
Adaptive and Unstructured Mesh Cleaving

Jonathan R. Bronsona, Shankar P. Sastrya, Joshua A. Levineb, and Ross T. Whitakera

aScientific Computing and Imaging Institute, Salt Lake City, UT, U.S.A.

bSchool of Computing, Clemson University, Clemson, SC, U.S.A.

Abstract

We propose a new strategy for boundary conforming meshing that decouples the problem of

building tetrahedra of proper size and shape from the problem of conforming to complex, non-

manifold boundaries. This approach is motivated by the observation that while several methods

exist for adaptive tetrahedral meshing, they typically have difficulty at geometric boundaries. The

proposed strategy avoids this conflict by extracting the boundary conforming constraint into a

secondary step. We first build a background mesh having a desired set of tetrahedral properties,

and then use a generalized stenciling method to divide, or “cleave”, these elements to get a set of

conforming tetrahedra, while limiting the impacts cleaving has on element quality. In developing

this new framework, we make several technical contributions including a new method for building

graded tetrahedral meshes as well as a generalization of the isosurface stuffing and lattice cleaving

algorithms to unstructured background meshes.

Keywords

Meshing; Tetrahedral; Multimaterial; Unstructured; Bounded; Quality

1. Introduction

The automatic construction of volumetric meshes has for decades been a relevant problem

for fields spanning computational science and engineering to computer graphics. Meshes

enable finite-element simulations, visualization, and in general the digitization of physical

phenomena. Despite a great deal of important research and many fundamental advances, the

general problem of tetrahedral meshing remains unsolved and challenging. Three of the

most desirable properties for meshes are to have adaptive element size, good tetrahedral

quality, and an adequate representation of boundaries. Taken together, the constraints

imposed by these properties are often in conflict with each other. For example, meshing with

perfectly isotropic elements strictly prevents the ability to vary element size, since

gradedness would require mesh edges of differing lengths. Other constraints may act in

concert, for example meshes that adapt to the curvature tensor of a smooth surface may

naturally induce elements that better approximate the surface.

In this work, we focus on the problem of building tetrahedral meshes that conform to a

geometric boundary without sacrificing other desirable characteristics of a mesh. We say a

mesh conforms to a boundary if both (1) a collection of mesh vertices lies on the boundary

and (2) a collection of mesh simplices passing through these vertices sufficiently

HHS Public Access
Author manuscript
Procedia Eng. Author manuscript; available in PMC 2015 June 29.

Published in final edited form as:
Procedia Eng. 2014 ; 82: 266–278. doi:10.1016/j.proeng.2014.10.389.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

approximates the boundary. Our specific focus is on boundaries that are piecewise smooth

manifolds: collections of smooth surface patches that meet in potentially non-manifold

configurations along a network of curve segments. Such shapes are represented as the

surfaces which lie on the boundary of different volumetric materials, such as those

encountered in segmented 3D images or between different phases in multiphase flow.

We take the approach of explicitly decoupling the problem of conforming the mesh and

delay its resolution. Instead, we initially construct a volumetric background mesh that

satisfies all other desirable properties. This approach is a small but novel change from most

boundary conforming meshing algorithms. By restricting the problem, we design a modular

meshing pipeline, where mesh adaptation can be completed independently from the task of

boundary representation. We experiment with an electrostatic particle formulation to

generate appropriate background meshes by adapting vertex locations to a sizing field

defined based on a distance transform to material boundaries.

Note that while this background mesh formulation leads to good gradedness and reasonable

angles, its use is a free choice in our pipeline. We make no specific assumptions about the

background mesh for later stages, and as such our pipeline has enough flexibility for mesh

adaptations driven by other criteria. Given the background mesh, we next apply a single

cleaving step that conforms the mesh to a boundary. This cleaving step is a novel

generalization of both the isosurface stuffing [22] and lattice cleaving algorithms [8]. Unlike

past work, our approach relaxes the requirement that the background meshes are body-

centered cubic (BCC) lattices.

The initial contribution of mesh cleaving schemes focused on building meshes with the

highest quality dihedral angle bounds. An alternate perspective is that a mesh cleaving step

should judiciously limit the change in prescribed qualities of an input mesh. Near where we

cleave, we do expect (and experience) some quality degradation, so if the background mesh

has small angles already they may worsen. Nevertheless, the approach effectively separates

concerns and by deferring the boundary meshing step problem of satisfying multiplied

constraints is simplified. In this work we show that for both structured and unstructured

background meshes, we can still cleave while limiting changes in element quality.

1.1. Related Work

Tetrahedral meshing in the presence of boundaries is a well-studied problem in the

literature, we review only the most relevant papers to our approach. For a more complete

overview of field, we recommend a recent survey by Shewchuk [32].

With the exception of lattice-based approaches [22,30,38], when meshing to conform to a

boundary the majority of algorithms first try to capture the boundary constraint. Delaunay

refinement [12] is one such example. Typically, such meshes are produced by inserting

vertices in boundary features in an increasing dimensionality and thus increasing

complexity. Alternatively, some meshing techniques assume that an input boundary mesh is

given, and a conforming mesh is built (through insertions and flips) such that every

boundary element exists in the output or is a union of output elements [17,19,36]. Working

with an input boundary mesh is also natural for advancing front techniques [25,27], since the

Bronson et al. Page 2

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

boundary elements provide a seed surface from which to grow the front. We remark that an

interesting conclusion, parallel to our own, in the domain of hexahedral meshing by

advancing front (paving and plastering) is that relaxing the boundary constraint by delaying

boundary meshing leads to overall improved results [34].

