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Abstract

We propose a new strategy for boundary conforming meshing that decouples the problem of 

building tetrahedra of proper size and shape from the problem of conforming to complex, non-

manifold boundaries. This approach is motivated by the observation that while several methods 

exist for adaptive tetrahedral meshing, they typically have difficulty at geometric boundaries. The 

proposed strategy avoids this conflict by extracting the boundary conforming constraint into a 

secondary step. We first build a background mesh having a desired set of tetrahedral properties, 

and then use a generalized stenciling method to divide, or “cleave”, these elements to get a set of 

conforming tetrahedra, while limiting the impacts cleaving has on element quality. In developing 

this new framework, we make several technical contributions including a new method for building 

graded tetrahedral meshes as well as a generalization of the isosurface stuffing and lattice cleaving 

algorithms to unstructured background meshes.
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1. Introduction

The automatic construction of volumetric meshes has for decades been a relevant problem 

for fields spanning computational science and engineering to computer graphics. Meshes 

enable finite-element simulations, visualization, and in general the digitization of physical 

phenomena. Despite a great deal of important research and many fundamental advances, the 

general problem of tetrahedral meshing remains unsolved and challenging. Three of the 

most desirable properties for meshes are to have adaptive element size, good tetrahedral 

quality, and an adequate representation of boundaries. Taken together, the constraints 

imposed by these properties are often in conflict with each other. For example, meshing with 

perfectly isotropic elements strictly prevents the ability to vary element size, since 

gradedness would require mesh edges of differing lengths. Other constraints may act in 

concert, for example meshes that adapt to the curvature tensor of a smooth surface may 

naturally induce elements that better approximate the surface.

In this work, we focus on the problem of building tetrahedral meshes that conform to a 

geometric boundary without sacrificing other desirable characteristics of a mesh. We say a 

mesh conforms to a boundary if both (1) a collection of mesh vertices lies on the boundary 

and (2) a collection of mesh simplices passing through these vertices sufficiently 
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approximates the boundary. Our specific focus is on boundaries that are piecewise smooth 

manifolds: collections of smooth surface patches that meet in potentially non-manifold 

configurations along a network of curve segments. Such shapes are represented as the 

surfaces which lie on the boundary of different volumetric materials, such as those 

encountered in segmented 3D images or between different phases in multiphase flow.

We take the approach of explicitly decoupling the problem of conforming the mesh and 

delay its resolution. Instead, we initially construct a volumetric background mesh that 

satisfies all other desirable properties. This approach is a small but novel change from most 

boundary conforming meshing algorithms. By restricting the problem, we design a modular 

meshing pipeline, where mesh adaptation can be completed independently from the task of 

boundary representation. We experiment with an electrostatic particle formulation to 

generate appropriate background meshes by adapting vertex locations to a sizing field 

defined based on a distance transform to material boundaries.

Note that while this background mesh formulation leads to good gradedness and reasonable 

angles, its use is a free choice in our pipeline. We make no specific assumptions about the 

background mesh for later stages, and as such our pipeline has enough flexibility for mesh 

adaptations driven by other criteria. Given the background mesh, we next apply a single 

cleaving step that conforms the mesh to a boundary. This cleaving step is a novel 

generalization of both the isosurface stuffing [22] and lattice cleaving algorithms [8]. Unlike 

past work, our approach relaxes the requirement that the background meshes are body-

centered cubic (BCC) lattices.

The initial contribution of mesh cleaving schemes focused on building meshes with the 

highest quality dihedral angle bounds. An alternate perspective is that a mesh cleaving step 

should judiciously limit the change in prescribed qualities of an input mesh. Near where we 

cleave, we do expect (and experience) some quality degradation, so if the background mesh 

has small angles already they may worsen. Nevertheless, the approach effectively separates 

concerns and by deferring the boundary meshing step problem of satisfying multiplied 

constraints is simplified. In this work we show that for both structured and unstructured 

background meshes, we can still cleave while limiting changes in element quality.

1.1. Related Work

Tetrahedral meshing in the presence of boundaries is a well-studied problem in the 

literature, we review only the most relevant papers to our approach. For a more complete 

overview of field, we recommend a recent survey by Shewchuk [32].

