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Abstract
Meta-analytic structural equation modeling (MASEM) is a statistical technique to pool correlation matrices and test
structural equation models on the pooled correlation matrix. In Stage 1 of MASEM, correlation matrices from independent
studies are combined to obtain a pooled correlation matrix, using fixed- or random-effects analysis. In Stage 2, a structural
model is fitted to the pooled correlation matrix. Researchers applying MASEM may have hypotheses about how certain
model parameters will differ across subgroups of studies. These moderator hypotheses are often addressed using suboptimal
methods. The aim of the current article is to provide guidance and examples on how to test hypotheses about group
differences in specific model parameters in MASEM. We illustrate the procedure using both fixed- and random-effects
subgroup analysis with two real datasets. In addition, we present a small simulation study to evaluate the effect of the number
of studies per subgroup on convergence problems. All data and the R-scripts for the examples are provided online.

Keywords Meta-analytic structural equation modeling · Two-stage structural equation modeling · Meta-analysis ·
Random-effects model · Subgroup analysis

The combination of meta-analysis and structural equation
modeling (SEM) for the purpose of testing hypothesized
models is called meta-analytic structural equation modeling
(MASEM). Using MASEM, correlation matrices from
independent studies can be used to test a hypothesized
model that explains the relationships between a set of
variables or to compare several alternative models that may
be supported by different studies or theories (Viswesvaran
& Ones, 1995). The state-of-the-art approach to conducting
MASEM is the two-stage SEM (TSSEM) approach
(Cheung, 2014; Cheung & Chan, 2005b). In the first stage
of the analysis, correlation matrices are combined to form
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a pooled correlation matrix with a random- or fixed-effects
model. In the second stage of the analysis, a structural
equation model is fitted to this pooled correlation matrix.
Several alternative models may be tested and compared in
this stage. If all variables were measured on a common
scale across studies, analysis of covariance matrices would
also be possible (Cheung & Chan, 2009). This would allow
researchers to study measurement invariance across studies.
In this paper we focus on correlation matrices although
the techniques that are discussed are directly applicable to
covariance matrices.

Researchers often have hypotheses about how certain
parameters might differ across subgroups of studies (e.g.,
Rosenbusch, Rauch, and Bausch (2013)). However, there
are currently no straightforward procedures to test these
hypotheses in MASEM. The aims of the current article are
therefore: 1) to provide guidance and examples on how to
test hypotheses about group differences in specific model
parameters in MASEM; 2) to discuss issues with regard
to testing differences between subgroups based on pooled
correlation matrices; and 3) to show how the subgroup
models with equality constraints on some parameters can
be fitted using the metaSEM (Cheung, 2015b) and OpenMx
packages (Boker et al., 2014) in R (R Core Team, 2017).
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Specifically, we propose a follow-up analysis in which
the equality of structural parameters across studies can be
tested. Assuming that there are hypotheses on categorical
study-level variables, the equality of specific parameters
can be tested across subgroups of studies. In this way,
it is possible to find a model in which some parameters
are equal across subgroups of studies and others are not.
More importantly, it helps researchers to identify how study-
level characteristics can be used to explain differences in
parameter estimates.

Methods tomodel heterogeneity
in meta-analysis

With regard to how to handle heterogeneity in a meta-
analysis, two dimensions (or approaches) can be distin-
guished (e.g., Borenstein, Hedges, Higgins, and Rothstein
(2009)). The first dimension concerns whether to apply a
fixed- or a random-effects model, while the second dimen-
sion is about whether or not to include study-level mod-
erators. Two classes of models can be differentiated: the
fixed-effects model and the random-effects model. The
fixed-effects model allows conditional inference, meaning
that the results are only relevant to the studies included
in the meta-analysis. The random-effects model allows for
unconditional inference to studies that could have been
included in the meta-analysis by assuming that the included
studies are samples of a larger population of studies (Hedges
& Vevea, 1998).

The fixed-effects model (without moderators) usually
assumes that all studies share the same population effect
size, while the fixed-effects model with moderators assumes
that the effects are homogeneous after taking into account
the influence of moderators. The random-effects model
assumes that the differences across studies are random. The
random-effects model with moderators, known as a mixed-
effects model, assumes that there will still be random effects
after the moderators are taken into account.

Methods tomodel heterogeneity in MASEM

The above framework from general meta-analysis is also
applicable to MASEM. Table 1 gives an overview of the
suitability, and the advantages and disadvantages of using
different combinations of fixed- versus random-effects
MASEM, with or without subgroups. Case 1 represents
overall analysis with a fixed-effects model. Fixed-effects
models are very restrictive, (i.e. the number of parameters to
be estimated is relatively small), which makes them easy to
apply. However, homogeneity of correlation matrices across
studies may not be realistic, leading to biased significance
tests (Hafdahl, 2008; Zhang, 2011).

One way to account for heterogeneity is by estimat-
ing between-study heterogeneity across all studies in the
random-effects approach (Case 2 in Table 1). By using a
random-effects model, the between-study heterogeneity is
accounted for at Stage 1 of the analysis (pooling correla-
tions), and the Stage 2 model (the actual structural model
of interest) is fitted on the averaged correlation matrix.
Under the random-effects model, study-level variability is
considered a nuisance. An overall random-effects analysis
may be the preferred choice when moderation of the effects
by study-level characteristics is not of substantive interest
(Cheung & Cheung, 2016).

Subgroup analysis is more appropriate than overall
random-effects analysis in cases where it is of interest to
determine how the structural models differ across levels
of a categorical study-level variable, (Cases 3 and 4 in
Table 1). In a subgroup analysis, the structural model is
fitted separately to groups of studies. Within the subgroups,
one may use random- or fixed-effects modeling (Jak, 2015).
Fixed-effects subgroup analysis is suitable if homogeneity
of correlations within the subgroups is realistic. Most often,
however, heterogeneity within subgroups of studies is still
expected, and fixed-effects modeling may be unrealistic.
In such cases, random-effects subgroup analysis may be
the best choice. A possible problem with a random-effects
subgroup analysis is that the number of studies within each
subgroup may become too small for reliable results to be
obtained.