Meshing by sequencing through boundaries of increasing dimension is particularly popular

for tetrahedral meshing of the multimaterial domains we consider. The representation of

complex non-manifold boundaries is the major challenge, so it is popular to tackle it first

(e.g. in both Delaunay and variational methods, or combinations of them [5,7,9,28,35]).

However, as dimension increases, the fixed collection of lower dimensional elements

impose an increasingly complex set of constraints for the next stage of meshing. In terms of

Delaunay refinement, this typically means that the placement of locations for new vertices

becomes limited. The insertion of points to improve elements may be blocked since they

would otherwise disturb boundary features [5,9,10]. In terms of variational approaches, this

means that the next stage of optimization becomes a more expensive constrained energy

minimization [1,7]. Alternatively, one can allow the boundary to be disturbed, but then

iterate in attempt to reconform to the boundary [35]. Nevertheless, the Delaunay-based

techniques often offer provable guarantees on the ability to conform to piecewise linear [31],

smooth [4,11], and piecewise-smooth [5,9] boundaries.

By comparison, approaches that start with a background lattice are presented with the

opposite challenge. In the absence of a boundary constraint, it may be possible to mesh

volumetrically while satisfying a broad range of constraints. However, proving one can still

capture the boundary becomes more complex. Typically, these approaches use a highly

structured lattice to rapidly construct meshes with are self-similar, such as an octree [30,38].

While what has been proved about lattice-based algorithms is limited, there is a growing

body of work. For 2D domains, it was shown that a quadtree can be provably adapted to lead

to a capturing a polyhedral domain [3]. More recent approaches apply the BCC lattice,

which is not only a naturally good domain for approximating trivariate functions [21], but

also a Delaunay triangulation with good dihedral angles everywhere. Labelle and Shewchuk

were the first to use BCC lattices as background meshes to build tetrahedral meshes that

conform to a smooth boundary while maintaining dihedral angle bounds [22]. Doran et al.

experiment with using acute lattices instead of BCC [15]. Algorithms such as those of Zhang

et al. [39], Chernikov and Chrisochoides [13], and Liu et al. [24] extend some of these ideas

to the case of multimaterial medical domains with significant experimental results. Most

recently, Liang and Zhang prove bounds on constructing adaptive meshes which conform to

smooth surfaces [23]. Bronson et al. [8] generalize the results of Labelle and Shewchuk with

their lattice cleaving approach, and were also able to generalize a proof that in the case of

multimaterial boundaries, a bound for the dihedral angles of the resulting elements exists. In

this work, we generalize the lattice cleaving technique to arbitrary background grids with a

broader range of input characteristics.

2. Methodology

The strategy we propose is to separate the creation and adaptivity of quality volume

elements from surface conforming constraints. This separation can be achieved through a

Bronson et al. Page 3

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

volumetric meshing pipeline (Fig. 1). First, the desired and necessary element characteristics

throughout the volume must be determined. These constraints are then used as input to a

meshing algorithm to generate an ambient background mesh. This mesh will know nothing

of material interfaces, but will have appropriately sized elements thanks to the sizing field

driving it. Finally, this background mesh will be fed to the cleaving algorithm, where

elements near material interfaces will be cleaved to conform to these surfaces. We provide

algorithms which are separately capable of handling the specific pieces of this pipeline.

2.1. Local Feature Size and Sizing Fields

Mesh elements must be adaptively sized for the purpose of geometric fidelity and PDE

solution accuracy while simultaneously reducing the number of elements needed for an

accurate numerical simulation. A sizing field is a scalar field that at every point dictates the

ideal size of an element centered around that point. We suggest that a suitable sizing field

should posses the following properties: a) it should be small near thin features and high-

curvature regions; b) it should progressively increase for larger features and lower-curvature

regions; c) it should be sufficiently large at points that are far from material interfaces; and

d) it should satisfy Lipschitz continuity conditions. Abrupt changes in the sizing field is

undesirable because the quality of the resulting elements is likely to be poor.

In surface mesh generation algorithms, the concept of feature size has been widely used to

accurately capture the topology of the object that is being meshed. It is defined only on the

surface of the object, and it is defined as the distance from the medial surface of the object.

The medial surface is a surface formed by those points that have more than one closest

points on the object boundary. It is also referred to as the “skeletonization” an object. Thin

features have a small feature size, and large features have a large feature size.

The feature size defined on the surface of an object can be extended over the whole domain

to dictate the size of elements in every region of the domain. Persson [29] describes an

algorithm that uses a variant of distance transform computed from the surface of the object

using the feature size as the initial set of values for the distance transform. The distance

transform is a scalar field that specifies the distance to the closest point, curve, or surface. It

can be visualized as a series of wave fronts emanating from the given set of points, curves,

or surfaces. Figure 3 provides an illustration of the distance transform of a C-shaped object

and its medial surface (medial axis, in 2D). Notice that the discontinuity in the gradient of

the distance transform indicates the medial surface.

