction pathways to cause neuronal damage, as
observed in schizophrenia. Cao et al. (216) and Covault et al.
(217) reported that increased long-chain fatty acid-CoA ligase,
type 4 (FACL4) activity as a result of genetic mutation leads to
more rapid sequestration of free AA, resulting in reduced AA.

AA and JNK
In phagocytic cells, AA translocates activated rac from the cytosol
to the membrane to activate NADPH oxidase and activate JNK,
respectively (218–220). However, it has been observed that JNK
activation is independent of AA metabolism. Minden et al. (221)
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FIGURE 6 | This figure shows how JNK functions in the signalling cascade. Depending on the extracellular signal, there are different MAPKKK proteins, but MAKK

and MAPK remain constant. MAPKKK is always a precursor to MAPKK and MAPK, respectively. c-Jun N-terminal kinases (JNKs) belong to stress-activated protein

kinases (SAPKs) and are part of the MAPK signalling cascade group, which are involved in signal amplification (118). JNK are activated by stress signals such as

hyperosmolarity and heat shock, oxidative stress, UV and ionising radiation, pro-inflammatory cytokines, TNF-α, and IL-1B (119, 120). JNK activity is highest in the

brain compared to other non-neural tissues (121, 122). JNK protein are encoded by three genes, JNK1 (Mapk8), JNK2 (Mapk9), and JNK3 (Mapk10). Where JNK1

and JNK2 are expressed ubiquitously in all mammalian tissues and JNK3 is restricted to the heart, testis, and brain (123). The highest level of JNK1-3 mRNA are

found in the neocortex, followed by the hippocampus, thalamus, and midbrain (124). Downstream JNK are transcription factors such as c-Jun, c-fos JunD, ATF-2,

and ELK-1, which can become activated when exposed to stress signals (125).

showed that the antioxidant N-acetylcysteine blocked two-thirds
of AA-induced JNK activation. It may be inferred that activated
JNK is more dependent on oxidative species than AA.

PROSTAGLANDIN

A systemic imbalance of pro-inflammatory and anti-
inflammatory prostaglandin levels has been reported in patients
with schizophrenia (222). This imbalance may be associated
with altered mediators involved in the niacin-GPR109A-COX
pathway. The degradation of phospholipid membranes into
eicosanoids results in the production of free radicals, which may
contribute to the imbalance (223).

PGD2 and PGE2
Morrow et al. (224) used gas chromatography-mass spectrometry
to detect large levels of PGD2 and its metabolite 9a,11 β-PGF2
following oral niacin. However, (225, 226) suggested that flushing
is strictly related to PGE2. Furthermore, (227) suggested that

increased cAMP production by their receptors, DP1, EP2, and
EP4, contributes to flushing. However,Wise et al. (228) countered
earlier studies by showing that DP1 and EP2 receptor knockout
showed 40 and 20% reduced flushing, respectively. In addition,
laropiprant, which is an antagonist with high selectivity for DP1,
showed reduced flushing when compared to placebo, but 70% of
the time, the participants still had flushes (229). This suggests that
PGD2, PGE2, and their receptors are important in the flushing
response, but partially contribute to its effect.

Moreover, PGE2 is synergistic with COX-2 to activate
microglia (173–176), and active microglia can damage neurons.
COX-2 inhibitors serve as neuroprotectants by reducing PGE2
levels (230). High concentrations of PGD2 have also been
observed to be neurotoxic (231, 232). This is interesting
because the diminished flush effect resulted in low PGD2

levels. PGD2 exerts anti-inflammatory properties through
PPAR-Y ; therefore, it may be suggested that high PGD2

would be beneficial for cells. Furthermore, Liang et al. (233)
cleared our understanding by stating PGD2 concentration
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FIGURE 7 | This figure shows how JNK may interact with neurons and microglia through cytokines and transcription factors. JNK controls inflammatory mediators

such as IL-1B, TNF-α, iNOS, and NO (126–128). Activated JNK has been involved with cytokine, oxidative species, and transcription factors. TNF-α stimulates JNK,

which in turn stimulates ROS. However, ROS may in turn stimulate JNK. It is known that TNF-α stimulating JNK would result in neuronal apoptosis. Moreover, NF-kB