We focus on the situation in which researchers have
an a priori idea of which study-level characteristics may
moderate effects in the Stage 2 model. That is, we do
not consider exploratory approaches, such as using cluster
analysis to find homogeneous subgroups of studies (Cheung
& Chan, 2005a).

Besides the random-effects model and subgroup anal-
ysis, Cheung and Cheung (2016) discuss an alternative
approach to addressing heterogeneity in MASEM, called
“parameter-based MASEM”. Since this approach also has
its limitations, and discussing them is beyond the scope of
the current work, we refer readers to their study for more
details. We focus on TSSEM, in which subgroup analysis is
the only option to evaluate moderator effects.

Currently usedmethods to test hypotheses about
heterogeneity in MASEM

A disadvantage of the way subgroup analysis is commonly
applied, is that all Stage 2 parameters are allowed to be
different across subgroups, regardless of expectations about
differences in specific parameters. That is, differences in
parameter estimates across groups are seldom tested in the
structural model. For example, Rosenbusch et al. (2013)
performed a MASEM analysis on data from 83 studies,
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Table 1 Overview of advantages (+) and disadvantages (–) of subgroup versus overall analysis and fixed-effects versus random-effects models

FEM REM

Case 1 Case 2

Use if: There is no hypothesis about moderation,
and homogeneity is realistic

There is no hypothesis about modera-
tion, and homogeneity is not realistic

Overall + 1) Small number of parameters 1) Accounts for heterogeneity

2) Sometimes the only option (e.g. with a
small number of studies)

2) Allows for unconditional inference

– 1) Only allows for conditional inference 1) Large number of parameters (but
smaller than without subgroups)

2) Biased significance tests if homogeneity
does not hold

2) No information about specific effects of moderators

3) Masks subgroup differences in parameters 3) Masks subgroup differences in parameters

Case 3 Case 4

Use if: There is a specific hypothesis about subgroups,
and homogeneity within subgroups is realistic

There is a specific hypothesis about subgroups,
and homogeneity within subgroups is not realistic

Subgroups + 1) Small number of parameters 1) Accounts for additional heterogeneity within subgroups

2) Sometimes the only option (e.g. with a
small number of studies)

2) Allows for unconditional inference

3) Posibility to test subgroup differ-
ences in parameters

3) Posibility to test subgroup differences in parameters

– 1) Only allows for conditional inference 1) Large number of parameters (larger than without
subgroups)

2) Need to dichotomize continuous moderator 2) Need to dichotomize continuous moderator

2) Biased parameter estimates if
homogeneity does not hold

3) Number of studies per subgroup might get too small

testing a model in which the influence of the external
environment of firms on performance levels is mediated by
the entrepreneurial orientation of the firm. They split the
data into a group of studies based on small sized firms
and medium-to-large sized firms, to investigate whether the
regression parameters in the path model are moderated by
firm size. However, after fitting the path model to the pooled
correlation matrices in the two subgroups, they compared
the results without using any statistical tests.

Gerow et al. (2013) hypothesized that the influence
of intrinsic motivation on individuals’ interaction with
information technology was greater when the technology
was to be used for hedonistic applications than for practical
applications. They fitted the structural model to a subgroup
of studies with hedonistic applications, a subgroup of
studies with practical applications, and a subgroup of
studies with a mix of applications. However, to test for
differences between the subgroups, they performed t-tests

on the four pooled Stage 1 correlation coefficients in
the subgroups, ignoring the estimates in the actual path
models altogether. These approaches are not ideal because
researchers cannot test whether some of the parameters,
those that may be of theoretical interest, are significantly
different across groups.

More often than using subgroup analysis, researchers
address the moderation of effect sizes using standard meta-
analysis techniques on individual effect sizes, before they
conduct the MASEM analysis. They use techniques such
as meta-regression or ANOVA-type analyses (Lipsey &
Wilson, 2001). Independent of the moderation effects,
the MASEM is then performed using the full set of
studies. Examples of this practice can be found in Drees
and Heugens (2013), Earnest, Allen, and Landis (2011)
and Jiang, Liu, Mckay, Lee, and Mitchell (2012). A
disadvantage of this approach is that moderation is tested on
the correlation coefficients, and not on specific parameters
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in a structural equation model. Most often, this is not in line
with the hypothesis of interest. For example, the moderator
hypotheses of Gerow et al. (2013), were about the direct
effects in the path model but not about covariances and
variances. Although subgroup analysis to test heterogeneity
has previously been conducted (see Haus et al. 2013), we
think that instructions regarding the procedures are needed
because most researchers who apply MASEM still choose
to address issues of moderation outside the context of
MASEM.

Overview of this article

In the next sections, we briefly introduce fixed- and random-
effects TSSEM and propose a follow-up analysis to address
heterogeneity using subgroup analysis. We discuss some
issues related to testing the equality of parameters using
pooled correlation matrices. Next, we illustrate the proce-
dure using an example of testing the equality of factor load-
ings across study-level variables of the Hospital Anxiety and
Depression Scale (HADS) with data from Norton, Cosco,
Doyle, Done, and Sacker (2013) as well as with an exam-
ple of testing moderation by socio-economic status (SES) in
a path model linking teacher-child relations to engagement
and achievement (Roorda, Koomen, Spilt, & Oort, 2011).
To facilitate the use of the proposed procedure, detailed
reports of the analyses, including data and R-scripts, are pro-
vided online at www.suzannejak.nl/masem code. Finally,
we present a small simulation study to evaluate the effect of
the number of studies included in a MASEM analysis on the
frequency of estimation problems.

TSSEM

In the next two sections we briefly describe fixed-effects
TSSEM and random-effects TSSEM. For a more elaborate
explanation see Cheung and Chan (2005b), Cheung (2014),
Cheung (2015a), and Jak (2015).

Fixed-effects TSSEM

The fixed-effects TSSEM approach was proposed by
Cheung and Chan (2005b). They performed a simulation
study, comparing the fixed-effects TSSEM approach to two
univariate approaches (Hunter & Schmidt, 2015; Hedges &
Olkin, 1985) and the multivariate GLS-approach (Becker,
1992, 1995). They found that the TSSEM approach showed
the best results with respect to parameter accuracy and false
positive rates of rejecting homogeneity.

