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Postpartum depression (PPD), a severe mental health disorder, is closely associated with
decreased gonadal hormone levels during the postpartum period. Mangiferin (MGF)
possesses a wide range of pharmacological activities, including anti-inflammation.
Growing evidence has suggested that neuroinflammation is involved in the
development of depression. However, the role of MGF in the development of PPD is
largely unknown. In the present study, by establishing a hormone-simulated pregnancy
PPD mouse model, we found that the administration of MGF significantly alleviated PPD-
like behaviors. Mechanistically, MGF treatment inhibited microglial activation and
neuroinflammation. Moreover, we found that MGF treatment inhibited mitogen-
activated protein kinase (MAPK) signaling in vivo and in vitro. Together, these results
highlight an important role of MGF in microglial activation and thus give insights into the
potential therapeutic strategy for PPD treatment.
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INTRODUCTION

Postpartum depression (PPD) is a mental health disorder that frequently occurs in women during
the postpartum period. The disorder is characterized by emotional changes, including melancholic
and languid mood, low self-evaluation, lack of confidence, and even suicidal tendencies. Self-harm
behaviors have been reported to be common in PPD patients, ranging from 5 to 14% (Lindahl et al.,
2005). The average prevalence rate of PPD was previously reported to be approximately 13%
(Weissman et al., 2004); however, recent studies have shown that the global prevalence rate of PPD
was higher than the earlier estimate varying across countries (Hahn-Holbrook et al., 2017).
Currently, drugs for the treatment of PPD in clinics are mainly monoamine oxidase inhibitors
(MAOIs), tricyclic antidepressants, and selective 5-HT reuptake inhibitors (SSRIs). However, owing
to the associated side effects, such as anorexia, nausea, diarrhea, headache, nervousness, anxiety, and
insomnia (Gjerdingen, 2003), the development of new anti-PPD drugs with higher efficacy and fewer
side effects is urgently needed.

The levels of progesterone and estrogen increase steadily during pregnancy but decrease rapidly
and remain at lower levels for a long time after childbirth (Hendrick et al., 1998). Dramatic changes
in postpartum gonadal hormone levels are thought to be an important reason for the occurrence of
PPD in the clinic. Based on this theory, multiple studies have established a PPD animal model by
injecting progesterone and estrogen to mimic postpartum gonadal hormone changes (Zhang S et al.,
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2017; Zhu and Tang, 2020; Zhang et al., 2021). However, to date,
the potential etiology of PPD has remained unclear, and the
regulatory mechanisms are largely unknown. Growing evidence
has suggested that neuroinflammation is involved in the
development of depression. Increased levels of inflammatory
cytokines, such as interleukin-1 beta (IL-1β), IL-8, and tumor
necrosis factor-α (TNF-α), have been found in depressed patients
in the clinic (Bauer et al., 2014; Walker et al., 2014). Microglia are
one of the major types of immunological cells in the central
nervous system and are involved in multiple neurological
diseases, including Alzheimer’s (Heneka et al., 2013; Pan et al.,
2019; Cheng et al., 2021), Parkinson’s (Gao et al., 2002; Lee et al.,
2018; Cheng et al., 2020), and stroke (Zhao et al., 2016; Liao et al.,
2020). For mental health disorders, it has been documented that
microglial activation and NLRP3 inflammasome contribute to the
development of post-traumatic stress disorder (Dong et al., 2020;
Li S et al., 2021). In addition, it has been reported that the
knockout of Dlg1 in microglia alleviated LPS-induced depression
in mice by inhibiting microglial activation and
neuroinflammation (Peng et al., 2021). Recently, too,
neuroinflammation was reported to be involved in PPD
pathology (Kendall-Tackett, 2007; Maes et al., 2000; Anderson
and Maes, 2013; O’Mahony et al., 2006; Zhang X. L et al., 2017).

