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Abstract: Botulism is a devastating disease caused by botulinum neurotoxins (BoNTs) secreted
primarily by Clostridium botulinum. Mouse bioassays without co-inoculation with antibodies are
the standard method for the detection of BoNTs, but are not capable of distinguishing between the
different serotypes (A–G). Most foodborne intoxications are caused by serotypes BoNT/A and BoNT/B.
BoNT/E outbreaks are most often observed in northern coastal regions and are associated with eating
contaminated marine animals and other fishery products. Sandwich enzyme-linked immunosorbent
assays (ELISAs) were developed for the detection of BoNT/E3. Monoclonal antibodies (mAbs) were
generated against BoNT/E3 by immunizing with recombinant peptide fragments of the light and
heavy chains of BoNT/E3. In all, 12 mAbs where characterized for binding to both the recombinant
peptides and holotoxin, as well as their performance in Western blots and sandwich ELISAs. The most
sensitive sandwich assay, using different mAbs for capture and detection, exhibited a limit of detection
of 0.2 ng/ml in standard buffer matrix and 10 ng/mL in fish product matrices. By employing two
different mAbs for capture and detection, a more standardized sandwich assay was constructed.
Development of sensitive and selective mAbs to BoNT/E would help in the initial screening of
potential food contamination, speeding diagnosis and reducing use of laboratory animals.
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Key Contribution: An alternative strategy is described wherein peptide fragments were used as
immunogens for the production of new mouse monoclonal antibodies to botulinum neurotoxin
serotype E (BoNT/E3). Furthermore, a pair of these monoclonal antibodies were then formatted to
generate a sensitive sandwich ELISA for the detection of BoNT/E3.

1. Introduction

Botulinum neurotoxins (BoNT) represent a family of toxins produced primarily by Clostridium
botulinum and are the cause of botulism in both animals and humans. Botulism is a severe neurological
disease that if untreated is often fatal. Seven toxin serotypes (BoNT/A–G) have been described, as well
as potentially type H and a tentatively-named type X that are less well studied [1,2]. All BoNTs have a
molecular weight of about 150 kDa and consist of two polypeptide chains, a light chain (LC) ~50 kDa
and a heavy chain (HC) ~100 kDa linked via a single disulfide bridge.

BoNT serotypes A and B, are responsible for the majority (90%) of confirmed human botulism
cases in the U.S. followed by serotype E responsible for 10% (3 of 29) of the foodborne cases reported
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in 2016 [3]. Within the US and abroad, serotype E is the most prevalent toxin type identified in fish,
fishery products, and aquatic environments, including the shoreline soil [4–6]. BoNT/E outbreaks have
also been found in water birds in the Great Lakes, USA [7]. In Alaska, BoNT/E is the most frequent
serotype, accounting for 82% (249 of 303) of the foodborne cases from 1950–2016 [8]. The propensity
for exposure to BoNT/E in Alaska is likely due to the documented presence of C. botulinum type
E spores within the environment, as well as cultural preferences for food preparation procedures
for aquatic animals (i.e., butchering animals in coastal environments, as well as “fermenting” fish
and sea mammals) [6,8–11]. Specifically, whales, seals, and Salmon (including Salmon eggs) are
frequently involved.

All of the BoNT serotypes are immunologically distinct, and therefore antibody-based reagents
can be used to distinguish each serotype. Mono- and polyclonal antibodies (mAbs and pAbs) possess
unique specificities for their targets and allow for the identification of particular serotypes. Thus far, a
wide variety of antibody reagents specific for BoNT/E have been generated, such as rabbit pAbs [12,13],
horse pAbs [14], mouse mAbs [15–18], humanized single-chain variable fragments (scFvs) [19], and
single-domain heavy chain-only antibodies (VHH) [20,21].

Antibody-based methods can be used for the detection of BoNTs in food and other biological
samples. Highly selective and sensitive antibodies are employed in enzyme-linked immunosorbent
assays (ELISAs), electrochemiluminescence immunoassays, lateral flow tests, and flow cytometry, as
well as incorporated with other technologies, such as immuno-polymerase chain reaction, endopep-mass
spectrometry combined with antibody capture, and fluorescence resonance energy transfer assays
with immunocapture [22–24]. In most configurations, antibodies capable of binding the toxin in the
solution phase (i.e., as a capture antibody) are the most suitable for sample analysis. Moreover, assays
that utilize mAbs as both the capture and the detector antibodies are the most desirable because of
the consistency and longevity in the supply of those reagents as opposed to using a pAb as either a
capture or detector, since pAbs have a more limited supply.

A key consideration is that not all immunoreagents are transferrable among different assay
platforms. For example, some reagents can be used in sandwich assays, but do not bind immobilized
toxin-complexes, and vice-versa [16,25]. Furthermore, some mAbs that do not react to the native toxin
in a detection platform, possess neutralizing activity. Likewise, many of the mAbs used to develop
detection tools to BoNT/E have also been used to analyze the structure of the isotype [26,27] and to
elucidate toxin-neutralizing activity [16,19,28]. These situations are not uncommon and therefore a
suite of antibodies with varying characteristics are needed in order to develop assays for a wide range
of applications to advance our understanding of BoNT structure/function relationships.