Stage 1

In fixed-effects TSSEM, the correlation matrices in the
individual studies are assumed to be homogenous across
studies, all being estimates of one common population
correlation matrix. Differences between the correlation
matrices in different studies are assumed to be solely the
result of sampling error. The model that is fitted at Stage 1
is a multigroup model in which all correlation coefficients
are assumed to be equal across studies. Fitting this model to
the observed correlation matrices in the studies leads to an
estimate of the population correlation matrix PF, which is
correctly estimated if homogeneity indeed holds.

Stage 2

In Stage 2 of the analysis, weighted least squares (WLS)
estimation (Browne, 1984) is used to fit a structural equation
model to the estimated common correlation matrix from Stage
1. The proposed weight matrix in WLS-estimation is the
inverse asymptotic variance covariance matrix of the Stage 1
estimates of PF, i.e., WF = V−1

F (Cheung & Chan, 2005b).
These weights ensure that correlation coefficients that are
based on more information (on more studies and/or studies
with larger sample sizes) get more weight in the estimation
of the Stage 2 parameters. The Stage 2 analysis leads to
estimates of the model parameters and a χ2 measure of fit.

Random-effects TSSEM

Stage 1

In random-effects TSSEM, the population effects sizes
are allowed to differ across studies. The between-study
variability is taken into account in the Stage 1 analysis.
Estimates of the means and the covariance matrices in
random-effects TSSEM are obtained by fixing the sampling
covariance matrices to the known values (through definition
variables, see Cheung (2015a), and using full information
maximum likelihood to estimate the vector of means, PR,
and the between-studies covariances, T2 (Cheung, 2014).

Stage 2

Fitting the Stage 2 model in the random-effects approach is
not very different from fitting the Stage 2 model in the fixed-
effects approach. The values in WR from a random-effects
analysis are usually larger than those obtained from a fixed-
effects analysis, because the between-studies covariance is
added to the construction of the weight matrix. This results
in relatively more weight being given to smaller studies, and

www.suzannejak.nl/masem_code
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larger standard errors and confidence intervals, than with the
fixed-effects approach.

Using subgroup analysis to test parameter
heterogeneity

The basic procedure for subgroup analysis comprises sep-
arate Stage 1 analyses for the subgroups. The Stage 1
analyses may be in the fixed-effects framework, hypothesiz-
ing homogeneity within subgroups, or in the random-effects
framework, assuming that there is still substantive between-
study heterogeneity within the subgroups. In a subgroup
MASEM analysis, it is straightforward to equate certain
parameters across groups at Stage 1 or Stage 2 of the analy-
sis. The differences in the parameters across groups can be
tested using a likelihood ratio test by comparing the fit of
a model with across-groups equality constraints on certain
parameters with a model in which the parameters are freely
estimated across groups.

Testing heterogeneity in Stage 1 parameters

Although we focus on testing differences in Stage 2 parame-
ters, in some situations it may be interesting to test the equal-
ity of the pooled correlation matrices across subgroups. In
order to test the hypothesis that the correlation matrices
from a fixed-effects subgroup analysis, PF, are equal across
subgroups g, one could fit a model with the constraint PFg1
= PFg2 . Under the null hypothesis of equal correlation matri-
ces across groups, the difference in the -2 log-likelihoods of
the models with and without this constraint asymptotically
follows a chi-square distribution with degrees of freedom
equal to the number of constrained correlation coefficients.
Similarly, one could perform this test on the averaged corre-
lation matrices from a random-effects Stage 1 analysis. With
random-effects analysis, it may additionally be tested if the
subgroups differ in their heterogeneity covariance matrices
T2

g . When the researcher’s hypotheses are directly about
Stage 2 parameters, one may skip testing the equality of
equal correlation matrices across subgroups. The equality
of between-studies covariance matrices may still be useful
to reduce the number of parameters to be estimated in a
random-effects analysis. This issue is discussed further in
the general discussion.

Testing heterogeneity in Stage 2 parameters

For ease of discussion, we suppose that there are two sub-
groups. Given the two Stage 1 pooled correlation matrices
in the subgroups g, say, Pg , a structural model can be fitted

to the two matrices. For example, one could fit a factor
model in both groups:

Pg = �g �g �T
g + �g , (1)

where with p observed variables and k common factors,
�g is a full p by k matrix with factor loadings in
group g, �g is a k by k symmetrical matrix with factor
variances and covariances in group g, and �g is a p by p
symmetrical matrix with residual (co)variances in group g.
The covariance structure is identified by setting diag(�g)
= I. Since the input is a correlation matrix, the constraint
diag(Pg) = I, is required to ensure that the diagonals of Pg

are always ones during estimation.
In order to test the equality of factor loadings across

groups, a model can be fitted in which �g = �. Under
the null hypothesis of equal factor loadings, the difference
in chi-squares of the models with �g = �g and �g =
� asymptotically follows a chi-square distribution with
degrees of freedom equal to the difference in the number of
freely estimated parameters. If the difference in chi-squares
is considered significant, the null hypothesis of equal factor
loadings is rejected.

The approach of creating subgroups with similar study
characteristics and equating parameters across groups is
suitable for any structural equation model. For example,
in a path model, it may be hypothesized that some or all
direct effects are different across subgroups of studies, but
variances and residual variances are not. One could then
compare a model with equal regression coefficients with a
model with freely estimated regression coefficients to test
the hypothesis. Also, the subgroups approach can be applied
using fixed-effects or random-effects analyses.