when stimulated by TNF would inhibit ROS (127). An aromatic herb, lindera neesiana kurz (LNE), used as an anti-inflammatory substance, reduces pro-inflammatory

expression in LPS stimulated microglia cells, such as JNK, p-38, NO, iNOS, COX-2 production and pro-inflammatory cytokine related neuronal injury to JNK

phosphorylation in microglia cells (116, 129) and suggested that JNK activation, triggers pro-inflammatory mediators such as TNF-α, IL-6, IL-1β, COX-2, iNOS, NO

and PGE2, and transcription factors such as AP-1 and NF-κB. SP600125 is a JNK inhibitor which inhibits COX-2 activity through IL-1B. Conversely, IL-1B induces

both COX-2 and JNK activation (126). This makes IL-1B a main target for JNK. JNK inhibition has also been observed to increase anti-inflammatory markers (116),

which may restore the inflammatory imbalance observed in flush response and prevent microglial activated neuronal death (130).

of 1 nM-1µM, and PGE2 at concentrations of 0.01–1µM
are neuroprotective.

PGE2 Level Controversy
Cytosolic PGE2 levels were observed to be reduced in the
temporal cortex of patients (234). Other studies have suggested
that PGE2 levels (64, 235–238). Pierre et al. (239) and Quraishi
et al. (240) showed that PDE2 can be modulated by peroxisome
proliferator-activated receptor γ (PPARy), a nuclear receptor

stimulated by prostaglandin J2 (PGJ2). As PGE2 is a pro-
inflammatory mediator, this may suggest that PPARy may
regulate both pro- and anti-inflammatory properties based on its
interaction with the prostaglandin type. A recent study, which
considered the acute phase of schizophrenia, eliminated potential
confounders such as drug dependency, alcohol consumption,
development delay, and dementia, and matched patients based
on their age, sex, marital status, education, and onset of illness,
confirmed that there are lower serum levels of PGE2, 15d-PGJ2,
and PPARy levels in patients (241). In contrast, Martínez-Gras
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FIGURE 8 | This figure shows the spider-web of inflammation involved in diminished flush response. The details are separated into four subheadings: lipid

peroxidation and inflammation, the role of 15d-prostaglandin J2 (15d-PGJ2) and peroxisome proliferator-activated receptor-y (PPARγ) in anti-inflammation,

Transduction Signal role in GPR109A components, and Function of enzymes in diminished flush response and inflammation.

et al. (222) showed reduced levels of 15d-PGJ2, PPARy, and
IkBa, but increased levels of PGE2. However, participants in
the study had been using antipsychotic drugs and did not
match the severity of the illness. The variation in PGE2
levels may depend on the severity of illness and the use of
antipsychotic drugs.

PPARy and 15d-PGJ2 Role
PGD2 can be degraded non-enzymatically to form a J-series,
15-deoxy-112,14-PGJ2 (15d-PGJ2), which binds to PPAR-
γ (242, 243). 15d-PGJ2 is a cyclopentenone prostaglandin,
which reportedly exerts anti-inflammatory effects on microglia
(150). 15d-PGJ2 is the first endogenous ligand of PPAR-
γ. PPAR-γ plays an important role in lipid metabolism,
inflammation, proliferation, and differentiation of cells.
Furthermore, PPARy is considered a negative regulator of
activated macrophages, and can stimulate or inhibit 15d-PGJ2
gene expression by altering transcription factors, AP-1, STAT,
and NF-kB (148, 158). To reverse macrophage activation,

transcription factors are downregulated by PPARγ. PPARy
regulates the relationship between microglia and neurons by
modulating cytokines IL-18 expression in microglia, which
has an inhibitory effect on LTP. PPARy agonist reverses
IL-18 mediated attenuation of LTP by enhancing synaptic
plasticity (148, 244). JNK inhibitors are also known to
act as PPARy agonists, supporting their anti-inflammatory
role (245–248).