Mangiferin (MGF) is a type of tetrahydroxy pyrone carbonate,
which can be extracted from several plants, such as Mangifera
indica L and Amygdalus communis L. MGF possesses a wide
range of pharmacological properties, including antitussive, anti-
asthmatic, antiviral, immunoregulatory, antitumor, and anti-
inflammatory activities (Saleh et al., 2014; Sellamuthu et al.,
2014; Benard and Chi, 2015; Jang et al., 2016; Shi et al., 2016;
Fan et al., 2017). In this study, we established a hormone-
simulated pregnancy PPD mouse model and found that MGF
alleviated PPD-like behaviors in mice. Mechanistically, MGF
inhibited mitogen-activated protein kinase (MAPK) signaling
in vivo and in vitro, thus inhibiting microglial activation and
neuroinflammation.

RESULTS

MGF Treatment Alleviates Depression-Like
Behavior
To study the effects of MGF on PPD, we established a hormone-
simulated pregnancy (HSP) mouse model combined with
ovariectomy (OVX). As shown in Figure 1, behavioral tests
began 10 days after progesterone (P4) withdrawal. Two doses
ofMGF (20 and 60 mg/kg) were orally administered once per day.
Moreover, the novelty-suppressed feeding (NSF) test was used to
evaluate exploration and anhedonia behaviors, while the forced
swim test (FST) and tail-suspension test (TST) were utilized to
assess depression-like behaviors. We found that mice in the PPD
model group showed increased immobility time in the NSF test,
FST, and TST (Figures 2A–F), indicating impaired emotional
functions. Interestingly, administration of MGF significantly
decreased the immobility time in the NSF test in a dose-
dependent manner compared with the PPD group (p < 0.001)
(Figures 2A,B). Consistently, administration of MGF

significantly decreased the immobility time in the FST and
TST, suggesting alleviated depression-like behaviors (Figures
2C–F). Furthermore, we compared the PPD/MGF groups with
the control groups through behavioral tests and found that PPD/
MGF groups reduced the immobility time of PPD mice in NSF,
which was still higher than that in the control groups. However,
there was no difference in immobility time between high doses of
the MGF and the control group in TST and FST, indicating a
protective effect of MGF. Collectively, these results suggest that
the administration of MGF could alleviate HSP-induced
depression-like behavior in mice.

MGF Treatment Decreases Inflammatory
Cytokine Levels in the Mouse Brain
To further study the mechanism underlying the protective effect
of MGF, we examined the expression of synaptic
plasticity–related protein 95 (PSD95) and brain-derived
neurotrophic factor (BDNF) in the hippocampus. However, no
significant differences were observed between the MGF-treated
groups and the PPD model groups (Figures 3A–C). Multiple
studies have suggested that neuroinflammation is involved in the
development of depression (Engler et al., 2017; Moisan et al.,
2021). To determine whether neuroinflammation is involved in
this process, we first examined the protein levels of IBA1 and
GFAP in the mouse brain. We found that the expression level of
IBA1 was increased in the PPD group compared to that in the
control group. MGF treatment inhibited this increase in a dose-
dependent manner. There were no significant changes in the
protein levels of GFAP among the four groups (Figures 3D–F).

FIGURE 1 | Timeline of experimental design, including the schedule of
the hormone-stimulated pregnancy (HSP)-induced postpartum depression
(PPD) micemodel and drug administration and behavior tests. Female BALA/c
mice were ovariectomized bilaterally for 7 days. The ovariectomized
mice were injected intraperitoneally with β-estradiol (E2, 0.5 μg/day) and
progesterone (P4, 0.8 mg/day) for 16 consecutive days. Progesterone was
then withdrawn, and a high dose of β-estradiol (10 μg/day) was administrated
alone. At the same time, two-dose concentrations of mangiferin (MGF) were
administrated to the treatment group mice.
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Moreover, we found that the levels of inflammatory cytokines
TNF-α, IL-6, and IL-1β were significantly increased in the PPD
group mice. Interestingly, treatment with MGF significantly
inhibited the increase in the levels of these cytokines (Figures
3G–I). Together, these results show that MGF treatment
inhibited inflammatory cytokine levels in the PPD mouse brain.