In this article, we show that we have expanded the repertoire of available and reproducible
immunoreagents specific for BoNT/E. Our objective was to develop a sandwich ELISA for BoNT/E3,
thus requiring the identification of two separate mAbs to work as a capture-detector pair. We applied
our previously described strategy of using recombinant peptide fragments as immunogens [29,30], and
constructed a series of peptide fragments for both the light chain (LC) and heavy chain (HC) regions of
BoNT/E3. Screening procedures utilizing both direct binding and capture-capture methods were used
to increase the possibility of isolating antibodies to the solution phase toxin. Binding of these newly
generated mAbs to both BoNT/E and other BoNT serotypes was evaluated by Western blot and ELISA.
Finally, we applied the sandwich ELISA to the detection of BoNT/E spiked in food matrices.

2. Results

2.1. Isolation and Characterization of Monoclonal Antibodies

Mice were immunized with the following recombinant glutathione S-transferase (GST) fusion
peptides: recBoNT-LC-GST, recBoNT-HCP1-GST, and recBoNT-HCP5-GST (Figure 1). These correspond
to the intact LC, the translocation domain, and the receptor binding domain, respectively. Two fusion
screening assays were utilized to identify antibody producing hybridoma cells. For screening the
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LC-immunized mice, an ELISA in which purified BoNT/E complex was immobilized onto microtiter plates
by adsorption was used. For screening the HC-immunized mice, a capture-capture ELISA was used. Goat
anti-mouse immunoglobulin (Fc-specific) was absorbed onto microtiter plates, hybridoma supernatants
were then applied, followed by the addition of BoNT/E3 toxin. Toxin captured from solution by putative
mAbs secreted from the newly formed hybridoma cells was detected with a rabbit anti-BoNT/E pAb
followed by a horseradish peroxidase (HRP)-conjugated anti-rabbit pAb.
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Figure 1. Peptide fragments of botulinum neurotoxins (BoNT)/E3. Glutathione S-transferase (GST)
was fused on the N-terminus of each peptide.

A total of 12 stable mAb producing hybridoma cell lines were established following at least two
cloning steps by limited dilution. They were designated as BoE 33-10, BoE 33-12, BoE 33-13-17-9,
BoE 33-13-17-4, BoE 34-16, BoE 9-15, BoE 66-29, BoE 66-81, BoE 66-106, BoE 71-9, BoE 71-14, and BoE
71-95. The recombinant immunogen employed to produce each of these antibodies, the screening
method used, the myeloma fusion partner, and the antibody heavy chain isotype (all possessed kappa
light-chains) are summarized in Table 1.

Table 1. Characterization of monoclonal antibodies (mAbs) developed against BoNT/E3.

Antibody Immunogen 1 Myeloma
Fusion Partner Fusion Screen Isotype 2 Peptides Bound 1 Binding

Domain
Serotype

Specificity 3

BoE 33-10 recBoNT/E-LC Sp2/0 Direct binding IgG2b LC, LCP1 M1–K225 E, F > B > C, D, G
BoE 33-12 recBoNT/E-LC Sp2/0 Direct binding IgG1 LC, LCP1 M1–K225 E, F > B > C, D, G, A

BoE 33-13-17-9 recBoNT/E-LC Sp2/0 Direct binding IgG1 LC, LCP1 M1–K225 E, F > B > C, D, G
BoE 33-13-17-4 recBoNT/E-LC Sp2/0 Direct binding IgG1 LC, LCP1 M1–K225 E >> B

BoE 34-16 recBoNT/E-LC Sp2/0 Direct binding IgG2a LC, LCP1 M1–K225 E, F > B > C, D, G
BoE 9-15 recBoNT/E-HCP1 Sp2/0 Capture/Capture IgG2b HC, HCP1, HCP4 K423– I847 E

BoE 66-29 recBoNT/E-HCP5 P3XU.1 Capture/Capture IgG1 HC, HCP2, HCP4,
HCP5 K848–T1069 E

BoE 66-81 recBoNT/E-HCP5 P3XU.1 Capture/Capture IgG2b HC, HCP2, HCP4,
HCP5 K848–T1069 E

BoE 66-106 recBoNT/E-HCP5 P3XU.1 Capture/Capture IgG1 HC, HCP3, HCP5 N1070– K1253 E >> B

BoE 71-9 recBoNT/E-HCP5 Sp2/0 Capture/Capture IgG1 HC, HCP2, HCP4,
HCP5 K848–T1069 E (weak)

BoE 71-14 recBoNT/E-HCP5 Sp2/0 Capture/Capture IgG1 HC, HCP2, HCP4,
HCP5 K848–T1069 E

BoE 71-95 recBoNT/E-HCP5 Sp2/0 Capture/Capture IgG1 HC, HCP2, HCP4,
HCP5 K848–T1069 E

1 Refer to Figure 1 for definition of peptide designations. 2 All with kappa light chains. 3 Binding specificity
determined using immobilized toxin by ELISA (see Figures S1 and S2).