G-COUPLED RECEPTOR

PUMA-G in mice is an orthologue of the human GPR109A
receptor. Mice lacking PUMA-G did not release PGD2 or PGE2,
and therefore, did not show flushing (35). The alteration of
receptor components has been associated with diminished flush.
B-arrestin is used for cell signalling, receptor desensitisation,
and internalisation (249). Internalisation is involved in receptor
desensitisation and signalling, and contributes to the diversity
of GPCR-dependent signalling (250). B-arrestin1 is a biassed
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FIGURE 9 | This figure shows the PLA2 family profile. The phospholipase A2 superfamily consists of enzymes that catalyse the hydrolysis of (sn-2) ester bond of

phospholipid to liberate free fatty acids such as AA (254). The family of PLA2 consists of secretory calcium dependent PLA2 (sPLA2), intracellular calcium independent

PLA2 (iPLA2 ), and the intracellular calcium dependent PLA2 (cPLA2) (255). iPLA2 possesses antioxidant and anti-inflammatory properties and have preference for DHA

release. Likewise, cPLA2 has preference for AA release (256, 257). iPLA2 affects cortical development, synaptic remodelling, long-term potentiation (LTP), neuronal

plasticity, and cell membrane remodelling (258). Whereas, cPLA2 participates in signal transaction, neurotransmitter release, neuronal plasticity, and learning and

memory (259–261). Overexpressed iPLA2 did not induce COX-2-dependent PGE2 release, but instead mediated PGE2 release by COX-1 (262–264). sPLA2 amplifies

cPLA2 action by regulating eicosanoid biosynthesis and mediate phagocytosis of macrophages (265). cPLA2 mutation varies in different ethnicities. There is an

existing association between niacin flush response and PLA2G4A and PTGS2 gene polymorphism. The PLA2G4A gene encodes a calcium dependent form of cPLA2

(266, 267), whereas the PLA2G4C encodes a calcium independent form (268). There had been two polymorphisms of PLA2G4A: polyA and BanI polymorphism

occur near the first intron and promoter region, respectively (269). Association between PLA2G4A polymorphisms and disease have been reported (270–272). The

difference in BanI alleles between A1 (cut) and A2 (uncut) showed that cPLA2 activity with A2A2 genotype was higher than that with A1A2 and A1A1 (273). Excess

A2/A2 homozygote has been associated with BanI polymorphism in schizophrenia (272, 274). A Korean study replicated those in western countries which supported

cPLA2 gene Ban I polymorphism in schizophrenia (275). In a Brazilian population, higher cPLA2 activity correlated significantly with G allele of BanI polymorphic site

and was associated with a higher risk of developing schizophrenia (273). However, some studies contradict this by reporting the lack of association between cPLA2

gene and schizophrenia (276–278). It may be inferred here that while there is disruptive cPLA2 gene for schizophrenia in different ethnicity, its polymorphism mutation

may vary. Created in BioRender.com.

agonist because it may induce a flushing response independent
of the GPR109A receptor by increasing cPLA2 phosphorylation,
while depletion of B-arrestin1 reduces activated cPLA2 (249).
B-arrestin2/3 was significantly reduced in the schizophrenia
group compared to that in the control group. Furthermore,
reduced GRK in the frontal cortex was observed in both
younger and older patients with schizophrenia. However,
Bychkov et al. (251) observed a difference in GRK levels in
both young and older patients with schizophrenia compared
to controls. In young patients with schizophrenia, GRK3
had been reduced, whereas in the older schizophrenia group,
GRK6 showed the greatest reduction. It may be inferred
that disrupted B-arrestin or GRKs may result in diminished
flush response, and confirmed that age is an important factor
in schizophrenia.

ENZYMES

Enzymes are biological catalysts that convert essential fatty
acids to prostaglandins in the GPR109A-COX-prostaglandin
pathway. Horrobin (252) suggested that one of the factors
behind diminished flush was dysfunctional enzyme activity,
which contributes to reduced prostaglandin levels. Furthermore,
the GPR109A flushing response can be ablated by inhibiting
PLA2 and COX-1/COX-2 activity (253). Figures 9, 10 shows the
profiles for the PLA2 and COX families, respectively.