MGF Treatment Inhibits Microglia Numbers
in the Mouse Brain
Next, we investigated whether microglial activation is involved in
this process. To address this, we performed an IBA1
immunofluorescence staining assay, which showed that a
higher number of microglia existed in the hippocampus of
PDD mice (Figures 4A,B). Using Image-Pro Plus software, we
analyzed the number of microglia in the CA1 and DG areas of the
hippocampus in these four groups of mice. The number of
microglia was significantly increased in the CA1 and DG areas
of the hippocampus in the PPD group mice (p < 0.001 and p <
0.01, respectively), while treatment with a high concentration of
MGF significantly inhibited this increase, with a decreasing trend
seen in the low concentration of MGF treatment groups (Figures
4C,D). Thus, these results suggest that microglia were activated in

the PPD model mouse brain and that MGF treatment could
significantly inhibit microglial activation.

MGF Inhibits Microglial Activation by
Targeting MAPK Signaling
To find the potential molecular targets of MGF, bioinformatic
analysis of 3D similarity searching, ranking, and superposition
was performed using ChemMapper (http://www.lilab-ecust.cn/
chemmapper/index.html). Among the predicted targets (MAP
kinase–activated protein kinase 2, amine oxidase [flavin-
containing] A, sialidase, fatty acid synthase, and transcription
factor p65), MAP kinase–activated protein kinase 2 (MAPK) was
ranked first, with a 3D similarity score of 1.0 (Figures 5A,B).
Next, to study changes in MAPK signaling in the hippocampus of
the mouse brain, the levels of p-JNK, p-p38, and p-ERK were
investigated. As shown in Figure 5C, increased levels of these
three markers were observed in the PPD group compared to the
control group. Notably, administration of MGF inhibited the
increase in p-JNK, p-p38, and p-ERK levels, suggesting
downregulation of MAPK signaling in the mouse brain. To
further confirm the effects of MGF on microglia, we cultured
microglial BV2 cells and studied the effect of MGF on

FIGURE 2 |MGF-alleviated HSP-induced depression-like behavior in mice. (A) Schematic representation of the novelty suppressed feeding test (NST). (B) Analysis
of immobility time in the NST [control, n = 8, PPD, n = 7, PPD/MGF (L), n = 8, and PPD/MGF (H), n = 6]. (C) Schematic representation of the forced swim test (FST). (D)
Analysis of immobility time in the FST, n = 9 in each group. (E)Schematic representation of the tail-suspension test (TST). (F)Analysis of immobility time in the TST, n = 9 in
each group; Error bars are mean ± S.E.M. *p < 0.05, **p < 0.01, and ***p < 0.001.
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LPS-induced MAPK signaling activation in vitro (Figure 5D). As
shown in Figure 5E, LPS treatment increased the protein levels of
iNOS, p-JNK, and p-p38, whereas pretreatment withMGF largely
inhibited increased levels. Consistently, the levels of the
downstream inflammatory cytokines TNF-α, IL-6, and IL-1β
were significantly inhibited in the MGF treatment group
(Figures 5F–H). Collectively, these results show that MGF
inhibits microglia-mediated inflammation by targeting MAPK
signaling.

In summary, our results show that treatment with MGF
significantly alleviated PPD-like behaviors in mice. Mechanistically,
we found that MGF inhibited microglial activation by targeting
MAPK signaling in vivo and in vitro (Figure 6), providing a
potential therapeutic strategy for PPD treatment.

DISCUSSION

As a common but severe mental health disorder, PPD poses a
serious global burden worldwide. Multiple animal models of PPD
have been established to explore its pathogenesis, including
stress-induced (Boccia et al., 2007; Haim et al., 2016), HSP-
induced (Stoffel and Craft, 2004; Schiller et al., 2013), and
transgenic animal models (Tillmann et al., 2019; McDonnell
et al., 2020). Among these, the HSP-induced model is
commonly used due to its advantages such as good
reproducibility and easier procedure. In this study, increased
immobility times were found in the NSF test, FST, and TST in the
PPDmodel groupmice, indicating impaired emotional functions.
Based on this mouse model, we found that MGF significantly