Our algorithm to compute a sizing field is based on the work of [6] and [29], and it is

performed on a voxel domain with subvoxel accuracy. A pipeline describing our algorithm

is shown in Fig. 2. The technique relies on solving for three distance transforms over this

domain. First, the distance transform is computed starting from the material boundary

surfaces. Because the distance transform is nonsmooth only where the wave fronts collide

and is linear otherwise, we can use the Hessian to compute the set of points on the medial

surface. The Hessian vanishes at all locations except at the medial surface. The voxels where

the Hessian does not vanish define the medial surface. Next, the distance transform is

computed again from the medial surface. The values of the distance transform at the

boundary locations thus define the feature size at those points. Finally, the distance

Bronson et al. Page 4

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

transform is computed again from the boundary. This time, the initial value at the boundary

is set as the feature size computed in the previous step and the gradient of the distance

transform is limited as a user parameter. This gives us the sizing field over the whole

domain.

To initialize the starting value for the first distance transform, we have to find the

approximate locations of material interfaces on the edges of the voxel grid. Our distance

transform solver uses the fast marching method (FMM) [26] that is second-order accurate is

used with a heap-based priority queue. Note that a 3 × 3 × 3 stencil is required to compute

the Hessian. Thus, the resolution of the grid should be appropriately chosen to capture the

topology and features of the required size. As we shall describe later, we construct both

structured and unstructured meshes using the sizing field. We guarantee that the topology is

correctly captured only for the structured mesh. Since the unstructured meshes is constructed

using a heuristic algorithm, the topology may not be correctly captured by the mesh.

2.2. Electrostatic Particle Distributions

Particle systems are often used in mesh generation algorithms in order to obtain a

distribution of points satisfying certain constraints. For instance, the idea of centroidal

Voronoi diagrams has been used in several mesh generation algorithms (eg. [16]) for

isotropic point distribution requirements. The concept has been extended for anisotropic

metrics [18] as well. Other notable examples of the use of particle system in mesh

generation include Hart's et al.'s surface sampling technique [20], Yamakawa and Shimada's

ellipsoidal bubble packing algorithm[37] and Meyer et al.'s particle sampling technique for

multimaterial meshing [28].

In each of these techniques, a stable point distribution is achieved by iteratively minimizing

an energy function that matches the meshing requirements. These approaches typically

distribute particles on material interfaces first, using these surfaces as a constraint for a

volumetric meshing algorithm. In contrast, our new approach to adaptive mesh generation

distributes particles directly over the whole of the domain, without any regard for material

interfaces. These points are provided to a delaunay tetrahedralization algorithm to build a

background mesh suitable for the next stage of our new meshing pipeline.

We propose a new electrostatic particle simulation technique to distribute particles over the

whole input domain. A pipeline describing our algorithm for generating an unstructured

background mesh is shown in Fig. 4. Unlike typical electrostatic particle systems, in which

particles tend to gather at protrusions and sharp feature, this new approach produces particle

distributions that accurately match the input sizing field specification. Particles are given an

electrostatic charge as usual (see [28] and [37]), but the domain itself is also given an

opposite charge.

This background charge interacts with particles in such a way that a net-zero charge can

only be produced when the set of particles precisely matches the desired input sizing field.

Our particle distribution technique is designed such that the regions of the domain with a

small feature size will have a large charge density, while regions with larger feature size will

have a smaller charge density. This ensures that greater number of particles congregate in

Bronson et al. Page 5

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the region where they are desired. Figure 5 provides a pictorial illustration of a particle

system where more particles are needed in the three circular regions.

The force on a particle in the domain is a sum of both the background charge density, as

well as the other particles in the domain. The force due the background charge density is

determined by computing the gradient of the electrostatic potential due to the charge density,

and the force due other particles is computed by summing up the forces from all other

particles in the domain. The particles are moved based on the particle-field and particle-

particle interactions. When the system converges to a stable equilibrium, the distribution

will respect the provided sizing field.

2.2.1. Charge Density Computation—In order to compute the charge density

corresponding to an input sizing field, we exploit the relationship between a sizing field and

optimal sphere packing density. The optimal sphere packing density (fraction of volume

filled by spheres) for a hexagonal close packing is . Let the volume of the domain be

V, and assume a uniform sizing field, l, in the domain. The number of spheres, n, of the

radius l/2 in the volume is given by

(1)

We set the number of particles to be the nearest integer to the total background charge in the

domain (computed by integrating the charge density). In this way, we realize a stable

equilibrium where negatively-charged particles neutralize the positively-charged

background. Therefore, we want n = ρV, where ρ is the charge density. Solving for ρ, we

obtain . Thus, the charge density is set to be inversely proportional to the cube of

the sizing field. Note that any monotonically decreasing charge density with respect to the

sizing field is likely to yield some results that respect the adaptivity requirements, but its

feasibility depends upon the application. The charge density ρ is usually not a constant over

the whole domain. Therefore, we generalize the number of particles over the whole domain

to be , where Ω is the domain.

2.2.2. Potential and its Gradient Computation—The electrostatic potential due to the

background charge density is computed by solving the Poisson equation,∇2u(x) = f (x),

where u is the electrostatic potential and f is the charge density. The Poisson equations are

solved using the finite difference scheme on a structured grid with Dirichlet boundary

conditions computed by summing up the potential due to the charge density at every point in

the boundary. This process is accelerated using an octree-based technique. We use the linear

conjugate gradient solver to determine the solution of the linear system resulting from the

finite-difference approximation of the equation and boundary conditions.