PLA2

Controversy in Phospholipase Activity
There is increased PLA2 activity in the cortex and thalamus in
patients with first-onset schizophrenia (190). This study provides
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FIGURE 10 | This figure shows the COX profile. There are three isoforms of COX. COX-1 plays a role in homeostasis (279). COX-2 is regulated by growth factors and

cytokines such as IL1B, IL6, or TNF-α (280) and is overexpressed in inflammation, and therefore is relevant in this thesis. COX-3 has been used in the brain and spinal

cord. However, the functions of COX-3 are currently unknown (281). COX-1 and COX-2 are rate-limiting enzymes in AA-derived prostaglandin production, COX-1 is

expressed in most tissues whereas COX-2 is induced by pathophysiological responses by inflammatory stimuli such as IL-1, IL-1B, iNOS and growth factor, and EGF

(36, 175, 282, 283). COX-1 is restricted to immediate response, whereas COX-2 is active in both immediate and delayed response. Also, low exogeneous AA

concentration been observed and are utilised by COX-2 (284), whereas high endogenous AA concentration are utilised by COX-1 (285). COX-2 has a lower threshold

for hydrogen peroxidase activation at low AA concentration (286, 287). Depleted AA is observed in diminished flushing response, and hydrogen peroxidase is relevant

in stimulating microglia cells, thus, making COX-2 a relevant enzyme in diminished flush.

an insight that PLA2 activity is dependent on the stage of illness,
and its activity may vary based on the brain region and use of
medication. However, the study has limitations, as it did not
indicate which PLA2 activity is beingmeasured, as different PLA2

have different functions and activities.
Dr. Horrobin’s membrane hypothesis suggests that elevated

levels of calcium-dependent cytosolic group IVA PLA2a
(cPLA2a) observed in schizophrenia are responsible for the
depletion of AA (183). Messamore et al. (288) and Kim
et al. (289) reported an increase in intracellular calcium
concentration, which may result in increased cPLA2 activity.
Instead, (290–293) suggested that there is increased iPLA2 and
decreased cPLA2 activity in patients with schizophrenia. The
iPLA2 may be increased as negative feedback by producing an
antioxidant that mediates increased oxidative stress, as observed

in schizophrenia patients (294–296). The reduced cPLA2 has
a higher preference for cleaving AA, which may explain the
reduced AA levels in patients with schizophrenia. It may be
concluded that the variation in cPLA2 activity may be due to
confounders such as age, medication, disease stage, ethnicity,
and other medical status which induce pro-inflammatory and
anti-inflammatory imbalances.

cPLA2, JNK and Its Effect on Cells
Phosphorylation of Ser505, Ser515, and Ser727 activates cPLA2

(297, 298). Activated cPLA2 cleaves AA and induces the
production of inflammatory mediators such as eicosanoids
(299–301). There are insufficient studies regarding Ser515 and
Ser727 and their effect on cPLA2. However, phosphorylation of
ser505 on cPLA2a increases phospholipase binding to membrane
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phospholipids at low calcium concentrations, altering the
PLA2 conformation to ensure a better fit to the catalytic
domain of membrane phospholipids (298). Some studies have
suggested a relationship between MAPK and cPLA2 activity.
However, in macrophages, there have been inconsistent reports
of ERK1/2 and p38 links in phosphorylating cPLA2 at ser505

(302–304). Casas et al. (305) used MAPK inhibitors for
ERK, p38, and JNK and found that only the JNK inhibitor
effectively blocked cPLA2a phosphorylation in macrophages.
This advances our understanding of the prominent role of
JNK in cPLA2a phosphorylation in macrophages. Microglia are
resident macrophages of the brain, which share similar functional
and morphological properties to macrophages (306), therefore
it may be inferred that microglia would have similar effects.
However, there is no study linking MAPK and cPLA2a to
neurons, although from our understanding of howmicroglia and
neurons influence each other, there is a possibility that alteration
in cPLA2 activity in microglia might affect neuronal functions.
Furthermore, it has been observed that cPLA2 and dopamine
are inversely related (307), where increased dopamine levels
reduced cPLA2. The mechanism is not understood properly, but
studies have shown that dopamine and glutamate alternation
have specifically affected cPLA2 mediated AA release, but not
mediators downstream of AA (289, 308).

COX

Activators of COX
PGD2, PDE2 mediated by COX-1 and COX-2, play an important
role in the flushing response (35, 228). COX-2 knockout reduces
both pro-inflammatory, PGE2, and NF-kB (309–311). Deng
et al. (312) suggests that overexpression of COX-2 activity has
been associated with increased histone acetyl transferase (HAT)
and p300 gene, which is located near the NF-kB promoter,
deletion or suppression of these transcriptional activators, and
reduced COX-2 expression. Future studies need to investigate
the link between HAT, p300, and COX-2 overexpression in
schizophrenia. Ultimately, IL-1B is a potent inducer of COX
and induces the synthesis and activity of PLA2 in cells (313).
Therefore, it may be used as a target to control both the activation
levels of COX and PLA2 by JNK.