2.2. Antibody Specificity

Even though recombinant peptides were used to generate the antibodies, the binding specificity to
neurotoxin HC vs. LC was confirmed by examining their binding profiles on reduced and non-reduced
Western blots following electrophoresis of BoNT/E3 nicked holotoxin (Figure 2a,b). As expected,
those mAbs isolated following immunization with recBoNT/E3-LC-GST peptide preferentially bound
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the toxin LC, with little binding to the HC bands (Figure 2b, lanes 15–18; and Figure 2b, lanes 5–8,
respectively). Likewise, following sample reduction, antibodies produced using recombinant peptide
fragments corresponding to regions of the toxin HC (HCP1 and HCP5) bound the HC with no binding
to the LC (Figure 2a,b). All of the mAbs bound intact holotoxin in these Western blot experiments.
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lanes 1–2, silver stain; lanes 3–4 BoE 9-15; lanes 5–6, BoE 33-10; 7–8 BoE 33-12. (BoE 33-17-9 not shown). 

Figure 2. Western blots of BoNT/E3 nicked holotoxin with and without dithiothreitol (DTT). Bands
(HT = holotoxin; HC = heavy chain; LC = light chain) were visualized by the following: (a) lanes
1–2, silver stain; lanes 3–4, BoE 71-9; lanes 5–6, BoE 71-14; lanes 7–8, BoE 71-95; lanes 9–10, BoE 66-29;
lanes 11–12, BoE 66-81; lanes 13–14, BoE 66-106; lanes 15–16, BoE 33-13-17-4; lanes 17–18, BoE 34-16;
(b) lanes 1–2, silver stain; lanes 3–4 BoE 9-15; lanes 5–6, BoE 33-10; 7–8 BoE 33-12. (BoE 33-17-9 not
shown). The silver stained (lanes 1–2) band ~80 kDa is unknown/unidentified material not recognized
by the antibodies.

Antibody binding to BoNT serotypes A–G was evaluated using immobilized holotoxin in ELISA.
These data are summarized in Table 1 and Figures S1 and S2. The mAbs generated to LC fragments fall
into two distinct binding groups. The first group (comprising mAbs BoE 33-10, BoE 33-12, BoE 33-13-17-9,
and BoE 34-16) bound multiple BoNT serotypes with the strongest binding to serotypes E,F, moderate
binding to serotypes B,C,D, and G, and virtually no binding to serotype A (except for BoE 33-12). In sharp
contrast, the second group of toxin LC binders is comprised of just one mAb (BoE 33-13-17-4) which
demonstrated strong binding only to BoNT/E3 holotoxin (weak binding to serotype B was consistently
observed), but no binding to serotypes A,C,D, and F (Figure S1C). All of the BoNT HC specific mAbs, were
specific for BoNT/E3 with the exception of mAb BoE 66-106 that showed weak but consistent reactivity to
BoNT serotype B as well as strong binding to serotype E3 (Figure S2).

2.3. Binding Epitopes

In addition to the peptides generated for use as immunogens, peptides were generated to half of
the LC (recLCP1 and recLCP2), half of the receptor binding domain (recHCP2 and recHCP3), as well as
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one that spans the translocation domain and N-terminal half of the receptor binding domain (recHCP4)
(Figure 1). Screening of the mAbs against all recHC and recLC peptides permitted more detailed
analysis of binding activity. Screening was examined by ELISA and the results are summarized in
Table 2 and Figure S3. As expected, those antibodies that were generated using the recLc immunogen
bound only the recLC, specifically the recLCP1 peptide (corresponding to the N-terminal half of the LC).
Although these mAbs all bound recLCP1, our data indicate that the mAbs generated to LC fragments
either bind multiple toxin serotypes (mAbs BoE 33-10, BoE 33-12, and BoE 34-16) or bind only serotype
E (mAb BoE 33-13-17-4).

Table 2. Binding signals for anti-BoNT/E3 mAbs binding to recombinant peptides corresponding to
those shown in Figure 1. Peptides were absorbed onto microtiter wells and probed with specific mAbs.
Binding was determined by measuring absorbency (OD, optical density) as described in the methods.

mAb recLC recLCP1 recLCP2 recHC HCP1 HCP2 HCP3 HCP4 HCP5

BoE 33-10 1.71 ± 0.04 1.79 ± 0.03 0.07 ± 0.00 0.07 ± 0.01 0.07 ± 0.01 0.08 ± 0.01 0.07 ± 0.0 0.08 ± 0.01 0.07 ± 0.00
BoE 33-12 2.06 ± 0.01 2.05 ± 0.03 0.06 + 0.00 0.06 + 0.00 0.06 ± 0.01 0.08 ± 0.02 0.05 ± 0.00 0.08 ± 0.04 0.05 ± 0.03

BoE 33-13-17-4 1.05 ± 0.09 1.25 ± 0.08 0.13 ± 0.01 0.09 ± 0.01 0.08 ± 0.01 0.13 ± 0.02 0.16 ± 0.00 0.1 ± 0.01 0.13 ± 0.02
BoE 34-16 2.44 ± 0.04 2.46 ± 0.03 0.88 ± 0.02 0.08 ± 0.01 0.07 + 0.01 0.09 ± 0.01 0.07 ± 0.00 0.08 ± 0.01 0.06 + 0.01
BoE 9-15 0.11 ± 0.08 0.07 ± 0.01 0.06 ± 0.02 1.17 ± 0.02 1.37 ± 0.01 0.07 ± 0.17 0.06 ± 0.02 1.2 ± 0.01 0.05 + 0.01