FIGURE 3 | MGF decreased inflammatory cytokine levels in the mouse brain. (A–C) Immunoblotting and quantitative analysis of plasticity-related protein 95
(PSD95) and brain-derived neurotrophic factor (BDNF) levels in the hippocampus of mice. (D–F) Immunoblotting and quantitative analysis of IBA1 and GFAP protein
levels in the cortex of the indicated-group mice. (G–I) RT-PCR analysis of TNF-α, IL-6, and IL-1βmRNA levels in the hippocampus of mice. Error bars are mean ± SEM.
*p < 0.05, **p < 0.01, and ***p < 0.001.
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alleviated PPD-like behaviors. Mechanistically, we found that
MGF modulated MAPK signaling in microglia, thus inhibiting
microglial activation and neuroinflammation.

Multiple studies have shown that reproductive hormone levels
rapidly decline after delivery and are considered the main
contributor to the occurrence of PPD (Bloch et al., 2000;
Galea et al., 2001; Studd, 2015). Neuroinflammation,
GABAergic inhibition, and hippocampal neurogenesis
impairment are associated with the development of PPD
(Zhang et al., 2016; Yang et al., 2017; Zhu and Tang, 2020). In
this study, we found no significant changes in the levels of
synaptic plasticity–related proteins PSD95 and BDNF in the
hippocampus of PPD group mice. However, the IBA1 levels, a
microglial marker, were significantly increased, and higher levels
of the inflammatory cytokines TNF-α, IL-6, and IL-1β were also
noted, suggesting involvement of neuroinflammation. IL-6 and
IL-1β levels have been reported to be positively correlated with

depression scores in postpartum women (Cassidy-Bushrow et al.,
2012). Herein, the dose of MGF was determined based on
previous in vivo experiments. Administration of 20 mg/kg of
MGF possesses several beneficial biological activities, including
inhibition of mastitis induced by LPS (Qu et al., 2017),
ameliorating learning deficits (Jung et al., 2009), and
antidepressant effects in a chronic mild stress mouse model
(Cao et al., 2017). Moreover, concentrations of 30, 40, and
60 mg/kg were used in previous studies (Jangra et al., 2014;
Song et al., 2020). Therefore, concentrations of 20 and
60 mg/kg MGF were chosen for this study. Notably, we found
that treatment with MGF effectively suppressed the increase in
inflammatory levels and alleviated HSP-induced depression-like
behavior in mice, suggesting that the beneficial role of MGF in
PPD may be due to its anti-inflammatory effects.

As resident immune cells of the central nervous system,
microglia play a critical role in neuroinflammation. Microglial

FIGURE 4 | MGF inhibited microglial numbers in vivo. (A–B) Immunofluorescent staining of IBA1 in CA1 and DG areas of the hippocampus. The scale bar
represents 50 μm. (C–D) Quantitative analysis of IBA1 cell numbers. Error bars are mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001.
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activation is closely associated with neurodegenerative diseases,
strokes, and psychiatry disorders (Dong et al., 2020; Liao et al.,
2020; Li S et al., 2021; Cheng et al., 2021). Here, we found that the
number of microglia significantly increased in the hippocampus
of the PPD group mouse brain, suggesting that microglial
activation might be involved in the development of PPD.
Moreover, treatment with MGF significantly inhibited the
increase in microglial number in the hippocampus, suggesting
that the neuroprotective role of MGF might be associated with its
inhibitory effect on microglial activation. To further elucidate the
potential targets of MGF, we performed bioinformatics analysis
and found thatMGF targets MAPK signaling, which regulates cell

proliferation, stress response, inflammation, cell differentiation,
and apoptosis (Li Z et al., 2021; Qin et al., 2021; Wang et al., 2021;
Yang et al., 2021). More importantly, the MAPK signal pathway
has been linked to several diseases, including depression (Duman
et al., 2007; Wang and Mao, 2019; Humo et al., 2020). In this
study, we confirmed the inhibitory effect of MGF on MAPK
signaling in vivo and in vitro. Nevertheless, further regulatory
mechanisms must be clarified in the future.