In order to compute the local charge density and its gradient at any point in the domain, we

utilize a cubic convolution-based interpolation technique over the structured grid. Its main

advantage over a trilinear interpolation approach is the continuity of the gradient of the

interpolated function over the whole domain, which helps the system avoid local minima.

Bronson et al. Page 6

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Additionally, the analytical gradient of the interpolant can be accurately computed. When

trilinear interpolation is used instead, the particles get “trapped” in the faces, edges, and

corners of the cubic elements of the grid. This naturally results in a suboptimal point

distribution.

2.2.3. Electrostatic Simulation—For the electrostatic simulation, the number of

particles are seeded in the various part of the domain is proportional to the local charge

density. This ensures a quick convergence of the particle system since the movement of

particles is locally restricted. Each individual particle is separately moved by a distance

proportional to the force on the particle and the step size for that iteration. We adaptively

vary the step size in each iteration. The process is accelerated using the octree-based Barnes-

Hut simulation technique [2].

Each octant of the octree stores the location of the center of the charge distribution within

the cell, as well as the total contained charge. The force on a particle charge at any location

is computed by traversing down the octree. If the ratio of the length of the smallest side of

an octant vs the distance between the particle charge and the center of the charge distribution

is lower than a threshold θ, the force due to all the charges in the octant on the particle

charge is approximated by a single point. This significantly reduces the number of floating

operations required to compute the force on the particle charge. The particles are iteratively

moved to optimal locations based on the forces acting upon them. Once a static equilibrium

is reached, the particles are tetrahedralized using Tetgen [33].

2.3. Unstructured Cleaving

In order to produce a surface conforming mesh from an unstructured background mesh, we

turn to a technique which, up until now, has been demonstrated to work only on regular

lattices. Lattice Cleaving, like Isosurface Stuffing, is a stencil-based technique for producing

conforming tetrahedral meshes with elements of bounded quality.

In one sense, these algorithms can be considered mesh processing algorithms. They take as

input a mesh, a regular lattice of high quality tetrahedra (the Body-Centered Cubic (BCC)

Lattice), and through a series of vertex warps and stencil operations transform the mesh

elements to conform to material boundaries (Fig 6). We use this paradigm to extend the

technique to arbitrary unstructured and irregular background input meshes. We do this in the

context of multimaterial volumes. This section details the technical considerations that need

to be accounted for to achieve this generalization.

The basis of the lattice cleaving algorithm remains unchanged. The input elements are still

tetrahedra, the violation snapping and warping rules carry over, and the same output stencil

set is used. However, there are two fundamental challenges when moving to an unstructured

mesh: resolving stencil consistency across the shared face of neighboring background

tetrahedra, and alpha parameter selection.

2.3.1. Stencil Consistency and Generalization—Some output topologies have

multiple permissible tessellations. Without consideration for consistency, two neighboring

tetrahedra may stencil their shared face differently, leading to a topological hole in the mesh.

Bronson et al. Page 7

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

This problem can be avoided by carefully orienting each background element before

applying output stencils. Isosurface stuffing does this using a simple parity rule that exploits

the regular structure of the lattice. As we're interested in unstructured meshes, we cannot

rely on any predetermined structure of an input mesh. Instead, we take inspiration from the

approach used in the lattice cleaving algorithm.

Rather than rely on the background lattice structure, the lattice cleaving algorithm resolves

stencil consistency by taking advantage of the fact that all output stencils can be generated

through a series of material collapses of the most complex 4-material stencil. This mapping

is called a generalization. In this model, a set of stencil outputs is consistent if there exists a

set of virtual interfaces that when snapped and warped, would have led to that stencil set.

The lattice cleaving algorithm for placing these virtual interfaces and their snap destinations

is specific to the BCC lattice and so we develop a more versatile algorithm.

We observe that if you take a three-material face, the only way a set of cuts cannot be

snapped to collapse into a simpler stencil form is when their movement forms a cycle (Fig.

7). We further observe that for any set of valid face generalizations on a tetrahedron, there is

always a way to move a virtual quadruple point to obtain a valid stencil.

One way to guarantee a set of virtual cuts never move in a cycle is to enforce an ordering. If

each vertex is given an integer id, then enforcing the rule that a virtual cut always moves to

the higher (or lower) vertex, is sufficient. Most mesh implementations store an ordered list

of vertices anyway, so creating this order is trivial. The remaining work is determining the

destination of virtual triple points and virtual quadruple points. Since the triple point of a

face is shared, any valid destination will by definition be consistent across the face, and

since quadruple points exist on the interior of tetrahedron, any valid destination will suffice.

There are two principles to selecting valid virtual interface locations: Virtual interfaces

always snap to the next smallest simplex with the most colocated virtual interfaces; and ties

are always settled in favor of real interfaces over virtual interfaces. Figure 8 illustrates the

two ways this manifests on a background lattice face. If one virtual cut exists, the virtual

triple snaps to the real cut on the edge incident to the snapped virtual cut. This collapses the

missing third material region onto the edge. If two virtual cuts exist, the virtual triple snaps

to the colocation of the two virtual cuts (i.e., the vertex with the smallest id). Similarly, the

missing materials collapse onto an edge and onto a vertex.