COX in Microglia
COX-2 is important for producing inflammatory responses,
which can activate microglia (314). During prostaglandin
production via the COX pathway, ROS are generated as a by-
product, along with the production of inflammatory agents such
as cytokines and oxidative stress (282), all of which contribute to
microglial activation.

Inhibitors of COX-2 Expression
When there is a high inflammation level, antipsychotics are less
effective in reducing psychosis (315, 316). COX-2 overexpression
has been linked to cognitive deficits in schizophrenia; COX-2
inhibition has been shown to have therapeutic effects, particularly
when administered in the early stage of the disease (317–
324). Mattson et al. (325) Weggen et al. (326), and Morihara

et al. (327) suggested that nonsteroidal anti-inflammatory drugs
(NSAIDs) regulate NF-κB and can serve as a therapeutic target
for several psychiatric disorders. Nitta et al. (319) observed
that NSAID celecoxib and risperidone are more beneficial in
patients than the administration of antipsychotic risperidone
alone. Niederberger et al. (328) and Tegeder et al. (329) showed
that patients who used both NSAIDs and antipsychotic drugs
had a higher psychotic relapse rate. These reports suggest that
NSAIDs may play a controversial role in upregulating COX-2
expression, instead of downregulating COX-2. Harris et al. (330)
theory on COX-2 as a double agent may influence the role of
NSAIDs or COX-2 inhibitors. COX-2 can also participate in both
pro-inflammatory and anti-inflammatory effects. During the
development of inflammation, pro-inflammatory (via PGE2), but
anti-inflammatory (via PGD2 and 15d-PGJ2) during resolution.
Therefore, there is a chance that COX-2 inhibitors may instead
inhibit anti-inflammatory properties, therefore, exacerbating
schizophrenic symptoms. Therefore, alternative methods should
be explored to ensure the selective downregulation of overactive
COX-2 expression.

Increased COX-2 expression is dependent on MAPK
activation (331). Yang et al. (332) showed that IL-1B induction
is responsible for elevated COX-2 expression in hippocampal
neurons. Rösch et al. (331) showed fibroblasts released
PGE2 when stimulated with IL-1B, were also found to have
overexpressed COX-2 and defective JNK signalling. To confirm
this finding, the JNK inhibitor, SP600125, along with IL-
1B, lowered both PGE2 and COX-2 expression (333–336). It
may be inferred that schizophrenia patients with overexpressed
COX-2 may present with increased levels of pro-inflammatory
mediators. Therefore, to maintain inflammatory balance, the
JNK inhibitor SP600125 may be administered, which may
downregulate pro-inflammatory mediators. Other inhibitors
such as glucocorticoids and minocycline have been shown to
downregulate AP-1 or NF-κB in microglial cells and protect
against neurotoxicity, while improving cognitive and negative
symptoms of schizophrenia (337, 338).

Hydroperoxide
Stimulated hydrogen peroxide produces NADPH oxidase,
otherwise known as phagocytic oxidase (PHOX), which converts
microglia to an activated or cytotoxic state (339).

EXOSOMES

Exosomes transmit genetic information between cells, and
miRNAs are found inside exosomes. These exosomes can
be secreted by neurons or astrocytes (340). These exosomes
circulate around the body to nearby and distant cells (341).
Exosomal miRNAs have also been shown to be involved in
the inflammatory response (342). A recent study found an
association between dysregulated exosomes and schizophrenia
(343). Du et al. reported a pattern between dysregulated
exosomes and glycerophospholipid metabolism. The relationship
between exosomes and GPR109A receptor should be investigated
in future studies.
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TABLE 1 | Genes in GPR109A-COX-prostaglandin pathways matched against 128 GWAS schizophrenia.