BoE 66-29 0.05 ± 0.00 0.05 ± 0.00 0.05 ± 0.01 0.59 ± 0.02 0.05 ± 0.01 0.78 ± 0.02 0.05 + 0.15 0.7 ± 0.02 0.70 ± 0.02
BoE 66-81 0.06 ± 0.03 0.05 ± 0.00 0.05 ± 0.02 0.55 ± 0.00 0.05 ± 0.12 0.91 + 0.04 0.06 ± 0.03 0.78 ± 0.08 0.7 ± 0.003
BoE 66-106 0.06 ± 0.01 0.06 ± 0.01 0.06 + 0.01 0.62 ± 0.02 0.06 ± 0.01 0.06 ± 0.01 0.78 ± 0.02 0.07 ± 0.01 0.76 ± 0.03

BoE 71-9 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.00 0.23 ± 0.01 0.05 ± 0.01 0.77 ± 0.06 0.06 ± 0.01 0.61 + 0.03 0.51 ± 0.02
BoE 71-14 0.06 ± 0.01 0.01 ± 0.01 0.06 ± 0.01 0.55 ± 0.04 0.06 ± 0.01 0.89 ± 0.04 0.10 ± 0.01 0.78 ± 0.03 0.74 + 0.03
BoE 71-95 0.06 ± 0.01 0.06 ± 0.00 0.05 + 0.00 0.32 ± 0.01 0.06 ± 0.01 0.87 ± 0.07 0.06 ± 0.01 0.50 + 0.03 0.83 ± 0.05

Signal values are average and standard deviation for three replicate wells; bold text indicates significant binding
events with values >0.2 OD. Background binding signals for non-coated and GST-coated wells never exceeded
0.13 ± 0.02. BoE 33-13-17-9 not shown.

A single mAb, BoE 9-15, was identified using the capture-capture screening method following
fusions using the recHCP1-GST (the translocation domain) as the immunogen. Results of the peptide
binding experiments clearly showed binding only to full-length recHC, recHCP1, and recHCP4 peptides
suggesting a binding epitope localized to the translocation domain of BoNT, between K423-K848
(Figure S3E; Table 2). In contrast, six mAbs were identified using the capture-capture screen following
immunization with the recHCP5-GST peptide (receptor binding domain). These mAbs segregated into
two epitope groups, BoE 66-29, BoE 66-81, BoE 71-9, BoE 71-14, and BoE 71-95, bound recombinant
peptides HCP2, HCP4, and HCP5 in addition to the recHC peptide. MAb BoE 66-106 bound the full
length HC peptide as well as recombinant peptides HCP3 and HCP5. These data suggest that the
former mAbs bound to the N-terminal half of the receptor binding domain and that mAb BoE 66-106
binds to the C-terminal half of the receptor binding domain (Figure S3H; Table 2). All of the mAbs
epitope binding domain activity is summarized in Figure 3.
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2.4. Capture ELISA

The objective of producing a large panel of mAbs is to then screen these for antibody pairs useful
for generation of a sensitive capture ELISA to detect toxin. Therefore, each antibody presented in Table 1
was conjugated with biotin. Next, non-biotin labeled antibodies were individually absorbed onto
96-well microtiter plates, probed with varying amounts of neurotoxin holotoxin (BoNT/E3) and bound
toxin measured using each of the biotin labeled mAbs. The three most sensitive assays coincidentally
all used mAb BoE 66-29 as the capture antibody and were paired with either BoE 9-15, BoE 71-9, or BoE
71-95 as the detector antibody (Figure 4). These data suggest that the lower limit of detection (LOD)
based on adding three standard deviations about the average signal of a zero toxin blank varied from
0.2 ng/mL for BoE 9-15, 0.9 ng/mL for BoE 71-9, and 20 ng/mL for BoE 71-95.
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2.5. Matrix Study

To evaluate the utility of this capture ELISA for detecting toxin in food matrices, two types of roe
and one canned fish product were tested. Since the toxin would likely be found on the surface of the
roe, the specimens were not macerated, but instead rinsed with standard matrix buffer (3% non-fat dry
milk in tris buffered saline with Tween 20 (TBST) to generate relevant food matrices. The food matrices
did reduce the detectability, which resulted in an LOD of 10 ng/mL for the roe rinsates and for the
250-fold or greater dilutions of the brine from canned mackerel (Figure 5). While performing these
matrix studies, the signal from the standard matrix curves generated each day continually dropped
(Figure S4). This highlights the importance of running a standard curve each day, but also the potential
instability of BoNT/E3 holotoxin, which can be detected by immunoassay.
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3. Discussion

The more often performed method for generating mouse mAbs specific to a toxin, and in particular
to BoNT/E, is to use the toxoid as the immunogen [15–18]. In theory, this method allows the antibodies
to recognize any antigenic epitope, but in practice, the selected antibodies may not bind a diverse
number of epitopes. As an alternative, here we demonstrated a strategy of utilizing peptide fragments
as immunogens, which then limits each antibody to bind an antigenic epitope on that particular
peptide. While both methods have been used successfully, they each have their limitations, such that
epitopes that are now presented on the immunogen may not be present in the whole native toxin.