With the exception of lattice-based approaches [22,30,38], when meshing to conform to a 

boundary the majority of algorithms first try to capture the boundary constraint. Delaunay 

refinement [12] is one such example. Typically, such meshes are produced by inserting 

vertices in boundary features in an increasing dimensionality and thus increasing 

complexity. Alternatively, some meshing techniques assume that an input boundary mesh is 

given, and a conforming mesh is built (through insertions and flips) such that every 

boundary element exists in the output or is a union of output elements [17,19,36]. Working 

with an input boundary mesh is also natural for advancing front techniques [25,27], since the 
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boundary elements provide a seed surface from which to grow the front. We remark that an 

interesting conclusion, parallel to our own, in the domain of hexahedral meshing by 

advancing front (paving and plastering) is that relaxing the boundary constraint by delaying 

boundary meshing leads to overall improved results [34].

Meshing by sequencing through boundaries of increasing dimension is particularly popular 

for tetrahedral meshing of the multimaterial domains we consider. The representation of 

complex non-manifold boundaries is the major challenge, so it is popular to tackle it first 

(e.g. in both Delaunay and variational methods, or combinations of them [5,7,9,28,35]). 

However, as dimension increases, the fixed collection of lower dimensional elements 

impose an increasingly complex set of constraints for the next stage of meshing. In terms of 

Delaunay refinement, this typically means that the placement of locations for new vertices 

becomes limited. The insertion of points to improve elements may be blocked since they 

would otherwise disturb boundary features [5,9,10]. In terms of variational approaches, this 

means that the next stage of optimization becomes a more expensive constrained energy 

minimization [1,7]. Alternatively, one can allow the boundary to be disturbed, but then 

iterate in attempt to reconform to the boundary [35]. Nevertheless, the Delaunay-based 

techniques often offer provable guarantees on the ability to conform to piecewise linear [31], 

smooth [4,11], and piecewise-smooth [5,9] boundaries.

By comparison, approaches that start with a background lattice are presented with the 

opposite challenge. In the absence of a boundary constraint, it may be possible to mesh 

volumetrically while satisfying a broad range of constraints. However, proving one can still 

capture the boundary becomes more complex. Typically, these approaches use a highly 

structured lattice to rapidly construct meshes with are self-similar, such as an octree [30,38]. 

While what has been proved about lattice-based algorithms is limited, there is a growing 

body of work. For 2D domains, it was shown that a quadtree can be provably adapted to lead 

to a capturing a polyhedral domain [3]. More recent approaches apply the BCC lattice, 

which is not only a naturally good domain for approximating trivariate functions [21], but 

also a Delaunay triangulation with good dihedral angles everywhere. Labelle and Shewchuk 

were the first to use BCC lattices as background meshes to build tetrahedral meshes that 

conform to a smooth boundary while maintaining dihedral angle bounds [22]. Doran et al. 

experiment with using acute lattices instead of BCC [15]. Algorithms such as those of Zhang 

et al. [39], Chernikov and Chrisochoides [13], and Liu et al. [24] extend some of these ideas 

to the case of multimaterial medical domains with significant experimental results. Most 

recently, Liang and Zhang prove bounds on constructing adaptive meshes which conform to 

smooth surfaces [23]. Bronson et al. [8] generalize the results of Labelle and Shewchuk with 

their lattice cleaving approach, and were also able to generalize a proof that in the case of 

multimaterial boundaries, a bound for the dihedral angles of the resulting elements exists. In 

this work, we generalize the lattice cleaving technique to arbitrary background grids with a 

broader range of input characteristics.

2. Methodology

The strategy we propose is to separate the creation and adaptivity of quality volume 

elements from surface conforming constraints. This separation can be achieved through a 
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volumetric meshing pipeline (Fig. 1). First, the desired and necessary element characteristics 

throughout the volume must be determined. These constraints are then used as input to a 

meshing algorithm to generate an ambient background mesh. This mesh will know nothing 

of material interfaces, but will have appropriately sized elements thanks to the sizing field 

driving it. Finally, this background mesh will be fed to the cleaving algorithm, where 

elements near material interfaces will be cleaved to conform to these surfaces. We provide 

algorithms which are separately capable of handling the specific pieces of this pipeline.