Issues related to testing equality constraints based
on correlationmatrices in TSSEM

Structural equation models are ideally fitted on covariance
matrices. In MASEM, and meta-analysis in general, it is
very common to synthesize correlation coefficients. One
reason for the synthesis of standardized effect sizes is
that different studies may use different instruments with
different scales to operationalize the variables of interest.
The analysis of correlation matrices does not pose problems
when the necessary constraints are included (Bentler &
Savalei, 2010; Cheung, 2015a). However, it should be taken
into account that fitting models to correlation matrices
with TSSEM implies that all parameter estimates are in a
standardized metric (assuming that all latent variables are
scaled to have unit variances, which is recommended in
TSSEM (Cheung, 2015a)).
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When we compare models across subgroups in TSSEM,
we are thus comparing parameter estimates that are stan-
dardized with respect to the observed and latent variables
within the subgroups (Cheung, 2015a; Steiger, 2002). This
may not necessarily be a problem - sometimes it is even
desirable to compare standardized coefficients (see Kwan
and Chan (2011)). For example, van den Boer, van Bergen,
and de Jong (2014) tested the equality of correlations
between three reading tasks across an oral and a silent read-
ing group. However, it is important to be aware of this issue
and to interpret the results correctly. Suppose that a stan-
dardized regression coefficient from variable x on variable y

β∗
yx , is compared across two subgroups of studies, g1 and g2.

The standardized direct effects in the subgroups are given
by:

β∗
yxg1

= βyxg1

σxg1

σyg1

(2)

and

β∗
yxg2

= βyxg2

σxg2

σyg2

, (3)

where β represents an unstandardized regression coeffi-
cient, β∗ represents a standardized regression coefficient,
and σ represents a standard deviation. In the special case
that the standard deviations of x and y are equal within
subgroups, in each subgroup the standardized coefficient is
equal to the unstandardized coefficient, and the test of H0:
β∗

yxg1
= β∗

yxg2
is equal to the test of H0: βyxg1 = βyxg2 . In

fact, this not only holds when the standard deviations of the
variables are equal in the subgroups, but in general when
the ratio of σx over σy is equal across subgroups. For exam-
ple, when σx and σy in group 1 are respectively 2 and 4,
and the σx and σy in group 2 are respectively 1 and 2, the
standardized regression coefficient equals the unstandard-
ized coefficient times .5 in both groups. In this case, a test of
the equality of the standardized regression coefficients will
lead to the same conclusion as a test of the unstandardized
regression coefficients.

However, in most cases the ratio of standard deviations
will not be exactly equal across groups. Therefore, when
testing the equality of regression coefficients in a path
model, one has to realize that all parameters are in a stan-
dardized metric. The conclusions may not be generalizable
to unstandardized coefficients. Whether the standardized
or the unstandardized regression coefficients are more rel-
evant depends on the research questions (Bentler, 2007).
In the context of meta-analysis, standardized coefficients
are generally preferred (Cheung, 2009; Hunter & Hamilton,
2002).

In a factor analytic model, several methods of standard-
ization exist. Parameter estimates may be standardized with
respect to the observed variables only, or with respect to
the observed variables and common factors. In MASEM,

it is recommended that the common factors be identified
by fixing their variances to 1 (Cheung, 2015a). All results
obtained from a MASEM-analysis on correlation matrices
are thus standardized with respect to the observed variables
and the common factor. As a consequence of this standard-
ization, the residual variances in � are effectively not free
parameters, but the remainder of diag(I) − diag(���T )
(Cheung, 2015a).

Similar to path analysis, when testing the equality of
factor loadings across subgroups in MASEM, the results
may not be generalizable to unstandardized factor loadings,
due to across-group differences in the (unknown) variances
of the indicators and common factors. Moreover, if all
standardized factor loadings are set to be equal across
groups, this implies that all standardized residual variances
are equal across groups. Note that although one may be
inclined to denote a test of the equality of factor loadings
a test of weak factorial invariance (Meredith, 1993), this
would strictly be incorrect, as weak factorial invariance
pertains to the equality of unstandardized factor loadings.

Examples

In this section, we present two examples of the testing of
moderator hypotheses in MASEM using subgroup analysis.
Example 1 illustrates the testing of the equality of factor
loadings using factor analysis under the fixed-effects model
(Case 1 and 3 from Table 1). Example 2 illustrates the
testing of the moderation of direct effects using path
analysis under the random-effects model (Case 2 and 4 from
Table 1). The R-syntax for the examples can be found online
(http://www.suzannejak.nl/masem code).

Example 1 – Testing equality of factor loadings
of the Hospital Anxiety and Depression Scale

Introduction

The HADS was designed to measure psychological dis-
tress in non-psychiatric patient populations (Zigmond &
Snaith, 1983), and is widely used in research on distress
in patients. The instrument consists of 14 items: the odd
numbered items are designed to measure anxiety and the
even numbered items are designed to measure depression.
The items are scored on a 4-point scale. Some controversy
exists regarding the validity of the HADS (Zakrzewska,
2012). The HADS has generally been found to be a useful
instrument for screening purposes, but not for diagnostics
purposes (Mitchell, Meader, & Symonds, 2010). Ambigu-
ous results regarding the factor structure of the HADS
led to a meta-analytic study by Norton et al. (2013), who
gathered correlation matrices of the 14 HADS items from 28

http://www.suzannejak.nl/masem_code
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published studies. Using meta-analytic confirmatory factor
analysis, they found that a bi-factor model that included all
items loading onto a general distress factor and two orthog-
onal anxiety and depression factors provided the best fit to
the pooled data. Of the 28 studies evaluated by Norton et
al., 10 considered non-patient samples and 18 were based
on patient samples. As an illustration we will test the equal-
ity of factor loadings across studies based on patient and
non-patient samples.

Analysis

All of the models were fitted using the metaSEM, and
OpenMx packages in the R statistical platform. First we fit
the Stage 1 and Stage 2 models with a fixed-effects model
to the total set of studies (illustrating Case 1 from Table 1).
The stage 1 analysis using the fixed-effects model involved
fitting a model to the 28 correlation matrices in which all
correlation coefficients were restricted to be equal across
studies. Misfit of this model would indicate inequality of
the correlation coefficients across studies. Stage 2 involved
fitting the bi-factor model that Norton et al. (2013) found to
have the best fit to the data (see Fig. 1).