In light of immunogen presentation, other means to influence antigen selectivity is by the screening
procedure used. Screening measures that are as similar as possible to the final application should
be employed to identify the antibodies desired depending on the downstream application of these
reagents. For this reason, in this work we utilized both direct binding assays (used to screen for
anti-LC mAbs) and capture-capture binding assays (used to screen for anti-HC mAbs). Previous work
yielding a mAb-mAb sandwich ELISA for BoNT/E utilized a direct binding screening method for
selecting potential hybridomas [15]. In our work, it is interesting to note that the cross-reactivity of
the mAbs generated to LC fragments is considerably more variable (Table 1). This may be due to
the screening procedure or just an inherent result of the peptides used, but cannot be differentiated
by these experiments. Nonetheless, we showed the production of new mAbs that can provide new
insights when used individually or together depending on the desired applications.

The most common applications of these mAbs are to neutralize toxin, identify structure–function
relationships of the toxins, and to develop toxin detection assays. Our goal was to primarily develop
a sandwich ELISA for detecting BoNT/E in suspected samples. Since mAbs are immunochemically
homogeneous and more reproducible than pAbs, we sought to develop this sandwich ELISA using
a pair of mAbs. In this work, we developed a mAb-mAb sandwich ELISAs for BoNT/E3 (Figure 4).
Other applications of mAb-mAb sandwich-type assays have yielded improved LODs using other
formats, such as microarrays [31]. In assays utilizing pAb sources [14,32,33], improved LODs were
obtained and therefore it might be of interest for future research to combine multiple mAbs from this
study to improve performance. Furthermore, using these mAbs in other formats and with different
reporting molecules may also yield improved LODs.

While testing these mAbs for neutralization and other functionalities was outside the scope of
this work, all of the mAbs described in this paper may be suitable for other applications. For example,
most mAbs generated to date recognize the HC of BoNT/E [15]. Here we describe five new mAbs that
bind the LC—as determined by Western blot or binding of the recLC fragment by ELISA (Figure 2 and
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Table 2). Further characterization of all of these mAbs could include determining their ability to detect
BoNT/E complex, to detect BoNT/E subtypes E1–12, and if they are capable of neutralizing toxin.

In instances when immunoassays are sought to be used with food matrices, matrix effects may
represent a major hurdle to the feasibility of the assay. Due to the documented prevalence of BoNT/E
in fish products, we sought to evaluate our sandwich ELISA with roe and canned fish products. We
observed a 50-fold decrease in LOD from 0.2 ng/mL in buffer to 10 ng/mL in fish product matrices.
This study aligns with previous studies by demonstrating that there is commonly a decrease in the
amount of toxin detected when toxin is extracted from a food matrix [15,31,33]. For instance, in a study
examining 30 food matrices (none of which were fish products) they report a 12-fold decrease in LOD
from 163 pg/mL in buffer to 2 ng/mL in food matrices [33]. An evaluation of ELISA kits demonstrated
a LOD in smoked Salmon matrix of 60 pg/mL [34]. While decreased sensitivity impacts the utility of
immunoassays as a quantitative method for measuring toxin, as a screening tool, if any toxin is present
it would generate a positive signal and suggest further analysis. Although the matrix might impede
detection, our study substantiates that matrix interferences in ELISA are manageable with a simple
dilution step [24] (Figure 5b). It was speculated that a lethal oral amount of botulinum toxin for a
70-kg human would be 70 µg [35]. While the sensitivity of this assay is not likely suitable for human
biospecimen diagnostic purposes, it is approaching relevant levels for food analysis. To improve
sensitivity, the mAbs could be used in other purification/concentration steps (such as beads coated
with anti-BoNT/E mAbs) prior to food testing.

In summary, this work demonstrates the production of new mAbs to BoNT/E3 and when paired
together generated a sensitive sandwich ELISA for the detection of BoNT/E3. This strategy utilized
peptide fragments as immunogens to induce antibodies selective for various fragments of BoNT/E3.
Additional peptides not used as immunogens were used to further narrow down the binding regions
of the induced antibodies. Furthermore, a capture-capture screening procedure was used to isolate
antibodies that functionally bound toxin in solution, as opposed to binding to an immobilized target,
which may distort particular epitopes. Ultimately, this work yielded a mAb-mAb sandwich ELISA
that can detect BoNT/E3 holotoxin at 0.2 ng/mL in buffer and 10 ng/mL in spiked fish products.

4. Materials and Methods

4.1. Reagents

Solutions at 1 mg mL−1 of BoNT serotypes A–G, the 150 kDa serotype E holotoxin (BoNT/E)
produced by Clostridium botulinum Strain E3/Alaska, and anti-BoNT/E rabbit pAbs were purchased
from Metabiologics Inc. (Madison, WI, USA). Nicked BoNT/E3 was obtained from List Biological
Laboratories (Campbell, CA, USA). Total genomic DNA from C. botulinum (Strain E3/Alaska) was
generously provided by Eric Johnson (University of Wisconsin, Madison, WI, USA). All toxins were
handled in a BSL-2 biosafety cabinet and all materials and waste solutions were treated before disposal.