Our results demonstrate that treatment with MGF attenuated
HSP-induced PPD-like behaviors in mice. Mechanistically, we
found that MGF suppressed microglial activation by targeting
and inhibiting MAPK signaling activation, thus inhibiting

FIGURE 5 |MGF-regulatedmitogen-activated protein kinase (MAPK) signaling in vivo and in vitro. (A)MGF structure. (B)Potential protein targets of MGF ranked by
the standard score of the probabilities. (C) Immunoblotting analysis of p-JNK, JNK, p-p38, p38, p-ERK, ERK, and β-tubulin protein levels in the hippocampus of mice.
The number represents the normalized quantitative value of the protein. (D) The schematic representation of LPS stimulation in BV2 cells. (E) Immunoblotting analysis of
iNOS, p-JNK, JNK, p-p38, p38, p-ERK, ERK, and β-tubulin protein levels from BV2 cells after being treated with MGF for 0.5 h and then stimulated LPS (1 μg/ml)
for 6 h. The number represents the normalized quantitative value of the protein. (F–H) RT-PCR analysis of TNF-α, IL-6, and IL-1β mRNA levels in BV2 cells after being
treated with MGF for 0.5 h and then stimulated LPS (1 μg/ml) for 6 h. Error bars are mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001.
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downstream inflammatory cytokine levels, suggesting a potential
therapeutic target for the clinical treatment of PPD.

MATERIAL AND METHODS

Reagents and Antibodies
MGF (purity ≥98%) was purchased from Chengdu Desite
Biotechnology (Chengdu, China). β-estradiol (E8875),
dimethyl sulfoxide (DMSO), and LPS were purchased from
Sigma-Aldrich (St. Louis, MO, United States). Progesterone
was obtained from VETEC (V900699). The antibodies used
for western blotting were as follows: Iba1/AIF-1 (E4O4W)
(#17198), GFAP (E4L7M) (#80788), PSD95 (D27E11) (#3450),
BDNF (#47808), iNOS (D6B6S) (#13120), anti-p-ERK1/2
(Thr202/Tyr204) (#9101), anti-ERK1/2 (#9102), anti-p-p38
MAPK (Thr180/Tyr182) (#4511), anti-p38 MAPK (#9212),
and anti-p-JNK (Thr183/Tyr185) (#9251) were purchased
from Cell Signaling Technology (Beverly, MA, United States).
β-tubulin (#CW0098A) and β-actin (#CW0096M) were procured
from CWBiotech (Beijing, China).

Mice
Female BALA/c mice (8 weeks old, 20–25 g) were housed in the
animal care facility of our institute. All animal experimental
procedures were approved by the Biological and Medical
Ethics Committee of Minzu University of China. All mice
were maintained under conditions of a 12-h light/dark cycle at
23°C and were provided with food and water.

Cell Culture and Treatment
BV-2 microglial cell lines were maintained in Dulbecco’s
Modified Eagle’s Medium (DMEM, #11965-092, Life
Technologies, Waltham, MA, United States) supplemented
with 10% heat-inactivated fetal bovine serum (FBS, #04-001-
1A, Biological Industries, Israel) and 1% penicillin-streptomycin

solution (#03-031-1B, Biological Industries) at 37°C in a
humidified atmosphere with 5% CO2.

PPD Model
Two-month-old female mice were chosen, and hormone-induced
pseudopregnancy (HSP)-induced PPD models were established
as previously described (Li et al., 2018; Zhang et al., 2021). Mice
were randomly divided into four groups (control, PPD, PPD/low
MGF, and PPD/high MGF). OVX was performed under
isoflurane anesthesia. After 7 days of recovery from OVX
operation, mice in the PPD and PPD with MGF treatment
groups were intraperitoneally injected with β-estradiol (E2,
0.5 g/day) and progesterone (P4, 0.8 mg/day) dissolved in
0.1 ml sesame oil daily for 16 days, resulting in a gradual
increase in the concentration of E2 and P4 in mice to mimic
the increases in hormone levels. Subsequently, mice were
intraperitoneally injected with E2 (10 µg/day) alone for seven
consecutive days to mimic high levels of E2 during pregnancy.
Meanwhile, MGF was administered intragastrically at two
different doses (20 and 60 mg/kg), as indicated in Figure 1.