2.1. Local Feature Size and Sizing Fields

Mesh elements must be adaptively sized for the purpose of geometric fidelity and PDE 

solution accuracy while simultaneously reducing the number of elements needed for an 

accurate numerical simulation. A sizing field is a scalar field that at every point dictates the 

ideal size of an element centered around that point. We suggest that a suitable sizing field 

should posses the following properties: a) it should be small near thin features and high-

curvature regions; b) it should progressively increase for larger features and lower-curvature 

regions; c) it should be sufficiently large at points that are far from material interfaces; and 

d) it should satisfy Lipschitz continuity conditions. Abrupt changes in the sizing field is 

undesirable because the quality of the resulting elements is likely to be poor.

In surface mesh generation algorithms, the concept of feature size has been widely used to 

accurately capture the topology of the object that is being meshed. It is defined only on the 

surface of the object, and it is defined as the distance from the medial surface of the object. 

The medial surface is a surface formed by those points that have more than one closest 

points on the object boundary. It is also referred to as the “skeletonization” an object. Thin 

features have a small feature size, and large features have a large feature size.

The feature size defined on the surface of an object can be extended over the whole domain 

to dictate the size of elements in every region of the domain. Persson [29] describes an 

algorithm that uses a variant of distance transform computed from the surface of the object 

using the feature size as the initial set of values for the distance transform. The distance 

transform is a scalar field that specifies the distance to the closest point, curve, or surface. It 

can be visualized as a series of wave fronts emanating from the given set of points, curves, 

or surfaces. Figure 3 provides an illustration of the distance transform of a C-shaped object 

and its medial surface (medial axis, in 2D). Notice that the discontinuity in the gradient of 

the distance transform indicates the medial surface.

Our algorithm to compute a sizing field is based on the work of [6] and [29], and it is 

performed on a voxel domain with subvoxel accuracy. A pipeline describing our algorithm 

is shown in Fig. 2. The technique relies on solving for three distance transforms over this 

domain. First, the distance transform is computed starting from the material boundary 

surfaces. Because the distance transform is nonsmooth only where the wave fronts collide 

and is linear otherwise, we can use the Hessian to compute the set of points on the medial 

surface. The Hessian vanishes at all locations except at the medial surface. The voxels where 

the Hessian does not vanish define the medial surface. Next, the distance transform is 

computed again from the medial surface. The values of the distance transform at the 

boundary locations thus define the feature size at those points. Finally, the distance 
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transform is computed again from the boundary. This time, the initial value at the boundary 

is set as the feature size computed in the previous step and the gradient of the distance 

transform is limited as a user parameter. This gives us the sizing field over the whole 

domain.

To initialize the starting value for the first distance transform, we have to find the 

approximate locations of material interfaces on the edges of the voxel grid. Our distance 

transform solver uses the fast marching method (FMM) [26] that is second-order accurate is 

used with a heap-based priority queue. Note that a 3 × 3 × 3 stencil is required to compute 

the Hessian. Thus, the resolution of the grid should be appropriately chosen to capture the 

topology and features of the required size. As we shall describe later, we construct both 

structured and unstructured meshes using the sizing field. We guarantee that the topology is 

correctly captured only for the structured mesh. Since the unstructured meshes is constructed 

using a heuristic algorithm, the topology may not be correctly captured by the mesh.

2.2. Electrostatic Particle Distributions

Particle systems are often used in mesh generation algorithms in order to obtain a 

distribution of points satisfying certain constraints. For instance, the idea of centroidal 

Voronoi diagrams has been used in several mesh generation algorithms (eg. [16]) for 

isotropic point distribution requirements. The concept has been extended for anisotropic 

metrics [18] as well. Other notable examples of the use of particle system in mesh 

generation include Hart's et al.'s surface sampling technique [20], Yamakawa and Shimada's 

ellipsoidal bubble packing algorithm[37] and Meyer et al.'s particle sampling technique for 

multimaterial meshing [28].

In each of these techniques, a stable point distribution is achieved by iteratively minimizing 

an energy function that matches the meshing requirements. These approaches typically 

distribute particles on material interfaces first, using these surfaces as a constraint for a 

volumetric meshing algorithm. In contrast, our new approach to adaptive mesh generation 

distributes particles directly over the whole of the domain, without any regard for material 

interfaces. These points are provided to a delaunay tetrahedralization algorithm to build a 

background mesh suitable for the next stage of our new meshing pipeline.