Bovine serum albumin (BSA), ovalbumin (OVA), goat anti-mouse immunoglobulin G conjugated
to horseradish peroxidase (IgG-HRP), polyoxyethylene sorbitan monolaurate (Tween-20), Sigma
Adjuvant System, Protein-G conjugated Sepharose, and the following buffers: 0.01 M phosphate
buffered saline (PBS), 0.138 M NaCl, 0.0027 M KCl, pH 7.4, and 0.02 M TRIS-buffered saline (TBS),
0.9% NaCl, pH 7.4 were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Goat anti-mouse
IgG Fc gamma was purchased from Millipore (Billerica MA). Black and clear Maxisorp 96-well Nunc
microtiter plates were obtained from PGC Scientific (Gaithersburg, MD, USA). BCA kit, EZ-Link
Sulfo-NHS-LC-Biotin kit, SuperSignal Femto Max Sensitivity substrate, and SuperSignal West Dura
Extended Duration substrate were purchased from Pierce Inc. (Rockford, IL, USA). SBA Clonotyping
System-HRP was purchased from Southern Biotech (Birmingham, AL, USA). Enhanced K-Blue TMB
substrate and Red Stop Solution were obtained from Neogen Corporation (Lexington, KY, USA).
Non-fat dry milk (NFDM), fresh Tobiko roe, fresh Salmon roe, and canned in brine mackerel were
purchased from a local food store.
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Commercial enzymes (Phusion High-Fidelity DNA Polymerase, BamHI, XhoI, T4 polynucleotide
kinase (3’ phosphatase minus) and T4 DNA ligase were purchased from New England BioLabs, Inc.
(Bethesda, MD, USA). Plasmid construction and manipulation were performed using pCR4-TOPO
vector and Escherichia coli TOP10 cells from Invitrogen (Carlsbad, CA, USA) Plasmid pGS-21 and
QuickClean 5M kits (Miniprep, PCR purification, and Gel extraction) were from GenScript Corp.
(Piscataway, NJ, USA). All automated DNA sequencing was performed on a 3730 DNA Analyzer
using the BigDye Terminator Version 3.1 cycle sequencing kit and XTerminator reagents purchased
from Applied Biosystems, (Foster City, CA, USA). Primers designed specifically for this project were
purchased from Integrated DNA Technologies (Coralville, IA, USA) and are shown in Table 3.

Table 3. Primers designed for this study. Sites for restriction enzymes BamHI (GGATCC) and XhoI
(CTCGAG) are shown underlined. Stop codons are shown in bold, in the 3’ to 5’ (TTA) orientation.

Primer Name Sequence

AlaskaLCF TAGC GGA TCC ATG CCA AAA ATT AAT AGT TTT AAT TAT AAT
AlaskaLCF2 TAGC GGA TCC GGG ATT ACT ACA ACT TGT ATT ATA
AlaskaLCR TAGC CTC GAG TTA CCT TAT GCC TTT TAC AGA AAC AA

AlaskaLCR2 TAGC CTC GAG TTA TTT AGC CCC ATA TAG TCC ATG T
AlaskaHCF TAGC GGA TCC AAA TCA ATA TGT ATC GAA ATA AAT AAT
AlaskaHCF2 TAGC GGA TCC AAA AGT AGT TCA GTT TTA AAT ATG AG
AlaskaHCF3 TAGC GGA TCC AAT ATT TTG AAG GAT TTT TGG GGA
AlaskaHCR TAGC CTC GAG TTA TTT TTC TTG CCA TCC ATG TT
AlaskaHCR1 TAGC CTC GAG TTA AAT TCT CTT AAA GAA TTT ATT AAA ATA T
AlaskaHCR2 TAGC CTC GAG TTA TGT ATT AGG TTC ATT GCT ATA TAA A

4.2. Recombinant BoNT/E3-GST Fusion Proteins

The expression and purification of all GST-fusion proteins was performed as previously
described [30] with the following modifications. Total genomic DNA from C. botulinum Strain
E3/Alaska was used as a template to amplify the fragments of the light and heavy chains (LC, LCP1,
LCP2, HC, HCP1, HCP2, HCP3, HCP4, HCP5) using the primers indicated (see Figure 1 and Table 1).
Stop codons (TAA) were introduced when not present within the genomic DNA of the cloned region.
The resulting BoNT/E3 DNA fragments were cloned into plasmid pCR4-TOPO and sequenced using
M13F and M13R primers. The pCR4-derived plasmids were digested using restriction enzymes
BamHI and XhoI, purified, and then ligated into BamHI- and XhoI-digested pGS-21a to yield the
correspondingly named pGS plasmid (e.g., pGS-HCP1 for fragment HCP1). All pGS-21a-derived
plasmids were sequenced using pGS-F and pGS-R primers, to confirm the correct integration of the
BoNT/E3 fragment into the vector. The recombinant DNA methods used in this study were approved
by the Institutional Biosafety Committee.