NST
The NST was performed as previously described, with minor
modifications (Barbieri et al., 2021). Briefly, before the test,
the mice were deprived of food but had free access to water
for 24 h. Each mouse was positioned into the device with food
placed on white paper in the same direction and allowed to freely
explore for 5 min. The immobility time of each mouse was
recorded.

FST
One day before the test, mice were allowed to swim in water for
5 min. During the test, the mice were placed in a beaker (volume,
3 L) filled with water at 23–25°C. The total test time was 6 min,
and the immobility time of the mice in the last 4 min was
recorded.

FIGURE 6 | Schematic representation of the mechanism of MGF in treatment of PDD in mice. Treatment of MGF could significantly alleviate the HSP-induced PPD-
like behaviors in mice. Mechanistically, MGF inhibited microglial activation by targeting MAPK signaling in vivo and in vitro.
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TST
Mice were placed in the test room 2 h before the test and hung on
the instrument with a clip. Similar to the FST, the total
experimental time was 6 min, and the immobility time of the
mice in the last 4 min was recorded.

Real-Time Quantitative and Reverse
Transcription-PCR
Total RNA was isolated from the hippocampus of mice in each
group using a TRIzol reagent (Invitrogen, cat#15596018), and
1 μg of RNA was used to synthesize cDNA using a one-step first-
strand cDNA synthesis kit (Transgen Biotech, cat#AT341).
Quantitative real-time PCR was performed using a 2 × SYBR
Green PCR master mix (Transgen Biotech, cat#AQ131) and an
Agilent Mx3005P RT-PCR system. The expression levels of the
tested genes were normalized to those of β-actin. The primers for
mouse IL-1β, TNF-α, IL-6, and β-actin were as follows:

Mouse IL-1β: Forward: 5′-TGTAATGAAAGACGGCAC
ACC-3′; Reverse: 5′-TCTTCTTTGGGTATTGCTTGG-3′.

Mouse TNF-α: Forward: 5′-CAGGCGGTGCCTATGTCTC-
3’; Reverse: 5′-CGATCACCCCGAAGTTCAGTA G-3′.

Mouse IL-6: Forward: 5′-CTACCAAACTGGATATAATCA
GGA-3′; Reverse: 5′-CCAGGTAGCTATGGTACTCCAGAA-3′.

Mouse β-actin: Forward: 5′-GGCTGTATTCCC
CTCCATCG-3′; Reverse: 5′-CCAGTTGGTAACAATGCCATG
T-3′.

Western Blotting Analysis
The concentration of the extracted protein was determined using
the BCA assay. Equal amounts of protein were separated by
polyacrylamide gel electrophoresis (SDS-PAGE) and incubated
with the primary antibody overnight at 4°C, followed by
incubation with a secondary antibody (1:5,000) for 1 h at
room temperature. An ECL luminescent solution was used for
detection.

Immunofluorescent Staining
After anesthesia, the mice were perfused with normal saline, and
then the whole brain was isolated and fixed with 4%
paraformaldehyde for 24 h and dehydrated overnight in 30%
sucrose solution. Whole brain tissue was embedded in OCT and
sectioned using a freezing microtome (Leica CM3050S). Tissue
sections were incubated with anti–goat IBA1 antibody (1:500,
WAKO, Japan) overnight at 4°C with shaking. On the following
day, tissue sections were incubated with secondary antibodies for

1 h at room temperature. Finally, images were captured using a
laser scanning confocal microscope (Nikon, Tokyo, Japan).

Statistical Analysis
All data are presented as mean ± SEM. The significance of the
differences was determined by the t-test and one-way ANOVA
using GraphPad Prism (GraphPad Software, San Diego, CA,
United States). *p < 0.05, **p < 0.01, and ***p < 0.001 were
considered as significant.
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