Next, two subgroups of studies were created, one group
with the 10 non-patient samples and the other with the 18
patient samples (illustrating Case 3 from Table 1). First,
the Stage 1 analyses were performed in the two groups
separately, leading to two pooled correlation matrices.
Then, the factor model without equality constraints across
subgroups was fitted to the data. Next, three models in
which the factor loadings of the general distress factor,
anxiety factor and depression factor respectively were
constrained to be equal across patient and non-patient

samples were tested. If the equality constraints on the factor
loadings led to a significantly higher chi-square statistic, the
(standardized) factor loadings would be considered to differ
across groups.

Exact fit of a proposed model is rejected if the χ2 statistic
is found to be significant. Exact fit will rarely hold in
MASEM, due to the large total sample size. Therefore,
as in standard SEM, it is common to use approximate
fit to assess the fit of models. Approximate close fit
is associated with RMSEA-values under .05, satisfactory
approximate fit with RMSEA-values under .08, and bad
approximate fit is associated with RMSEA-values larger
than .10 (MacCallum, Browne, and Sugawara, 1996). In
addition to the RMSEA, we will evaluate the CFI (Bentler,
1990) and the standardized root mean squared residual
(SRMR). CFI-values above .95 and SRMR-values under .08
are considered satisfactory (Hu & Bentler, 1999). For more
information about the calculation and use of fit-indices in
SEM we refer to Schermelleh-Engel et al. (2003).

Results

Overall Stage 1: Testing homogeneity and pooling correla-
tion matrices The Stage 1 model did not have exact fit to
the data, χ2 (2,457) = 10,400.04, p <.01. Approximate fit
was acceptable according to the RMSEA (.064, 95% CI:
[.063 ; .066]), but not according to the CFI (.914) and SRMR
(.098). Based on the CFI and SRMR, one should not con-
tinue to fit the structural model, or use random-effects mod-
eling. However, in order to illustrate the modeling involved
in Case 1, we will continue with Stage 2 using overall fixed-
effects analysis. Table 2 shows the pooled correlation matrix
based on the fixed-effects Stage 1 analysis.

Item 1 Item 27 Item 2 Item 28

General
Distress

…... …...

Anxiety
Depression

λ1,2
λ27,2

λ1,1

λ27,1 λ2,1

λ28,1

λ2,3

λ28,3

1
1

1

θ1,1 θ27,27 θ2,2 θ28,28

Fig. 1 The bi-factor model on the HADS-items
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Table 2 Pooled correlation matrix based on the fixed effects Stage 1 analysis of the HADS data

v1 v3 v5 v7 v9 v11 v13 v2 v4 v6 v8 v10 v12 v14

v1 1

v3 .48 1

v5 .55 .52 1

v7 .42 .36 .41 1

v9 .42 .46 .42 .35 1

v11 .33 .29 .33 .32 .28 1

v13 .49 .54 .50 .36 .50 .37 1

v2 .29 .24 .30 .34 .25 .18 .26 1

v4 .29 .28 .32 .36 .27 .18 .28 .42 1

v6 .40 .36 .43 .40 .31 .22 .36 .38 .45 1

v8 .35 .30 .34 .28 .27 .23 .33 .36 .25 .33 1

v10 .23 .21 .25 .22 .18 .17 .22 .25 .26 .30 .26 1

v12 .30 .27 .32 .36 .28 .19 .29 .47 .46 .42 .32 .33 1

v14 .24 .22 .25 .34 .22 .21 .25 .28 .31 .31 .19 .21 .33 1

Overall Stage 2: Fitting a factor model to the pooled
correlation matrix Norton et al. (2013) concluded that a bi-
factor model showed the best fit to the data. We replicated
the analyses and found that, indeed, the model fit is
acceptable according to the RMSEA (χ2(63) = 2,101.48,
RMSEA = .039, 95% CI RMSEA: [.037 ; .040], CFI = .953,
SRMR = .033). The parameter estimates from this model
can be found in Table 3. All items loaded substantially on
the general factor, and most items had smaller loadings on
the specific factor. Contrary to expectations, Item 7 has a
negative loading on the anxiety factor.

Subgroup Stage 1: Testing homogeneity and pooling cor-
relation matrices In the patient group, homogeneity was
rejected by the chi-square test (χ2(1,547) = 5,756.84, p
<.05). Homogeneity could be considered to hold approxi-
mately, based on the RMSEA (.071, 95% CI: [.070 ; .073]),
but not based on the CFI (.923) and SRMR (.111). In the
non-patient group, homogeneity was also rejected by the
chi-square test, χ2(819) = 3,254.60, p <.05, but approxi-
mate fit could be considered acceptable based on the RMSEA
and SRMR (RMSEA = .049, 95% CI RMSEA: [.048 ; .051],
CFI = .941, SRMR = .062). Although the model with a

Table 3 Parameter estimates and 95% confidence intervals from the bi-factor model on the total HADS data

� General � Anxiety � Depression �

est. lb ub est. lb ub est. lb ub est. lb ub

v1 .69 .68 .70 .19 .17 .22 .48 .47 .50

v3 .61 .60 .62 .40 .38 .42 .47 .45 .48

v5 .71 .70 .72 .23 .21 .26 .45 .44 .46

v7 .71 .70 .72 −.13 −.16 −.09 .48 .45 .50

v9 .56 .54 .57 .33 .31 .36 .58 .57 .59

v11 .48 .46 .49 .12 .10 .15 .76 .75 .77

v13 .63 .62 .64 .45 .42 .47 .40 .39 .42

v2 .47 .46 .48 .47 .45 .48 .56 .55 .57

v4 .50 .48 .51 .44 .42 .45 .56 .55 .58

v6 .61 .60 .63 .29 .28 .31 .54 .52 .55

v8 .50 .49 .52 .21 .19 .23 .70 .69 .71

v10 .37 .35 .38 .27 .25 .29 .79 .78 .80

v12 .50 .48 .51 .53 .51 .55 .47 .46 .49

v14 .43 .42 .44 .23 .21 .25 .76 .75 .77

Note: est = parameter estimate, lb = lower bound, ub = upper bound, � General, � Anxiety and � Depression refer to the factor loadings
associated with these factors, � refers to residual variance



Behav Res (2018) 50:1359–1373 1367

common correlation matrix does not have acceptable fit in
the patient group, indicating that not all heterogeneity is
explained by differentiating patient and non-patient sam-
ples, we continue with Stage 2 analysis as an illustration of
the procedure when the interest is Case 2 (see Table 1).