4.3. Monoclonal Antibody Procedure

Monoclonal antibody production was as previously described [29,36]. Briefly, solutions of three
peptide fragments, separately, at the concentrations indicated (LC, 94 µg/mL; HCP1, 79 µg/mL; HCP5,
176 µg/mL) were mixed with Sigma Adjuvant System according to the manufacturer’s instructions.
Three groups of five female BALB/cJ mice (Simonsen Laboratories, Gilroy, CA, USA) were immunized
three times at two-week intervals by intraperitoneal injection (i.p.) with 100 µL of each antigen-adjuvant
solution. Two weeks after the third injection, serum was obtained from each mouse and evaluated for
anti-BoNT/E3 antibodies via direct binding ELISA screens. Mice were injected i.p. with 2 µg of the
appropriate peptide fragment in PBS three days prior to being euthanized and cell fusion. Supernatants
from cell fusion plates were subjected to screening either by direct binding ELISA (for mice immunized
with the recBoNT/E3-LC-GST peptide fragments) or by a capture-capture ELISA screen (for the mice
immunized with the recBoNT/E3-HCP1-GST and recBoNT/E3-HCP5-GST peptide fragments).
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The Institutional Animal Care and Use Committee of the United States Department of Agriculture,
Western Regional Research Center approved the experimental procedures used in these studies (protocol
#’s: 04-1-H-05; 09-3). All animal experiments and husbandry involved in the studies presented in this
manuscript were conducted under the guidelines of the U.S. Government Principles for the Utilization
and Care of Vertebrate Animals Used in Testing, Research and Training.

4.4. Screening Methods

4.4.1. Directing Binding ELISA

Direct binding ELISA screens of the recBoNT/E3-LC-GST immunized mice were performed as
previously described [36], using black microtiter plates coated with 50 µL per well of a 0.1 µg/mL
solution of BoNT/E3 in 0.05 M sodium carbonate buffer, pH 9.6, overnight at 4◦C. The solution was
aspirated and then blocked by adding 300 µL per well of 3% NFDM in TBS containing 0.05% Tween-20
(NFDM-TBST) and incubated for 1 h at 37 ◦C. The plates were washed once with TBST, and then the
cell culture supernatants were added. After another incubation at 37 ◦C for 1 h, the plates were washed
3×with TBST. Then 50 µL of a 1 µg/mL solution of goat anti-mouse HRP-conjugated pAb was added
and the plates incubated at 37 ◦C for 1 h. After washing 3×with TBST, the plates were visualized using
SuperSignal West Dura Extended Duration Substrate according to the manufacturer’s instructions.
The plates were incubated for 3 min at room temperature and luminescent counts recorded using a
Victor3 Multilabel Counter (PerkinElmer Inc., Waltham, MA, USA).

4.4.2. Capture-Capture ELISA

Fusions of the recBoNT/E3-HCP1-GST and recBoNT/E3-HCP5-GST immunized mice were screened
using a capture-capture ELISA screen as previously described with minor modifications [37,38]. Briefly,
50 µL per well of all solutions were used. Black microtiter plates were coated with a 1 µg/mL solution
of goat anti-mouse IgG Fc gamma in 0.05 M sodium carbonate buffer, pH 9.6 overnight at 4 ◦C. The IgG
solution was aspirated and non-coated sites blocked by adding 300 µL per well of 3% NFDM-TBST and
the plates were incubated for 1 h at 37 ◦C. The plates were washed once with TBST, then cell culture
supernatants were added and the plates were incubated at 37 ◦C for 1 h. The plates were washed three
times with TBST, then a solution of BoNT/E3 in NFDM-TBST (50 ng/mL) was added and the plates
were incubated at 37 ◦C for 1 h. Plates were washed three times as before, then a 1 µg/mL solution of
anti-BoNT/E rabbit pAbs in NFDM-TBST was added and the plates were incubated at 37 ◦C for 1 h.
Plates were washed three times as before, then a 1 µg/mL solution of goat anti-rabbit HRP-conjugated
pAbs was added and the plates were incubated at 37 ◦C for 1 h. Plates were again washed three times,
and binding was visualized as described above.

Cells from wells giving positive signals for antibody production by either screening method were
cloned by limiting dilution. Cells were then expanded and small amounts (usually less than 10 mL)
of ascites fluids obtained (Covance Research Products, Inc., Denver, PA, USA) or 1–200 mL of spent
hybridoma media was produced. MAbs were purified by affinity chromatography on Protein-G (for
IgG) Sepharose. Bound mAbs were eluted with 0.1 M glycine-HCl, pH 2.7 and dialyzed overnight
against PBS. Protein concentrations were determined using the microplate BCA method suggested by
the manufacturer. Then, the mAbs were conjugated to biotin using EZ-Link Sulfo-NHS-LC-Biotin as
described by the manufacturer using a 50-fold molar excess of the biotin reagent. MAbs were stored at
4 ◦C until needed.