We propose a new electrostatic particle simulation technique to distribute particles over the 

whole input domain. A pipeline describing our algorithm for generating an unstructured 

background mesh is shown in Fig. 4. Unlike typical electrostatic particle systems, in which 

particles tend to gather at protrusions and sharp feature, this new approach produces particle 

distributions that accurately match the input sizing field specification. Particles are given an 

electrostatic charge as usual (see [28] and [37]), but the domain itself is also given an 

opposite charge.

This background charge interacts with particles in such a way that a net-zero charge can 

only be produced when the set of particles precisely matches the desired input sizing field. 

Our particle distribution technique is designed such that the regions of the domain with a 

small feature size will have a large charge density, while regions with larger feature size will 

have a smaller charge density. This ensures that greater number of particles congregate in 
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the region where they are desired. Figure 5 provides a pictorial illustration of a particle 

system where more particles are needed in the three circular regions.

The force on a particle in the domain is a sum of both the background charge density, as 

well as the other particles in the domain. The force due the background charge density is 

determined by computing the gradient of the electrostatic potential due to the charge density, 

and the force due other particles is computed by summing up the forces from all other 

particles in the domain. The particles are moved based on the particle-field and particle-

particle interactions. When the system converges to a stable equilibrium, the distribution 

will respect the provided sizing field.

2.2.1. Charge Density Computation—In order to compute the charge density 

corresponding to an input sizing field, we exploit the relationship between a sizing field and 

optimal sphere packing density. The optimal sphere packing density (fraction of volume 

filled by spheres) for a hexagonal close packing is . Let the volume of the domain be 

V, and assume a uniform sizing field, l, in the domain. The number of spheres, n, of the 

radius l/2 in the volume is given by

(1)

We set the number of particles to be the nearest integer to the total background charge in the 

domain (computed by integrating the charge density). In this way, we realize a stable 

equilibrium where negatively-charged particles neutralize the positively-charged 

background. Therefore, we want n = ρV, where ρ is the charge density. Solving for ρ, we 

obtain . Thus, the charge density is set to be inversely proportional to the cube of 

the sizing field. Note that any monotonically decreasing charge density with respect to the 

sizing field is likely to yield some results that respect the adaptivity requirements, but its 

feasibility depends upon the application. The charge density ρ is usually not a constant over 

the whole domain. Therefore, we generalize the number of particles over the whole domain 

to be , where Ω is the domain.

2.2.2. Potential and its Gradient Computation—The electrostatic potential due to the 

background charge density is computed by solving the Poisson equation,∇2u(x) = f (x), 

where u is the electrostatic potential and f is the charge density. The Poisson equations are 

solved using the finite difference scheme on a structured grid with Dirichlet boundary 

conditions computed by summing up the potential due to the charge density at every point in 

the boundary. This process is accelerated using an octree-based technique. We use the linear 

conjugate gradient solver to determine the solution of the linear system resulting from the 

finite-difference approximation of the equation and boundary conditions.

In order to compute the local charge density and its gradient at any point in the domain, we 

utilize a cubic convolution-based interpolation technique over the structured grid. Its main 

advantage over a trilinear interpolation approach is the continuity of the gradient of the 

interpolated function over the whole domain, which helps the system avoid local minima. 
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Additionally, the analytical gradient of the interpolant can be accurately computed. When 

trilinear interpolation is used instead, the particles get “trapped” in the faces, edges, and 

corners of the cubic elements of the grid. This naturally results in a suboptimal point 

distribution.

2.2.3. Electrostatic Simulation—For the electrostatic simulation, the number of 

particles are seeded in the various part of the domain is proportional to the local charge 

density. This ensures a quick convergence of the particle system since the movement of 

particles is locally restricted. Each individual particle is separately moved by a distance 

proportional to the force on the particle and the step size for that iteration. We adaptively 

vary the step size in each iteration. The process is accelerated using the octree-based Barnes-

Hut simulation technique [2].

Each octant of the octree stores the location of the center of the charge distribution within 

the cell, as well as the total contained charge. The force on a particle charge at any location 

is computed by traversing down the octree. If the ratio of the length of the smallest side of 

an octant vs the distance between the particle charge and the center of the charge distribution 

is lower than a threshold θ, the force due to all the charges in the octant on the particle 

charge is approximated by a single point. This significantly reduces the number of floating 

operations required to compute the force on the particle charge. The particles are iteratively 

moved to optimal locations based on the forces acting upon them. Once a static equilibrium 

is reached, the particles are tetrahedralized using Tetgen [33].

