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A B S T R A C T   

Idiopathic lung fibrosis (ILF) is a severe and life threatening lung disorder that is characterized by scarring of 
lung tissue, leading to thickening and stiffening of affected areas. This study looked at the role played by PI3K- 
Akt/PKB-mToR signaling pathway in the pathogenesis of N-Nitrosodimethylamine (NDMA)-induced lung fibrotic 
injury, and the effects of syringic acid (SYR) and ascorbic acid (ASC) treatments in male Wistar rats. Pulmonary 
fibrosis was induced by intraperitoneal injection of 10 mg/kg NDMA once daily, thrice (consecutively) a week for 
four weeks, and this condition was treated daily with SYR (50 mg/kg) and ASC (100 mg/kg) acids orally for four 
weeks. Fibrogenesis, following NDMA administration was marked by a significant increase in collagen-1 and 
α-SMA levels, while oxidative stress was marked by a significant decrease in GSH level, GST, GPx, CAT, and SOD 
activities. Also, NDMA significantly increased lung Bax, p53, caspase-3, TNF-α, IL-1β, NFkB, and decreased Bcl-2, 
mdm2, cyclin D1 and Nrf-2 levels. Looking at the PI3K-Akt-mTOR signaling pathway, NDMA administration 
significantly activated lung PI3K, Akt, and mTOR, and deactivated PTEN, FoxO1 and TSC2. Treatments with SYR 
and ASC significantly reduced oxidative stress by restoring the antioxidant systems via Nrf2 activation, decreased 
the levels of inflammatory markers through inhibition of NFkB, downregulated p53, Bax, and caspase-3 via up- 
regulation of mdm2 and cyclin D1. SYR and ASC also regulated the PI3K-Akt-mTOR signaling pathway via the 
deactivation of PI3K, Akt, and mTOR, and up-regulation of PTEN, FoxO1 and TSC2. Overall, SYR and ASC 
modulate the PI3K-Akt-mTOR signaling pathway via inhibition of oxidative stress, inflammation and apoptosis in 
NDMA-induced lung fibrosis.   

1. Introduction 

N-Nitrosodimethylamine (NDMA) is a genotoxic chemical widely 
seen in the environment in nitrate or nitrite exposed foods, some bev-
erages, and tobacco smoke. Reported tissues where NDMA is capable of 
inducing cancer are kidney, lung, and liver [1–3]. NDMA is an extremely 
lethal toxin that is metabolized by the liver microsomal cytochrome 
P450 (2E1) [4,5], and it is a known inducer of tissue fibrosis [6]. 

Fibrosis, a disorder marked by the scarring and thickening of con-
nective tissue due to aggregation of extracellular matrix proteins, is 
commonly related with chronic tissue inflammation [7]. Chronic state of 
this disease usually results in widespread disorganization of normal 

tissue architecture, accounting for about 45% of mortality in the 
developed world [8]. Fibrosis can result in virtually all tissues, but 
idiopathic lung fibrosis (ILF) [9] is a more common fibrotic disease of 
major concern. ILF, the commonest type of interstitial pulmonary dis-
ease is marked by a chronic, progressive and irreversible course having a 
median survival of 3–5 years [10,11]. Presently, no potent treatment for 
lung fibrosis has been found, other than pulmonary transplantation. 
Immediate pathological signs are alveolar epithelial cell injury, persis-
tent inflammatory cell infiltration and diffuse fibrotic alveolitis [12]. 
Subsequently, fibroblasts are activated, which metamorphose to a 
myofibroblastic character [12]. These myofibroblastic cells lead to the 
extracellular matrix and collagen accumulation in the lungs, whereby 
normal lung tissues are replaced by fibrotic scarring that are 
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honeycomb-like in nature [13]. Fibrosis is initiated by lung inflamma-
tion, and inability to repair epithelial cell injury is a determining factor 
in the pathogenesis of fibrosis [12]. Activation of epithelial cells result in 
the production of cytokines, growth factors, fibroblast growth factor and 
tumor necrosis factor that initiate fibroblasts migration and proliferation 
[14]. In failed epithelial repair, there is inability of the damaged tissue to 
heal and properly resolve, leading to a continuous fibroproliferative 
state [14]. Fibrosis can be reversed if the underlying cause is abolished. 
Hence, agents that have anti-fibrotic properties could be utilized to 
manage and treat these conditions [15]. 