Gene Aliases for gene (GRCh37/hg19) 128 GWAS Chr. position

HCAR2 Hydroxycarboxylic Acid Receptor 2 (GPR109A) chr12:123,185,840–123,187,904 Yes

PLA2G4A Phospholipase A2 Group IVA (cPLA2) chr1:186,798,032–186,958,113 No

PLA2G6 Phospholipase A2, Group VI (iPLA2) chr22:38,507,502–38,601,697 No

PTGS1 Prostaglandin-endoperoxide Synthase 1 (COX-1) chr9:125,132,824–125,157,982 No

PTGS2 Prostaglandin-endoperoxide synthase 2 (COX-2) chr1:186,640,923–186,649,559 No

PTGDS Prostaglandin D2 Synthase chr9:139,871,956–139,879,887 No

PTGES2 Prostaglandin E Synthase 2 chr9:130,882,972–130,890,741 No

PEGER2 Prostaglandin E Receptor 2 chr14:52,781,016–52,795,324 No

PTGER4 Prostaglandin E Receptor 4 chr5:40,679,600–40,693,837 No

PPARG Peroxisome Proliferator Activated Receptor Gamma (PPAR-y) chr3:12,328,867–12,475,855 No

GENES

Schizophrenia is caused by the cumulative effects of risk variants
in over 100 genes (45, 344). Most these genes are associated
with neurons, neurotransmitters or synaptic plasticity (345–347).
Table 1 attempts to match the current GWAS for schizophrenia
with genes which may be involved in the diminished flush
response. A negative result may be a false negative, whereas a
positive match may be false positive. As observed in the table,
GPR109A has been a match, which may suggest that risk variants
in GPR109A may contribute to the aetiology of schizophrenia,
as well as to an abnormal flushing response. GPR109A showed a
positive match, indicating genetic mutation. This matched with
the review analysis which suggested that there is an alteration in
the receptor protein conformation and components, B-Arestin
and GRK. We would have expected alternation in cPLA2 and
COX-2, as there had been strong evidence in this review
suggesting alterations in its genetic, protein expression, and
activity. The dual role of PPARG in inflammation and its reduced
expression in patients with schizophrenia would make it a good
target. We would not expect much alteration in prostaglandin
enzymes and receptors, as strong evidence suggests that they do
not significantly contribute to the flushing response.

CONCLUSION

This review shows altered cellular pathology behind a diminished
flush response. First, diminished flush is not only caused by
vasodilators, but also by altered protein expression, protein
activity, and inflammatory imbalance. Altered protein levels in
the GPR109A-COX-prostaglandin pathways include membrane
phospholipids, GPR109A, enzymes, cPLA2 and COX-2, and
prostaglandins with their receptors and downstream products,
such as PGD2, PGE2, DP1, EP2, EP4, 15d-PGJ2, and PPAR-
y. Furthermore, we found that there was an inflammatory
imbalance in the flush response. Although there is a possibility of
genetic alteration in GPR109A, it is possible that environmental
factors, such as oxidative stress, may alter receptor conformation,
causing reduced receptor-ligand bonds, resulting in diminished
flush. Second, as patient demographics interfere with the
flush effect, future studies should consider the age, illness

stage, ethnicity, use of antipsychotics, and presence of health
comorbidities in their participants. The niacin skin flush test is
essentially used to diagnose patients at their prodromal stage;
however, this review contains limited research on the altered
cell pathology at the prodromal stage. This review well supports
the evidence for M1 microglia activation; however, evidence
on neurons is weak, as there is no direct evidence linking
diminished flush response to neurons. Given that microglia and
neurons share a bidirectional relationship, it is likely that M1
activation may indirectly influence neuronal apoptosis. Lastly,
JNK inhibition can inhibit M1 activation, neuronal apoptosis,
and reduce inflammatory mediators, NF-κB, IL-1B, and TNF-
α, and influence protein phosphorylation or expression, cPLA2,
COX-2, and PPAR-y, respectively. Although further investigation
is required to understand whether ROS-mediated JNK may
influence GPR109A, we believe that the ability of JNK to control
multiple targets in the diminished flush response would make
it a good therapeutic target for schizophrenia. Future research
should investigate whether stimulation of GPR109A results in
PGD2 or PGE2 release from microglial cells and whether this is
mediated by the JNK pathway. Future research should also bear
in mind that Table 1 has established a match with 128 GWAS,
which may be essential for the updated GWAS for schizophrenia
in the future.
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