2.3.2. Alpha Selection—In the lattice cleaving and isosurface stuffing algorithms, the

alpha parameter controls the trade off between stenciling and warping. It does this by

defining the regions in which an interface is considered to be violating, and will need to be

snapped. Labelle and Shewchuk utilized an automated computational proof to determine

optimal alpha parameters for the long and short edges of the BCC lattice in isosurface

stuffing. For the multimaterial case, the state space for this proof becomes computational

infeasible, and so the authors provide a theoretical proof of bounds, and utilize conservative

version of the parameters from the two material case.

Bronson et al. Page 8

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

As we move to an unstructured mesh, the challenge of finding optimal alpha parameters

becomes even more difficult. While the BCC lattice has two edge lengths and symmetric

elements, any given unstructured mesh may have no two neighbors with identical edge

lengths or element shapes. So rather than having to choose two alpha values, short and long,

the user must pick at least as many alpha values as there are edges. The set of optimal alpha

values is therefore unique for every input mesh, and must be computed at run-time.

We present an algorithm for computing conservative alpha violation parameters that allow

the quality proof of lattice cleaving to still hold. This algorithm has the benefit of

parameterizing the alpha values of each edge by a single global alpha value.

First, we observe that in the limit, as α approaches zero, the background mesh stops all

warps and stencil elements can become arbitrarily bad. As α increases, the snapping and

warping procedure becomes increasingly aggressive, ultimately to the point where it is

unsafe and may result in degenerate elements.

If we permit the four vertices of a tetrahedron to move in any direction, the shortest distance

they can travel before the element becomes degenerate (coplanar) is along the shortest

vertex altitude. If we show no preference to any particular vertex, they meet in the plane that

is halfway along the altitude, or from each vertex, where h is the height of the altitude.

Figure 9 illustrates this in 2D. This observation provides an upper limit for how aggressive

our α selection can be for any particular vertex with respect to a tetrahedron to which it

belongs. We can then parameterize over this space as for and provide ξ

as a user parameter to optimize.

The algorithm for computing a set of α parameters is thus as follows: Begin with current

best guess for ξ. For each vertex vi, iterate over all incident tetrahedra and set

.

In this formulation, the α parameters around a vertex are all the same and are stored on the

vertex, rather than on the edge. This algorithm can be used in conjunction with the proof of

bounds from the Lattice Cleaving algorithm [8] to prove that it also places bounds on the

quality of output elements. We replace Lemma 3 of the proof with the following alternate

lemma.

Lemma 3: For every tetrahedron with ε-good dihedral angles, there exists a space of

permissible violation parameters such that the tetrahedron will retain ε-good angles after

warping.

Proof: Let t be a background tetrahedron with ε-good angles. Whether measured by aspect

ratio or dihedral angle, the tetrahedron decreases in quality towards degeneracy as the

vertices approach becoming coplanar. The shortest path vertices can move during a warp to

create such a coplanarity is along the shortest altitude. Therefore, any safe set of α values

must follow the inequality

(2)

Bronson et al. Page 9

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where αi is an α-ball around vertex vi and v1 is the vertex with the smallest altitude. This

inequality is easy to satisfy and can be parameterized as

(3)

As ξ approaches the maximum safe α values are reached. As ξ approaches 0 warping

becomes increasingly restricted.

3. Results and Discussion

Together, the contributions of this paper offer a full multimaterial volumetric meshing

pipeline. In this section, we illustrate what such a system is capable of through the use of

both synthetic and real-world data. As discussed in Section 2.2, our electrostatic particle

formulation, while extendable to further optimization, currently only optimizes vertex

positions and may produce low volume elements. For comparison, for each example dataset,

we generate results using both the electrostatic background mesh, as well as a structured,

adaptive octree mesh. In this way, the cleaving of these meshes may more easily be seen as a

mesh processing procedure, with results for both input meshes compared side by side.

Our implementation for creating the adaptive octree background meshes is straight forward.

The octree begins with a single cell that encloses the whole domain. The algorithm queries a

sizing field oracle that returns the minimum sizing field within the cell. If this size is smaller

than the width of the cell, the tree subdivides. This routine is ran recursively until the

smallest local feature size is no smaller than half a cell. Then, the graded stencil set from [8]

and [22] is used to fill in the tree and output the background mesh.

We ran our experiments on a single core of the 16-core AMD Opteron 8360 SE 2.5GHz

processor with 96GB of RAM running the openSUSE 11.3 (×86_64) operating system with

gcc (SUSE Linux) 4.5.0 20100604 compiler. The size of the mesh background and the

output generated by our implementation is reported in Table 1. Table 2 reports the Hausdorff

distance between the surfaces meshes when structured and unstructured meshes are

generated using the respective algorithms. They were computed in Meshlab [14] by

sampling points on one of the surface meshes and computing the distance to the

corresponding point on the other surface mesh. The timing for each stage of the pipeline for

structured and unstructured meshes are reported in Table 3 and 4, respectively. In our

particle simulation, the threshold θ (see Section 2.2) was reduced from 1 to 0.25 in 200

iterations and held at 0.25 for the next 100 iterations. The time taken for the first 200

iteration is roughly one-third the time reported in Table 4.