Phenolic compounds possess aromatic ring-containing hydroxyl 
groups and are rich sources of antioxidants. Of these phenolic com-
pounds, hydroxybenzoic and hydroxycinnamic acids are two major 
kinds located in plant parts. Syringic acid (SYR), a phenolic acid de-
rivative of hydroxybenzoic acid is found abundantly in olives and 
grapes, as well as leaves of Alpinia calcarata Roscoe [16]. SYR has 
reactive species scavenging ability and has been reported to have strong 
efficacy in the treatment of microbial infection, cancer, inflammation, 
diabetes, cardiovascular diseases, and neuronal damage [17,18]. 
Methoxy groups in the structure of SYR confer its therapeutic properties. 
SYR can mop free radicals, and can coordinate the activities of certain 
enzymes and numerous transcription factors that have roles in the eti-
ology of cancer, inflammation, angiogenesis and diabetes [17]. In 
addition, SYR possesses neuro-protective activities against oxidative 
stress-induced axonal degeneration in sciatic nerves following ischemic 
injury in rodents [19]. In past studies, SYR improved liver [20] and 
kidney (diabetic neuropathy) complications in rats [21]. 

Ascorbic acid (ASC) is a water soluble vitamin, which has ability to 
quench free radicals, regenerate vitamin E, involved in the biosynthesis 
of collagen where it serves as a cofactor for prolyl and lysyl hydroxy-
lases, and regulation of gene expression [22]. Intake of ASC lowers the 
production of pro-inflammatory cytokines, and in connection to car-
diovascular diseases, ASC blocks the oxidation of low density lipopro-
tein, halts lipid peroxidation, and raises the levels of glutathione 
[23–25]. Antioxidant property of ASC confers its ability to suppress the 
production of beta-amyloid peptide and glutamate-mediated excitotox-
icity [26]. 

George et al. [6] have reported that rat model of NDMA-induced 
fibrosis is a good and reproducible model. Studies focusing on treat-
ments of lung fibrosis have not been well reported, which necessitated 
the need for this study. Therefore, in this study, we investigated the 
involvement of the PI3K-Akt/PKB-mTOR signaling pathway in 
NDMA-induced lung fibrotic injury, and the protective efficacy and 
mechanisms of action of SYR and ascorbic acid (ASC) in male Wistar 
rats. 

2. Materials and methods 

2.1. Test materials, kits, and chemicals 

N-nitrosodimethylamine (NDMA; C2H6N2O) is manufactured by 
Sigma Chemical Co., Saint Louis, MO, USA, with CAS number 62-75-9, 
and percentage purity of 98%. Syringic acid (SYR; C9H10O5) with 
CAS number 530-57-4 and percentage purity of 98% is a product of AK 
Scientific, 30023 Ahem Ave, Union City CA, 94587 USA. Ascomed 
ascorbic acid tablets are product of Kunimed Pharmachem Ltd, 18/20, 
Mortune Avenue, Valley Estate, Ikeja, Lagos, Nigeria. Enzyme linked 
immunosorbent assay (ELISA) kits for the estimations of pulmonary 
levels of pro-inflammatory cytokines (TNF-α and IL-1β), and apoptotic 
parameters (caspase-3, Bcl-2, and Bax) were purchased from Cusabio 
Technology Llc, Houston, TX, USA. Primary monoclonal antibodies for 
immunohistochemical detection of collagen type 1, mdm-2, p53, cyclin 
D1, Nrf2, and α-SMA were gotten from Santa Cruz Biotechnology Inc, 
Dallas, Texas 75220, USA. Primers (Oligonucleotide sequence) for K-ras, 
PI3K, PDPK1, Akt, NFkB, mTOR, S6K, IRS-1, VEGF-α, FoxO1, PTEN, and 
TSC2 for the reverse transcriptase-polymerase chain reaction (RT-PCR) 
analyses were purchased from Shanghai ShineGene Molecular Bio- 
Technologies, Inc., Wuhe Road, Minhang District, Shanghai, 201109, 
China. Trizol for ribonucleic acid extraction was purchased from 
Solarbio Life Science and Co. Ltd, Beijing China. Other chemicals and 
reagents were purchased from well-known and reputable sources of 
international recognition. 