4.5. Antibody Isotyping, Western Blotting, Peptide Binding

The isotype of each mAb was determined using the SBA Clonotyping System-HRP in ELISA
format, according to manufacturer’s instructions. Western blotting was performed as previously
described [36] using nicked BoNT/E3 using both reduced and non-reduced conditions. Binding of
each antibody to the recBoNT/E3-GST peptides was examined by direct binding ELISA. The wells of



Toxins 2019, 11, 407 11 of 14

clear microtiter plates were coated with each GST-fusion protein (5 µg/mL in 0.05 M sodium carbonate
buffer, pH 9.6), incubated overnight at 4 ◦C, blocked with 3% NFDM-TBST. Purified mAb was added
to each well and incubated for 1 h at 37 ◦C. The plates were washed 3× with TBST, then 50 µL of a
1 µg/mL solution of goat anti-mouse HRP-conjugated pAb was added and the plates incubated at
37 ◦C for 1 h. Plates were again washed three times, then K-Blue TMB substrate was added (100 µL
per well) and incubated with agitation for 5 min at room temperature. Stop solution was added
(100 µL per well), and absorbance at 450 nm was measured using a VersaMax microplate reader
(Molecular Devices, Sunnyvale, CA, USA). Each antibody was tested in triplicate. In some experiments
SuperSignal West Dura Extended Duration Substrate was substituted for K-Blue and plates read on the
Victor3 as described above.

4.6. Binding of Antibodies to BoNT Serotypes A Through G

Black microtiter plates were coated with the different serotypes of BoNT, A through G for direct
binding ELISA analysis as described above. Purified anti-BoNT/E3 mAb at a concentration of 10 µg/mL
in NFDM-TBST was added to each BoNT serotype, and incubated for 1 h at 37 ◦C. The plates were
washed, then a 1 µg/mL solution of goat anti-mouse HRP-conjugated pAb was added and the plates
were incubated at 37 ◦C for 1 h. Plates were again washed three times, and binding was visualized
using SuperSignal West Dura Extended Duration Substrate as described above. Each antibody was
assayed against each serotype in triplicate.

4.7. Sandwich Assay Procedure

When performing the sandwich assay, for every mAb, the unlabeled mAb was used as the capture
antibody and the biotinylated form was used as the detector antibody. Each mAb was tested in
combination with all of the mAbs to identify pairs that can detect the BoNT/E3 toxin in the solution
phase. Black plates were coated with 100 µL of mAb at 2 µg/mL in 0.05 M sodium carbonate buffer, pH
9.6, incubated overnight at 4 ◦C, and then blocked with 3% NFDM-TBST. The blocking solution was
removed and BoNT/E3 toxin in 3% NFDM-TBST was added at an initial concentration of 500 ng/mL and
serially diluted two-fold, including wells with no toxin. Next, biotinylated-mAb was added in triplicate
at 1 µg/mL, 100 µL/well in 3% NFDM-TBST. Plates were incubated for 1 h at 37 ◦C, washed 6×with
TBST, and visualized using SuperSignal West Dura Extended Duration Substrate as described above.

When the most sensitive combination of capture mAb and detector mAb-biotin were selected, the
final sandwich assays were performed in triplicate using BoNT/E3 holotoxin at a starting concentration
of 1000 ng/mL, serially diluted three-fold, including wells with no toxin, and visualized using
SuperSignal Femto Max Sensitivity substrate. Limit of detection cut-off values were determined using
three times the standard deviation of the wells with no toxin.

4.8. Preparation of Spiked Food Matrices

Since fish and fishery products are frequently cited as sources for serotype E related foodborne
botulism cases, we tested one canned fish product (mackerel in brine) and two types of fish roe (Tobiko
and Salmon) to determine to what extent the matrices would interfere with toxin detection in our
newly developed sandwich ELISA. For the canned mackerel, the liquid fraction was poured into a
conical tube and centrifuged for 20 minutes at 4000× g. The oil and fat layers were discarded, while the
aqueous fraction was collected and used as the sample matrix. For each roe specimen, separately, 4 g of
roe was weighed and rinsed with 40 mL of 3% NFDM-TBST. This rinsate was collected and used as the
sample matrix. As described above, the sandwich assay procedure with the most sensitive combination
of mAbs was used (BoE 66-29 as capture and BoE 9-15 as detector), but this time the BoNT/E3 holotoxin
was diluted in sample matrix to generate standard curves. The assays were performed in triplicate
using BoNT/E3 at a starting concentration of 1000 ng/mL, serially diluted three-fold into a sample
matrix, including wells with no toxin. The sample matrices were evaluated as is (i.e., neat) for the roe
rinsates, and at dilutions of 1:100, 1:250, and 1:500 with 3% NFDM-TBST for the aqueous brine matrix.
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Experiments were visualized using SuperSignal Femto Max Sensitivity substrate and data analyzed
using GraphPad Prism 7 Software (La Jolla, CA, USA).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/11/7/407/s1,
Figure S1: Binding of LC-Specific anti-BoNT/E3 mAbs (10 µg/mL) to toxin serotypes A–G, used as coating antigens
in a direct binding ELISA, Figure S2: Binding of HC-specific anti-BoNT/E3 mAbs (10 µg/mL) to toxin serotypes
A–G, used as coating antigens in a direct binding ELISA, Figure S3: Direct binding ELISA of anti-BoNT/E3 mAbs
to recombinant peptide fragments. Different antibodies are shown in A–K, Figure S4: Chemiluminescent signal
intensity of the ELISA over time at the maximal concentration (1000 ng/mL of BoNT/E3 holotoxin) tested on the
standard curve.
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