Figure 10 contains a synthetic dataset of various spheres. These spheres can each be

independently meshed with a fewer number of tetrahedra, but together produce small

cavities that drive the sizing field down. The surfaces and background meshes adapt to this

sizing field as necessary. The left result is generated from a graded octree background mesh,

and the right result is generated from a graded electrostatic mesh.

Bronson et al. Page 10

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 11 contains two meshes generated from synthetic dataset of a torus and a sphere in

close proximity. Grading along the surfaces as well as the background mesh can be seen in

both the structured and unstructured meshes. Figure 12 contains two meshes generated from

an MRI of a human torso. The clear cut of the boundary of the domain can be seen on both

the octree and electrostatic background meshes. Because the sizing field goes to zero at

three-material junctions, user settings limit the sizing field in these regions. The time taken

for each stage of pipeline is reasonable for the size of the domain and the size of the mesh

needed to capture all the features in the domain.

Figure 13 contains two meshes generated from an MRI scan of a frog. The structured

version of this mesh ends up being much larger due to the octree dimensions enforcing

power-of-two dimensions. The unstructured background mesh has no such requirements. At

the same time, the user chosen scaling factor is so large that some fine features near the

mouth have been missed in the unstructured mesh. A less aggressive scaling would not

cause this kind of loss. Also note that the time taken to compute the sizing field is much

larger for this domain than for other domains. This is because the size of the domain and the

corresponding large grid on which the distance transforms are computed. The time taken to

solve the Poisson equation is also large for the same reason. This can be accelerated using a

suitable preconditioner such as the algebraic multigrid preconditioner. Although this domain

needs more vertices to capture all the features present in the data than the torso dataset, the

time taken to execute the accelerated particle system is much lower. This is due to the large

size of the domain. As the particles are distributed further away from each other, the Barnes-

Hut algorithm is able to approximate the forces from groups of particles that are at large

distances from a particle in consideration.

Since our particle distribution technique is a global technique, i.e., the position of a particle

depends on the position of all other particles (not just its neighbors), it is less likely to get

stuck in a local optima. In each of our test cases, we were able to control of the number of

vertices in a given region of a domain is a precise manner. While other refinement or

variational techniques incrementally add vertices, this technique can determine the number

of particles a priori. As it is slow, in real applications, we recommend running only a few

iterations of the particle distribution scheme and using local techniques to optimize the

positions of the particle or to improve the quality of the resulting background mesh.

Examining the angle distributions across each example dataset, we see that the cleaving

operation largely preserves the angle profile of each input, with the distributions spreading

outward and toward the tail ends. The structured meshes begin with much higher quality

elements and are therefore more resilient to the effects of cleaving. For this reason, it's

especially important to create high quality background meshes. Improved alpha value

selection would also help to mitigate the effects of cleaving.

In this work, we have illustrated the potential power of decoupling the problems of mesh

element and boundary constraints. The particle system presented achieves its goals with

simplicity due to the lack of interface surfaces, and is simply one method for generating

unstructured background meshes. One possible alternative algorithm to use for the

background mesh generation of the pipeline is centroidal Voronoi tessellation (CVT). This

Bronson et al. Page 11

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

technique is interesting because with variable metrics (as presented in [16]) it has the ability

to push low volume elements to the boundary of the domain. This is ideal for the cleaving

algorithm, since these external elements will ultimately be discarded.

We have also demonstrated that the lattice cleaving algorithm is extendable to unstructured

meshes in a straightforward manner. The method we chose for producing safe α parameters,

though conservative, provides a starting point for more sophisticated methods. Its major

drawback is being symmetric around a vertex. This means that as the difference in relative

size of neighbor tetrahedra increases, the parameters will be increasingly more conservative.

Detaching this symmetry constraint would be a significant step towards solving for truly

optimal α parameters. As a whole, this work suggests that the union of traditional and

combinatoric meshing techniques promises to provide a fertile ground for new developments

in high quality conforming mesh generation for unstructured meshes.

Acknowledgments

We would like to thank the US National Science Foundation for its support under award IIS-1314757, the National
Institute of General Medical Sciences of the National Institutes of Health (NIH/NIGMS) for its support under grant
number P41GM103545, the NIH/NIGMS Center for Integrative Biomedical Computing for its support under grant
number 2P41 RR0112553-12, and the Department of Energy for its support under grant number NET DE-
EE0004449. We would also like to thank Mark Kim for providing us with a base for the Barnes-Hut acceleration
structure.

References

1. Alliez P, Cohen-Steiner D, Yvinec M, Desbrun M. Variational tetrahedral meshing. ACM Trans.
Graph. 2005; 24(3):617–625.

2. Barnes J, Hut P. A hierarchical O(N log N) force-calculation algorithm. Nature. 1986; 324:446–449.

3. Bern, M.; Eppstein, D.; Gilbert, J. Provably good mesh generation. Proceedings of Foundations of
Computer Science. IEEE; 1990. p. 231-241.

4. Boissonnat J-D, Oudot S. Provably good sampling and meshing of surfaces. Graph. Models. 2005;
67(5):405–451.

5. Boltcheva D, Yvinec M, Boissonnat J-D. Feature preserving Delaunay mesh generation from 3D
multi-material images. Comput. Graph. Forum. 2009; 28(5):1455–1464.