2.3. Unstructured Cleaving

In order to produce a surface conforming mesh from an unstructured background mesh, we 

turn to a technique which, up until now, has been demonstrated to work only on regular 

lattices. Lattice Cleaving, like Isosurface Stuffing, is a stencil-based technique for producing 

conforming tetrahedral meshes with elements of bounded quality.

In one sense, these algorithms can be considered mesh processing algorithms. They take as 

input a mesh, a regular lattice of high quality tetrahedra (the Body-Centered Cubic (BCC) 

Lattice), and through a series of vertex warps and stencil operations transform the mesh 

elements to conform to material boundaries (Fig 6). We use this paradigm to extend the 

technique to arbitrary unstructured and irregular background input meshes. We do this in the 

context of multimaterial volumes. This section details the technical considerations that need 

to be accounted for to achieve this generalization.

The basis of the lattice cleaving algorithm remains unchanged. The input elements are still 

tetrahedra, the violation snapping and warping rules carry over, and the same output stencil 

set is used. However, there are two fundamental challenges when moving to an unstructured 

mesh: resolving stencil consistency across the shared face of neighboring background 

tetrahedra, and alpha parameter selection.

2.3.1. Stencil Consistency and Generalization—Some output topologies have 

multiple permissible tessellations. Without consideration for consistency, two neighboring 

tetrahedra may stencil their shared face differently, leading to a topological hole in the mesh. 
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This problem can be avoided by carefully orienting each background element before 

applying output stencils. Isosurface stuffing does this using a simple parity rule that exploits 

the regular structure of the lattice. As we're interested in unstructured meshes, we cannot 

rely on any predetermined structure of an input mesh. Instead, we take inspiration from the 

approach used in the lattice cleaving algorithm.

Rather than rely on the background lattice structure, the lattice cleaving algorithm resolves 

stencil consistency by taking advantage of the fact that all output stencils can be generated 

through a series of material collapses of the most complex 4-material stencil. This mapping 

is called a generalization. In this model, a set of stencil outputs is consistent if there exists a 

set of virtual interfaces that when snapped and warped, would have led to that stencil set. 

The lattice cleaving algorithm for placing these virtual interfaces and their snap destinations 

is specific to the BCC lattice and so we develop a more versatile algorithm.

We observe that if you take a three-material face, the only way a set of cuts cannot be 

snapped to collapse into a simpler stencil form is when their movement forms a cycle (Fig. 

7). We further observe that for any set of valid face generalizations on a tetrahedron, there is 

always a way to move a virtual quadruple point to obtain a valid stencil.

One way to guarantee a set of virtual cuts never move in a cycle is to enforce an ordering. If 

each vertex is given an integer id, then enforcing the rule that a virtual cut always moves to 

the higher (or lower) vertex, is sufficient. Most mesh implementations store an ordered list 

of vertices anyway, so creating this order is trivial. The remaining work is determining the 

destination of virtual triple points and virtual quadruple points. Since the triple point of a 

face is shared, any valid destination will by definition be consistent across the face, and 

since quadruple points exist on the interior of tetrahedron, any valid destination will suffice.

There are two principles to selecting valid virtual interface locations: Virtual interfaces 

always snap to the next smallest simplex with the most colocated virtual interfaces; and ties 

are always settled in favor of real interfaces over virtual interfaces. Figure 8 illustrates the 

two ways this manifests on a background lattice face. If one virtual cut exists, the virtual 

triple snaps to the real cut on the edge incident to the snapped virtual cut. This collapses the 

missing third material region onto the edge. If two virtual cuts exist, the virtual triple snaps 

to the colocation of the two virtual cuts (i.e., the vertex with the smallest id). Similarly, the 

missing materials collapse onto an edge and onto a vertex.