Subgroup Stage 2: Testing equality of factor loadings The
fit of the models with freely estimated factor loadings and
with equality constraints on particular sets of factor loadings
can be found in Table 4. The RMSEAs of all models
indicated close approximate fit. However, the χ2-difference
tests show that the factor loadings cannot be considered
equal for any of the three factors. Figure 2 shows a plot of
the standardized factor loadings in the two groups. For the
majority of the items, the factor loadings are higher in the
patient group than in the non-patient group.

Discussion

We found that the factor loadings of the bi-factor model
on the HADS differed across the studies involving patients
versus studies involving non-patients. The items were
generally found to be more indicative of general distress
in the studies with patient samples than in the studies with
non-patient samples. A possible reason for this finding is
that the HADS was developed for use in hospital settings,
and thus was designed for use with patients. In practice,
researchers may continue with the analysis by testing the
equality of individual factor loadings across subgroups. For
example, the factor loading of Item 2 from the Depression
factor seems to differ more across groups than the other
factor loadings for this factor. Such follow-up analyses may
give more insight into specific differences across subgroups.
However, it is advisable to apply some correction on the
significance level, such as a Bonferroni correction, when
testing the equality of several parameters individually.

A problem with these data is that the HADS is scored on
a 4-point scale, but the analysis was performed on Pearson
product moment correlations, assuming continuous vari-
ables. This may have led to underestimated correlation coef-
ficients. Moreover, it would have been informative to ana-
lyze covariance matrices rather than correlation matrices,
enabling a test on weak factorial invariance. However, the

standard deviations were not available for most of the
included studies.

We used fixed-effects overall and subgroup analysis,
although homogeneity of correlation matrices did not hold.
Therefore, it would have been more appropriate to apply
random-effects analysis. However, due to the relatively
large number of variables and the small number of studies, a
random-effects model did not converge to a solution. Even
the most restrictive model with only a diagonal T2 that was
set to be equal across subgroups did not solve this problem.
The results that were obtained should thus be interpreted
with caution, as the Type 1 errors may be inflated. The next
example shows random-effects subgroup-analysis, which
may be the appropriate framework in most cases.

Example 2 – Testingmoderation of the effect
of teacher-student relations on engagement
and achievement

Introduction

In this example we use random-effects subgroup analysis
to test moderation by SES in a path model linking teacher-
child relations to engagement and achievement. Children
with low SES are often found to be at risk of failing
in school and dropping out (Becker & Luthar, 2002).
According to Hamre and Pianta (2001), children at risk of
failing in school may have more to gain from an ability
to adapt to the social environment of the classroom than
children who are doing very well at school. Therefore, it can
be expected that the effects of teacher-child relations may
be stronger for children with lower SES.

Roorda, Koomen, Spilt, and Oort (2011) performed a
meta-analysis on correlation coefficients between measures
of positive and negative teacher-student relations, engage-
ment and achievement. They used univariate moderator anal-
ysis, and found that all correlations were larger in absolute
value for studies with relatively more students with low
SES. In the current analysis, we will test the moderation of
the specific effects in a path model. We will use 45 studies
reported by Roorda et al. (2011) and Jak, Oort, Roorda, and
Koomen (2013), which include information about SES of
the samples.

Table 4 Overall fit and difference in fit of the factor model with different equality constraints across groups

df χ2 p RMSEA [95% CI] CFI SRMR �df �χ2 p

1. No constraints 126 2249.21 <.05 .039 [.038 ; .041] .955 .035

2. � General equal 140 3125.51 <.05 .044 [.043 ; .046] .936 .061 14 876.30 <.05

3. � Anxiety equal 133 2266.14 <.05 .038 [.037 ; .040] .955 .036 7 16.93 <.05

4. � Depression equal 133 2300.62 <.05 .039 [.037 ; .040] .954 .037 7 51.41 <.05

Note: �df and �χ2 refer to the difference in df and χ2 in comparison with Model 1
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Fig. 2 A plot of the estimated factor loadings and 95% confidence intervals for the patient group (red) and non-patient group (grey) Note: We
show the absolute value of the factor loading of Item 7 on the Anxiety factor

Analysis

First we will perform a random-effects Stage 1 and Stage 2
analysis on the total sample of studies (representing Case 2
from Table 1). Next, we split the studies into two subgroups
based on SES (representing Case 4 from Table 1). We will
fit the hypothesized path model (see Fig. 3) to a group
of studies in which the majority of the respondents were
indicated to have low SES (24 studies), and a group of
studies for which the majority of the sample was indicated
with high SES (21 studies). Note that SES is a continuous
moderator variable in this case (percentages). We split the
studies in two groups based on the criterion of 50% of
the sample having low SES. Then, we test the equivalence
of the direct effects across groups by constraining the
effects to be equal across subgroups. Using a significance
level of .05, if the χ2 statistic increased significantly given
the increased degrees of freedom when adding equality
constraints across groups, one or more of the parameters
would be considered significantly different across groups.
Note that dichotomizing a continuous variable is generally
not advised. In this example we dichotomize the moderator
in order to illustrate subgroup analyses. Moreover, in
TSSEM, the analysis of continuous moderator variables is
not yet well developed.

Results

Overall Stage 1: Random-effects analysis The pooled corre-
lations based on the random-effects analysis can be found
in Table 5. When a random-effects model is used, an I 2

value may be calculated. It can be interpreted as the pro-
portion of study-level variance in the effect size (Higgins &
Thompson, 2002). The I 2 values (above the diagonal) show
that there is substantial between-studies variability in the
correlation coefficients, ranging from .79 to .94.