2.2. Experimental animals 

Healthy male albino rats (n = 30; average weight of 200 g) of Wistar 
strain, were obtained from an experimental animal breeding house 
located near the university. The rats were kept in experimental cages in 
the animal housing facility of the Department of Biochemistry, and they 
all have unrestricted access to water and food. 

2.3. Experimental design 

Approval was granted by the Departmental Committee in-charge of 
the handling and use of experimental animals, before the commence-
ment of this study. Following two (2) weeks of acclimatization of the rats 
to their new environment, they were separated into six (6) groups of five 
(5) rats each, based on their body weights and were administered test 
substances as shown in Table 1. 

Terminologies and abbreviations 

NO nitric oxide 
GSH reduced glutathione 
MDA malondialdehyde 
CAT catalase 
GST glutathione S-transferase 
SOD superoxide dismutase 
GPx glutathione peroxidase 
TNF-α tumor necrosis factor alpha 
IL-1β interleukin 1β 
Bcl-2 B-cell lymphoma 2 
Bax Bcl-2 associated X 
p53 tumor suppressor protein 
mdm2 mouse double minute 2 
Nrf2 nuclear factor erythroid 2-related factor 2 

α-SMA alpha smooth muscle actin 
PI3K phosphoinositide 3-kinase 
Akt/PKB protein kinase B 
mTOR mechanistic target of rapamycin 
PTEN phosphatase and tensin homolog 
FoxO1 forkhead box protein O1 
K-ras Kirsten rat sarcoma viral oncogene 
S6K ribosomal protein S6 kinase beta-1 
VEGF-α vascular endothelial growth factor alpha 
IRS-1 insulin receptor substrate 1 
NFkB nuclear factor kappa-light-chain-enhancer of activated B 

cells 
PDPK1 3-phosphoinositide dependent protein kinase 1 
TSC2 tuberous sclerosis complex 2 
Rheb Ras homolog enriched in brain  
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2.4. Sacrifice and sample collections 

Rats were sacrificed 24 h after the last administrations by cervical 
dislocation. Rats were humanely handled by abiding with the written 
guidelines available for the use and handling of research animals [32]. 
Lung of each rat was harvested, washed in cold 0.9% NaCl, dried on 
clean filter paper, and their weight was recorded. From the samples, a 
portion was cut and homogenized in phosphate buffer (pH of 7.4; con-
centration of 0.1 M). The lung homogenate was separated using a speed 
of 5000 rpm for duration of 10 min, and the resulting supernatant was 
used for the estimation of interested biochemical parameters. 

2.5. Determination of lung MDA, NO and GSH levels 

Concentration of lung MDA was carried out by following the method 
of Buege and Aust [33]. Lung NO concentration was estimated by using 
Griess reagent (that detects nitrite ion), according to the method of 
Green et al. [34] while lung GSH concentration was assayed for by 
following the method of Moron et al. [35]. 