2.3.2. Alpha Selection—In the lattice cleaving and isosurface stuffing algorithms, the 

alpha parameter controls the trade off between stenciling and warping. It does this by 

defining the regions in which an interface is considered to be violating, and will need to be 

snapped. Labelle and Shewchuk utilized an automated computational proof to determine 

optimal alpha parameters for the long and short edges of the BCC lattice in isosurface 

stuffing. For the multimaterial case, the state space for this proof becomes computational 

infeasible, and so the authors provide a theoretical proof of bounds, and utilize conservative 

version of the parameters from the two material case.
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As we move to an unstructured mesh, the challenge of finding optimal alpha parameters 

becomes even more difficult. While the BCC lattice has two edge lengths and symmetric 

elements, any given unstructured mesh may have no two neighbors with identical edge 

lengths or element shapes. So rather than having to choose two alpha values, short and long, 

the user must pick at least as many alpha values as there are edges. The set of optimal alpha 

values is therefore unique for every input mesh, and must be computed at run-time.

We present an algorithm for computing conservative alpha violation parameters that allow 

the quality proof of lattice cleaving to still hold. This algorithm has the benefit of 

parameterizing the alpha values of each edge by a single global alpha value.

First, we observe that in the limit, as α approaches zero, the background mesh stops all 

warps and stencil elements can become arbitrarily bad. As α increases, the snapping and 

warping procedure becomes increasingly aggressive, ultimately to the point where it is 

unsafe and may result in degenerate elements.

If we permit the four vertices of a tetrahedron to move in any direction, the shortest distance 

they can travel before the element becomes degenerate (coplanar) is along the shortest 

vertex altitude. If we show no preference to any particular vertex, they meet in the plane that 

is halfway along the altitude, or  from each vertex, where h is the height of the altitude. 

Figure 9 illustrates this in 2D. This observation provides an upper limit for how aggressive 

our α selection can be for any particular vertex with respect to a tetrahedron to which it 

belongs. We can then parameterize over this space as  for  and provide ξ 

as a user parameter to optimize.

The algorithm for computing a set of α parameters is thus as follows: Begin with current 

best guess for ξ. For each vertex vi, iterate over all incident tetrahedra and set 

.

In this formulation, the α parameters around a vertex are all the same and are stored on the 

vertex, rather than on the edge. This algorithm can be used in conjunction with the proof of 

bounds from the Lattice Cleaving algorithm [8] to prove that it also places bounds on the 

quality of output elements. We replace Lemma 3 of the proof with the following alternate 

lemma.

Lemma 3: For every tetrahedron with ε-good dihedral angles, there exists a space of 

permissible violation parameters  such that the tetrahedron will retain ε-good angles after 

warping.

Proof: Let t be a background tetrahedron with ε-good angles. Whether measured by aspect 

ratio or dihedral angle, the tetrahedron decreases in quality towards degeneracy as the 

vertices approach becoming coplanar. The shortest path vertices can move during a warp to 

create such a coplanarity is along the shortest altitude. Therefore, any safe set of α values 

must follow the inequality

(2)
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where αi is an α-ball around vertex vi and v1 is the vertex with the smallest altitude. This 

inequality is easy to satisfy and can be parameterized as

(3)

As ξ approaches  the maximum safe α values are reached. As ξ approaches 0 warping 

becomes increasingly restricted.

3. Results and Discussion

Together, the contributions of this paper offer a full multimaterial volumetric meshing 

pipeline. In this section, we illustrate what such a system is capable of through the use of 

both synthetic and real-world data. As discussed in Section 2.2, our electrostatic particle 

formulation, while extendable to further optimization, currently only optimizes vertex 

positions and may produce low volume elements. For comparison, for each example dataset, 

we generate results using both the electrostatic background mesh, as well as a structured, 

adaptive octree mesh. In this way, the cleaving of these meshes may more easily be seen as a 

mesh processing procedure, with results for both input meshes compared side by side.

Our implementation for creating the adaptive octree background meshes is straight forward. 

The octree begins with a single cell that encloses the whole domain. The algorithm queries a 

sizing field oracle that returns the minimum sizing field within the cell. If this size is smaller 

than the width of the cell, the tree subdivides. This routine is ran recursively until the 

smallest local feature size is no smaller than half a cell. Then, the graded stencil set from [8] 

and [22] is used to fill in the tree and output the background mesh.