6. Bouix S, Siddiqi K. Divergence-based medial surfaces. In Sixth European Conference on Computer
Vision. 2000:603–618.

7. Bronson JR, Levine JA, Whitaker RT. Particle systems for adaptive, isotropic meshing of CAD
models. 19th IMR. Oct.2010 :279–296.

8. Bronson JR, Levine JA, Whitaker RT. Lattice cleaving: Conforming tetrahedral meshes of
multimaterial domains with bounded quality. 21st IMR. Oct.2012 :191–210.

9. Cheng S-W, Dey TK, Levine JA. A practical Delaunay meshing algorithm for a large class of
domains. 16th IMR. 2007:477–494.

10. Cheng S-W, Dey TK, Ramos EA. Delaunay refinement for piecewise smooth complexes. Discrete
Comput. Geom. 2010; 43(1):121–166.

11. Cheng S-W, Dey TK, Ramos EA, Ray T. Sampling and meshing a surface with guaranteed
topology and geometry. SIAM J. Comput. 2007; 37(4):1199–1227.

12. Cheng, S-W.; Dey, TK.; Shewchuk, JR. Delaunay Mesh Generation. Chapman and Hall / CRC
computer and information science series. CRC Press; 2013.

13. Chernikov AN, Chrisochoides N. Multitissue tetrahedral image-to-mesh conversion with
guaranteed quality and fidelity. SIAM J. Sci. Comput. 2011; 33(6):3491–3508.

14. Cignoni P, Corsini M, Ranzuglia G. Meshlab: an open-source 3D mesh processing system. ERCIM
News. 2008; (73):45–46.

Bronson et al. Page 12

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

15. Doran C, Chang A, Bridson R. Isosurface stuffing improved: acute lattices and feature matching.
SIGGRAPH Talks. 2013:38.

16. Du Q, Wang D. Tetrahedral mesh generation and optimization based on centroidal Voronoi
tessellations. Int. J. Num. Meth. Eng. 2003; 56(9):1355–1373.

17. Du Q, Wang D. Boundary recovery for three dimensional conforming delaunay triangulation.
Comput. Meth. Appl. Mech. Eng. 2004; 193(2326):2547–2563.

18. Du Q, Wang D. Anisotropic centroidal Voronoi tessellations and their applications. SIAM J. Sci.
Comput. 2005; 26(3):737–761.

19. George PL, Borouchaki H, Saltel E. ultimate robustness in meshing an arbitrary polyhedron. Int. J.
Num. Meth. Eng. 2003; 58(7):1061–1089.

20. Hart, JC.; Bachta, E.; Jarosz, W.; Fleury, T. ACM SIGGRAPH 2005 Courses, SIGGRAPH '05.
ACM; New York, NY, USA: 2005. Using particles to sample and control more complex implicit
surfaces..

21. Hossain Z, Alim UR, Möller T. Toward high-quality gradient estimation on regular lattices. IEEE
Trans. Vis. Comput. Graph. 2011; 17(4):426–439. [PubMed: 21311091]

22. Labelle F, Shewchuk JR. Isosurface stuffing: fast tetrahedral meshes with good dihedral angles.
ACM Trans. Graph. 2007; 26(3):57.

23. Liang X, Zhang Y. An octree-based dual contouring method for triangular and tetrahedral mesh
generation with guaranteed angle range. Eng. Comput. 2013 Accepted.

24. Liu Y, Foteinos P, Chernikov A, Chrisochoides N. Mesh deformation-based multi-tissue mesh
generation for brain images. Eng. Comput. 2012; 28(4):305–318.

25. Löhner R, Parikh P. Generation of three-dimensional unstructured grids by the advancing-front
method. Int. J. Num. Meth. Fluid. 8(10):1988.

26. Malladi R, Sethian JA. Level set and fast marching methods in image processing and computer
vision. ICIP. 1996; 1:489–492.

27. Marcum, D. Unstructured Grid Generation Using Automatic Point Insertion and Local
Reconnection. CRC Press; Dec. 1998

28. Meyer MD, Whitaker RT, Kirby RM, Ledergerber C, Pfister H. Particle-based sampling and
meshing of surfaces in multimaterial volumes. IEEE Trans. Vis. Comput. Graph. 2008; 14(6):
1539–1546. [PubMed: 18989007]

29. Persson P-O. Mesh size functions for implicit geometries and PDE-based gradient limiting. Eng.
Comput. 2006; 22(2):95–109.

30. Shephard MS, Georges MK. Automatic three-dimensional mesh generation by the finite octree
technique. Int. J. Num. Meth. Eng. 1991; 32(4):709–749.

31. Shewchuk JR. Tetrahedral mesh generation by Delaunay refinement. Symp. on Comp. Geom.
1998:86–95.

32. Shewchuk, JR. Unstructured mesh generation.. In: Naumann, U.; Schenk, O., editors.
Combinatorial Scientific Computing. CRC Press; Jan. 2012 p. 257-297.chapter 10

33. Si, H. TetGen: A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay
Triangulator. http://tetgen.berlios.de/

34. Staten ML, Kerr R, Owen SJ, Blacker TD. Unconstrained paving and plastering: Progress update.
15th IMR. 2006:469–486.