Overall Stage 2: Fitting a pathmodel We fitted a path model
to the pooled Stage 1 correlationmatrix, in which positive and
negative relations predicted achievement indirectly, through
engagement. Exact fit of this model was rejected (χ2 (2) =
11.16, p <.05). However, the RMSEA of .013 (95% CI =
[.006 ; .020]) indicated close approximate fit, as well as the
CFI (.966) and SRMR (.045). Table 6 shows the parameter
estimates and the associated 95% confidence intervals. All
parameter estimates were considered significantly different
from zero, as zero is not included in the 95% confidence
intervals. The indirect effects of positive and negative rela-
tions on achievement were small, but significant. Although
the model shows good fit on the averaged correlation
matrix, this analysis provides no information about whether
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Fig. 3 The hypothesized path model for Example 2

SES might explain the between-study heterogeneity. Sub-
group analysis is used to test whether the parameters differ
across studies with different levels of average SES.

Subgroup Stage 1: Random-effects analysis Different
pooled correlation matrices were estimated in the group of
studies with low SES and the group of studies with high
SES (see Tables 7 and 8). The proportions of between-
studies variance (I 2) within the subgroups are smaller than
they were in the total sample, indicating that SES explains
part of the between-study heterogeneity.

Subgroup Stage 2: Testingmoderation of effects by SES The
hypothesized path model showed acceptable approximate
fit, but no exact fit, in the low-SES group, χ2 (2) = 6.28,
p <.05, RMSEA = .013 (95% CI = [.002 ; .026]), CFI =
.978, SRMR = .041 as well as in the high-SES group, χ2 (2)
= 9.50, p <.05, RMSEA = .015 (95% CI = [.006 ; .025]),
CFI = .936, SRMR = .0549. The fit of the unconstrained
baseline model, with which the fit of the models with
equality constraints will be compared, is equal to the sum of
the fit of the models in the two subgroups. Therefore, the χ2

and df against which the constrained models will be tested
is df = 2+2 = 4 and χ2 = 6.28 + 9.50 = 15.78. Constraining

Table 5 Pooled correlations (under the diagonal) and I 2 (above the
diagonal) based on the random effects Stage 1 analysis

v1 v2 v3 v4

v1. Positive relations 1 .92 .94 .79

v2. Negative relations −.24 1 .88 .80

v3. Engagement .32 −.31 1 .90

v4. Achievement .14 −.18 .28 1

the three direct effects in the path model to be equal across
subgroups did not lead to a significant increase in misfit,
�χ2 (3) = 5.18, p = .16. Therefore, the null hypothesis of
equal direct effects across subgroups is not rejected.

Discussion In this example we tested whether the direct
effects in a path model linking teacher-child relations to
engagement and achievement were moderated by SES. The
subgroup analysis showed that the null-hypothesis stating
that the effects are equal in the low SES and high SES
populations cannot be rejected. Note that non-rejection of
a null-hypothesis does not imply that the null-hypothesis
is true. It could also mean that our design did not have
enough statistical power to detect an existing difference in
the population.

Simulation study

It is often necessary to create subgroups of studies, because
an overall analysis will mask differences in parameters across

Table 6 Parameter estimates and 95% confidence intervals of the
hypothesized path model

Parameter est lb ub

β31 .27 .20 .35

β32 −.30 −.38 −.22

β43 .35 .29 .41

β31 * β43 .10 .07 .12

β32 * β43 −.10 −.14 −.07

ψ12 −.24 −.32 −.16

ψ33 .80 .73 .85

ψ44 .88 .83 .92
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Table 7 Pooled correlations (under the diagonal) and I 2 (above the
diagonal) based on the random effects Stage 1 analysis in studies with
low SES

v1 v2 v3 v4

v1. Positive relations 1 .85 .94 .71

v2. Negative relations −.33 1 .83 .73

v3. Engagement .35 −.35 1 .86

v4. Achievement .12 −.18 .23 1

subgroups. For example, if the population regression coeffi-
cient is 0.20 for Subgroup 1, and 0.30 for Subgroup 2, an
analysis of all of the studies together will result in an esti-
mated regression coefficient of between 0.20 and 0.30. This
means that the effect will be overestimated for Subgroup 1 and
underestimated for Subgroup 2. Subgroup analysis will lead
to better parameter estimates in the subgroups. However, cre-
ating subgroups may lead to small numbers of studies within
each subgroup. In combination with having twice as many
parameters to be estimated as with an overall analysis, small
numbers of studies will likely result in estimation problems
such as non-convergence. Convergence is an important issue,
because researchers will be unable to present any meaningful
results of the MASEM analysis without having a converged
solution. In order to evaluate the effect of the number of
studies within each subgroup on the frequency of estimation
problems, we conducted a small simulation study.

Data generation and conditions

We generated data from two subgroups, in which one regres-
sion coefficient differed by .10 points across subgroups in
the population. Next, we fitted the correct model to the
two subgroups separately, as well as to the combined data.
We expected that, due to the larger number of studies, the
percentage of converged solutions would be larger for the
overall analysis than for the subgroup analyses and that the
estimation bias in the manipulated effect would be smaller
in the subgroup analysis (because the regression coefficient
is allowed to be different in each subgroup).

Table 8 Pooled correlations (under the diagonal) and I 2 (above the
diagonal) based on the random effects Stage 1 analysis in studies with
high SES

v1 v2 v3 v4

v1. Positive relations 1 .90 .84 .79

v2. Negative relations −.17 1 .66 .80

v3. Engagement .23 −.23 1 .87

v4. Achievement .16 −.18 .34 1

The data-generating model was based on the results from
Example 2. The population values for the direct effects in
Subgroup 1 were: β31 = .265, β32 = -.307, β43 = .288, and
ψ31 = -.329. The between-studies variance used to generate
random correlation matrices was based on Example 2. In
Subgroup 2, all population values were identical to the
values in Subgroup 1, except for β43, which was .388 (.10
larger than in Subgroup 1). We generated data with k = 22,
k = 44, k = 66 or k = 88 studies per subgroup, with
sample sizes of n=200 for each study. For each condition we
generated 2000 meta-analytic datasets.