We ran our experiments on a single core of the 16-core AMD Opteron 8360 SE 2.5GHz 

processor with 96GB of RAM running the openSUSE 11.3 (×86_64) operating system with 

gcc (SUSE Linux) 4.5.0 20100604 compiler. The size of the mesh background and the 

output generated by our implementation is reported in Table 1. Table 2 reports the Hausdorff 

distance between the surfaces meshes when structured and unstructured meshes are 

generated using the respective algorithms. They were computed in Meshlab [14] by 

sampling points on one of the surface meshes and computing the distance to the 

corresponding point on the other surface mesh. The timing for each stage of the pipeline for 

structured and unstructured meshes are reported in Table 3 and 4, respectively. In our 

particle simulation, the threshold θ (see Section 2.2) was reduced from 1 to 0.25 in 200 

iterations and held at 0.25 for the next 100 iterations. The time taken for the first 200 

iteration is roughly one-third the time reported in Table 4.

Figure 10 contains a synthetic dataset of various spheres. These spheres can each be 

independently meshed with a fewer number of tetrahedra, but together produce small 

cavities that drive the sizing field down. The surfaces and background meshes adapt to this 

sizing field as necessary. The left result is generated from a graded octree background mesh, 

and the right result is generated from a graded electrostatic mesh.
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Figure 11 contains two meshes generated from synthetic dataset of a torus and a sphere in 

close proximity. Grading along the surfaces as well as the background mesh can be seen in 

both the structured and unstructured meshes. Figure 12 contains two meshes generated from 

an MRI of a human torso. The clear cut of the boundary of the domain can be seen on both 

the octree and electrostatic background meshes. Because the sizing field goes to zero at 

three-material junctions, user settings limit the sizing field in these regions. The time taken 

for each stage of pipeline is reasonable for the size of the domain and the size of the mesh 

needed to capture all the features in the domain.

Figure 13 contains two meshes generated from an MRI scan of a frog. The structured 

version of this mesh ends up being much larger due to the octree dimensions enforcing 

power-of-two dimensions. The unstructured background mesh has no such requirements. At 

the same time, the user chosen scaling factor is so large that some fine features near the 

mouth have been missed in the unstructured mesh. A less aggressive scaling would not 

cause this kind of loss. Also note that the time taken to compute the sizing field is much 

larger for this domain than for other domains. This is because the size of the domain and the 

corresponding large grid on which the distance transforms are computed. The time taken to 

solve the Poisson equation is also large for the same reason. This can be accelerated using a 

suitable preconditioner such as the algebraic multigrid preconditioner. Although this domain 

needs more vertices to capture all the features present in the data than the torso dataset, the 

time taken to execute the accelerated particle system is much lower. This is due to the large 

size of the domain. As the particles are distributed further away from each other, the Barnes-

Hut algorithm is able to approximate the forces from groups of particles that are at large 

distances from a particle in consideration.

Since our particle distribution technique is a global technique, i.e., the position of a particle 

depends on the position of all other particles (not just its neighbors), it is less likely to get 

stuck in a local optima. In each of our test cases, we were able to control of the number of 

vertices in a given region of a domain is a precise manner. While other refinement or 

variational techniques incrementally add vertices, this technique can determine the number 

of particles a priori. As it is slow, in real applications, we recommend running only a few 

iterations of the particle distribution scheme and using local techniques to optimize the 

positions of the particle or to improve the quality of the resulting background mesh.

Examining the angle distributions across each example dataset, we see that the cleaving 

operation largely preserves the angle profile of each input, with the distributions spreading 

outward and toward the tail ends. The structured meshes begin with much higher quality 

elements and are therefore more resilient to the effects of cleaving. For this reason, it's 

especially important to create high quality background meshes. Improved alpha value 

selection would also help to mitigate the effects of cleaving.

In this work, we have illustrated the potential power of decoupling the problems of mesh 

element and boundary constraints. The particle system presented achieves its goals with 

simplicity due to the lack of interface surfaces, and is simply one method for generating 

unstructured background meshes. One possible alternative algorithm to use for the 

background mesh generation of the pipeline is centroidal Voronoi tessellation (CVT). This 
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technique is interesting because with variable metrics (as presented in [16]) it has the ability 

to push low volume elements to the boundary of the domain. This is ideal for the cleaving 

algorithm, since these external elements will ultimately be discarded.

We have also demonstrated that the lattice cleaving algorithm is extendable to unstructured 

meshes in a straightforward manner. The method we chose for producing safe α parameters, 

though conservative, provides a starting point for more sophisticated methods. Its major 

drawback is being symmetric around a vertex. This means that as the difference in relative 

size of neighbor tetrahedra increases, the parameters will be increasingly more conservative. 