35. Tournois J, Wormser C, Alliez P, Desbrun M. Interleaving Delaunay refinement and optimization
for practical isotropic tetrahedron mesh generation. ACM Trans. Graph. 28(3):2009.

36. Weatherill NP, Hassan O. Efficient three-dimensional delaunay triangulation with automatic point
creation and imposed boundary constraints. Int. J. Num. Meth. Eng. 1994; 37(12):2005–2039.

37. Yamakawa S, Shimada K. Anisotropic tetrahedral meshing via bubble packing and advancing
front. Int. J. Num. Meth. Eng. 2003; 57(13):1923–1942.

38. Yerry MA, Shephard MS. Automatic three-dimensional mesh generation by the modified-octree
technique. Int. J. Num. Meth. Eng. 1984; 20:1965–1990.

39. Zhang Y, Hughes T, Bajaj CL. Automatic 3D mesh generation for a domain with multiple
materials. 16th IMR. 2007:367–386.

Bronson et al. Page 13

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://tetgen.berlios.de/

Fig. 1.
Proposed meshing pipeline for conforming volumetric meshing.

Bronson et al. Page 14

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Proposed pipeline for sizing field computation.

Bronson et al. Page 15

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Left: The medial surface (axis) of a C-shaped object. Right: The distance transform level

sets. Note, the distance transform and the medial axis are also computed outside the object.

Bronson et al. Page 16

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
Proposed pipeline for generating an adaptive, unstructured background mesh.

Bronson et al. Page 17

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
An illustration of a particle distribution over a domain.

Bronson et al. Page 18

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Illustration of lattice cleaving in 2D, Left: background mesh with material interfaces

overlaid, Right: cleaved output

Bronson et al. Page 19

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
Left: Cyclic virtual cuts lead to an unsatisfiable generalization. Right: Any ordered priority

can lead to safe generalization.

Bronson et al. Page 20

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
This figure illustrates the generalization of one and two material face stencils. (left) A two

material stencil is generalized. The virtual cut on the edge connecting vertex 0 and vertex 1

moves to vertex 0. The virtual triple follows the cut onto the edge connecting vertex 0 and

vertex 2. (right) A one material stencil is generalized. All virtual cuts move to the adjacent

vertices with the lowest index. The virtual triple follows the virtual cuts that end up on the

same vertex.

Bronson et al. Page 21

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9.
Illustration of how the maximum safe distance that a vertex may move is bounded by the

height of the corresponding altitude.

Bronson et al. Page 22

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 10.
A set of four sphere materials embedded in a green background material. (left) structured

background mesh (right) unstructured background mesh

Bronson et al. Page 23

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 11.
A torus with a sphere inside it, embedded in a blue background material. (left) structured

background mesh (right) unstructured background mesh

Bronson et al. Page 24

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 12.
Section of human torso MRI, embedded in a green background material, with (left)

structured and (right) unstructured backgrounds meshes.

Bronson et al. Page 25

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 13.
An MRI of a frog with (left) structured and (right) unstructured background meshes.

Bronson et al. Page 26

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bronson et al. Page 27

Table 1

The size of the domain and the sizes of the background and output meshes. S denotes structured meshes, and

U denotes unstructured meshes.

Domain Size Mesh Type
Background Mesh Output Mesh

#Vertices # Elements #Vertices # Elements

Spheres [64, 64, 64] S
U

26,219
11,856

129,804
71,160

26,921
12,500

133,858
74,050

Torus [64, 64, 64] S
U

35,082
13,556

175,456
82,298

35,951
14,259

180,238
85,626

Torso [64, 64, 64] S
U

145,240
60,867

721,678
360,182

149,818
64,826

746,955
378,361

Frog [260, 245, 150] S
U

1,057,586
70,415

5,347,544
428,173

1,087,272
74,489

5,515,823
447,741

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bronson et al. Page 28

Table 2

The Hausdorff distance between the structured and unstructured meshes for each of the data set. They have

been computed by sampling points on one of the surface meshes and finding the distance to the corresponding

point on the other surface mesh in Meshlab [14].

Domain # Sampling Points
Hausdorff Distance

min. mean r.m.s. max.

Spheres 75,977 0.0 0.051 0.101 1.927

Torus 56,052 0.0 0.076 0.144 1.063

Torso 312,812 0.0 0.056 0.111 2.589

Frog 2,886,382 0.0 0.214 0.451 9.650

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bronson et al. Page 29

Table 3

The time taken for each stage of the pipeline to generate the structured meshes.

Domain
Time (in seconds)

Sizing Field Background Mesh Creation Cleaving

Spheres 2.39 7 10

Torus 2.15 6 15

Torso 4.50 43 97

Frog 288.9 520 202

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bronson et al. Page 30

Table 4

The time taken for each stage of the pipeline to generate the unstructured meshes. Note the time taken to

generate the sizing field is not included in the table because it has already been included in Table 2 for

structured meshes.

Domain
Time (in seconds)

Poisson Solver Particle System Tetgen Cleaving

Spheres 21 2,103 1.30 5

Torus 22 2,466 1.40 5

Torso 22 17,727 2.24 45

Frog 1,742 9,474 2.75 50

Procedia Eng. Author manuscript; available in PMC 2015 June 29.