In each condition we fitted the correct model to the two
subgroups separately, as well as to the subgroups combined.
We restricted the between-studies covariance matrices to be
diagonal, in order to reduce the number of parameters to
be estimated. In practice, this restriction is often applied
(Becker, 2009). We evaluated the percentage of converged
solutions, the relative bias in the estimate of β43, and the
relative bias in the standard error of β43 across methods and
conditions. The relative percentage of estimation bias for
β43 was calculated as

100 ∗ β̂43 − β43

β43
. (4)

We regarded estimation bias of less than 5% as acceptable
(Hoogland & Boomsma, 1998). The relative percentage of
bias in the standard error of β43 was calculated as:

100 ∗ ¯SE(β̂43) − SD(β̂43)

SD(β̂43)
, (5)

where ¯SE(β̂43) is the average standard error of β̂43 across
replications, and SD( ˆβ43) is the standard deviation of the
parameter estimates across replications. We considered the
standard errors to be unbiased if the relative bias was smaller
than 10% (Hoogland & Boomsma, 1998).

Results

Convergence

Figure 4a shows the convergence rates for all conditions.
As expected, the analysis of the total dataset resulted in
more converged solutions than the subgroup analysis in all
conditions. In addition, convergence rates increased with
the number of studies. However, the convergence rates were
generally low. For example, with 22 studies per subgroup
(the condition similar to that of our Example 2), only
43% of the datasets led to a converged solution with the
overall analysis, while only around 30% converged with
the subgroup analysis. With small numbers of studies per
subgroups (smaller than 44), most analyses are expected to
not result in a converged solution.



Behav Res (2018) 50:1359–1373 1371

Fig. 4 Convergence, parameter bias and standard error bias for overall
and subgroup analysis with a group difference of 0.10 in β43 Note:
The results in panels B and C are based on only those replications
that led to a converged solution for all three analyses. The numbers
of replications used are 141, 188, 246, and 300 replications for k=22,
k=44, k=66, and k=88 respectively

Bias in parameter estimates

We evaluated the parameter bias in β43 only for.1 The results
are presented in Fig. 4b. The percentage of estimation bias
was not related to the number of studies or to sample size.
As expected, the overall analysis resulted in underestimation
for Subgroup 1 and overestimation for Subgroup 2, while
the subgroup analysis led to unbiased parameter estimates.
Although the difference in the population value was only

1Consequently, the numbers of replications used to calculate the bias
were 141, 188, 246, and 300 of the 2000 replications for k=22,
k=44, k=66, and k=88, respectively. We have also calculated the bias
using all converged solutions per method (resulting in larger, but
different numbers of replications being used for different analyses).
This approach leads to very similar results, and identical conclusions.

0.10, the percentages of the relative bias exceeded the cut-
off of 5% in all conditions for the overall analysis. For
parameters that did not differ across subgroups, all analyses
yielded unbiased estimates.

Bias in standard errors

The relative bias in standard errors was around 10% in all
conditions for the overall analysis. With the subgroup anal-
ysis, the standard error estimates were more accurate, with
a bias of between roughly -5% and 5% in all conditions.
The results are presented in Fig. 4c. The standard errors
of the parameters that did not differ across subgroups were
unbiased for all analyses.

Conclusion on the simulation study

The simulation study showed that convergence is a serious
potential problem when applying random-effects MASEM.
Moreover, the likelihood of non-convergence occurring
increases with smaller numbers of studies, such as with a
subgroup analysis. However, if the model converges, the
subgroup analysis will lead to better parameter estimates
and standard error estimates in cases where a difference in
the population coefficient is present, even if the population
difference is small. In order to increase the likelihood of
obtaining a converged solution, it is recommended that as
many studies as possible be included.

General discussion

We proposed subgroup analysis to test moderation hypothe-
ses on specific parameters in MASEM. We illustrated the
approach using TSSEM. The subgroup analysis method that
was presented is not restricted to TSSEM. One could just
as easily apply the subgroups analysis on pooled correla-
tion matrices obtained with univariate approaches (Hunter
& Schmidt, 2015; Hedges & Olkin, 1985) or the multivari-
ate GLS-approach (Becker, 1992; 1995). However, based
on earlier research comparing these approaches (Cheung &
Chan, 2005b; Jak & Cheung, 2017), univariate approaches
are not recommended for MASEM.

Creating subgroups of studies to test the equality of
parameters across groups is a useful approach, but may
also lead to relatively small numbers of studies within each
subgroup. Given the large number of parameters involved
in random-effects modeling, the number of studies may
become too small for a converged solution to be obtained,
as was the case in our Example 1. One way to reduce
the number of parameters is to estimate the between-study
heterogeneity variances but not the covariances among
the random effects, i.e., restricting T2 to be diagonal. In
practice, this restriction is often needed (Becker, 2009). We
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applied this constraint to the two subgroups in the second
example and in the simulation study.

In the simulation study, we found that even with a diag-
onal heterogeneity matrix, random-effects subgroup mod-
eling is often not feasible due to convergence problems.
In practice, researchers may therefore have no other option
than to apply fixed-effects modeling instead of random-
effects modeling. However, ignoring between-study hetero-
geneity is known to lead to inflated false positive rates for sig-
nificance tests (Hafdahl, 2008; Zhang, 2011). Researchers
should therefore be careful when interpreting the results of
significance tests in cases where heterogeneity exists but a
fixed-effects model is applied. Collecting more studies to be
included in the meta-analysis is preferable over switching to
a fixed-effects model.

A limitation of the subgroup analysis to test moderation
is that the moderator variables have to be categorical.
In the second example, we split the studies into two
groups based on the percentage of respondents with
high SES in the study. By dichotomizing this variable
we throw away information and lose statistical power.
Indeed, contrary to our findings, the univariate meta-
regression analyses reported by Roorda et al. showed
significant moderation by SES. However, these analyses
did not take into account the multivariate nature of
the data, and tested the moderation of the correlation coeffi-
cients and not of the regression coefficients. Future research
is needed to develop methods to include study-level
variables as continuous covariates in TSSEM.

Concluding remarks

In the current paper we presented a framework to test
hypotheses about subgroup differences in meta-analytic
structural equation modeling. The metaSEM and OpenMx-
code and R-functions used in the illustrations are provided
online, so that researchers may easily adopt the proposed
procedures to test moderator hypotheses in their MASEM
analyses. The simulation study showed that increasing the
number of studies in a random-effects subgroup analysis
increases the likelihood of obtaining a converged solution.
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