Detaching this symmetry constraint would be a significant step towards solving for truly 

optimal α parameters. As a whole, this work suggests that the union of traditional and 

combinatoric meshing techniques promises to provide a fertile ground for new developments 

in high quality conforming mesh generation for unstructured meshes.
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Fig. 1. 
Proposed meshing pipeline for conforming volumetric meshing.
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Fig. 2. 
Proposed pipeline for sizing field computation.
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Fig. 3. 
Left: The medial surface (axis) of a C-shaped object. Right: The distance transform level 

sets. Note, the distance transform and the medial axis are also computed outside the object.
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Fig. 4. 
Proposed pipeline for generating an adaptive, unstructured background mesh.
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Fig. 5. 
An illustration of a particle distribution over a domain.
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Fig. 6. 
Illustration of lattice cleaving in 2D, Left: background mesh with material interfaces 

overlaid, Right: cleaved output
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Fig. 7. 
Left: Cyclic virtual cuts lead to an unsatisfiable generalization. Right: Any ordered priority 

can lead to safe generalization.
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Fig. 8. 
This figure illustrates the generalization of one and two material face stencils. (left) A two 

material stencil is generalized. The virtual cut on the edge connecting vertex 0 and vertex 1 

moves to vertex 0. The virtual triple follows the cut onto the edge connecting vertex 0 and 

vertex 2. (right) A one material stencil is generalized. All virtual cuts move to the adjacent 

vertices with the lowest index. The virtual triple follows the virtual cuts that end up on the 

same vertex.
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Fig. 9. 
Illustration of how the maximum safe distance that a vertex may move is bounded by the 

height of the corresponding altitude.
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Fig. 10. 
A set of four sphere materials embedded in a green background material. (left) structured 

background mesh (right) unstructured background mesh
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Fig. 11. 
A torus with a sphere inside it, embedded in a blue background material. (left) structured 

background mesh (right) unstructured background mesh
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Fig. 12. 
Section of human torso MRI, embedded in a green background material, with (left) 

structured and (right) unstructured backgrounds meshes.
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Fig. 13. 
An MRI of a frog with (left) structured and (right) unstructured background meshes.
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Table 1

The size of the domain and the sizes of the background and output meshes. S denotes structured meshes, and 

U denotes unstructured meshes.

Domain Size Mesh Type
Background Mesh Output Mesh

#Vertices # Elements #Vertices # Elements

Spheres [64, 64, 64] S
U

26,219
11,856

129,804
71,160

26,921
12,500

133,858
74,050

Torus [64, 64, 64] S
U

35,082
13,556

175,456
82,298

35,951
14,259

180,238
85,626

Torso [64, 64, 64] S
U

145,240
60,867

721,678
360,182

149,818
64,826

746,955
378,361

Frog [260, 245, 150] S
U

1,057,586
70,415

5,347,544
428,173

1,087,272
74,489

5,515,823
447,741
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Table 2

The Hausdorff distance between the structured and unstructured meshes for each of the data set. They have 

been computed by sampling points on one of the surface meshes and finding the distance to the corresponding 

point on the other surface mesh in Meshlab [14].

Domain # Sampling Points
Hausdorff Distance

min. mean r.m.s. max.

Spheres 75,977 0.0 0.051 0.101 1.927

Torus 56,052 0.0 0.076 0.144 1.063

Torso 312,812 0.0 0.056 0.111 2.589

Frog 2,886,382 0.0 0.214 0.451 9.650
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Table 3

The time taken for each stage of the pipeline to generate the structured meshes.

Domain
Time (in seconds)

Sizing Field Background Mesh Creation Cleaving

Spheres 2.39 7 10

Torus 2.15 6 15

Torso 4.50 43 97

Frog 288.9 520 202
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Table 4

The time taken for each stage of the pipeline to generate the unstructured meshes. Note the time taken to 

generate the sizing field is not included in the table because it has already been included in Table 2 for 

structured meshes.

Domain
Time (in seconds)

Poisson Solver Particle System Tetgen Cleaving

Spheres 21 2,103 1.30 5

Torus 22 2,466 1.40 5

Torso 22 17,727 2.24 45

Frog 1,742 9,474 2.75 50
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