2.6. Estimation of lung GST, GPx, SOD, and CAT activities 

Assay for the estimation of GST activity was carried out using the 
protocol of Habig et al. [36] based on enzyme-catalyzed condensation of 
glutathione with the model substrate, 1-chloro-2,4-dinitrobenzene. For 
GPx activity, the protocol of Rotruck et al. [37] was used, SOD assay was 
done following the protocol of Misra and Fridovich [38], while CAT 
activity was checked using the protocol of Sinha [39]. 

2.7. Quantification of the levels of apoptotic (caspase-3, bax and bcl-2) 
and pro-inflammatory 

(TNF-α and IL-6) parameters 

For the quantification of lung Bcl-2, caspase-3, Bax, TNF-α and IL-1β 
levels, ELISA method was used as described in the protocol inserted in 
their respective kit (Cusabio ELISA kits), reported by Somade et al. [40]. 

2.8. Immunohistochemistry of lung collagen type 1, α-SMA, Nrf-2, mdm- 
2, p53 and cyclin D1 

Lung protein expressions of these parameters (based on antigen- 
antibody association) were investigated by following the protocols 
described by Somade et al. [41]. The percentage of tissue-stained posi-
tive cells was scored. Expressions of these proteins were then quantified 
using Fiji Image J software. 

2.9. Reverse transcriptase (RT) gene expressions of lung ras, PI3K, 
PDPK1, Akt (PKB), mToR, S6K, VEGF-α, PTEN, FoxO1, NFkB, IRS, and 
TSC2 

RT gene expression was done following RNA extraction from the lung 
samples. This was followed by the synthesis of complementary DNA 
(cDNA) using a purified DNA-free RNA template that was extracted. 
Amplification of the obtained cDNA was carried out using polymerase 
chain reaction (PCR) technique, which involved the utilization of DNA 
templates as well as forward and backward primers of the gene of in-
terest. These primers are as follow in Table 2 below. 

Gel electrophoresis of the amplified genes was conducted, migrated 
bands were captured and the degree of intensity of each cDNA band 
were quantified relative to that of β-actin cDNA (the house-keeping 
gene) using Image analysis software as described by Schneider et al. 
[42]. 

2.10. Total protein estimation 

Total protein levels in the lung samples were estimated by using the 
method of Gornall et al. [43], and were used for the calculation of lung 
antioxidant parameters. 

2.11. Histopathology of lung sections 

This was done as described by Somade et al. [44] using sections of 
lung fixed in phosphate-buffered formalin solution. Embedded tissues in 
paraffin were stained and later observed under microscope at x100 
magnification. 

2.12. Statistical analyses 

One way analysis of variance (ANOVA) was used, while multiple 
comparisons for significance among the groups was done using Tukey’s 
test in Graph Pad Prism Programme software version 6.0. Mean and 
standard error of mean (SEM) were used for the expression of results. P 
value greater than 0.05 (95% CI) was not taken to be significant. 

Table 1 
Grouping and administration of test substances.  

Group Substance administered Duration 

Group 
1 

1 ml/kg of saline 28 days 

Group 
2 

10 mg/kg of 1% w/v of NDMA 
dissolved in saline 

3 consecutive days a week for 4 
weeks [27,28]. 

Group 
3 

10 mg/kg of 1% w/v of NDMA +50 
mg/kg SYR [29,30] dissolved in 
distilled water 

3 consecutive days a week for 4 
weeks (NDMA) and 28 days 
(SYR) 

Group 
4 

10 mg/kg of 1% w/v of NDMA + 100 
mg/kg ASC [31] dissolved in distilled 
water 

3 consecutive days a week for 4 
weeks (NDMA) and 28 days 
(ASC) 

Group 
5 

50 mg/kg SYR only 28 days 

Group 
6 

100 mg/kg ASC only 28 days  

Table 2 
Primer sequences (forward (F) and reverse (R)) for the gene of interest.  

Gene  Sequences 

NFkB F 5′-TCCCACAAGGGGACATTAAGC-3′

R 5′-CAATAGGCCTCTAGTAGTAGCCC-3′

Akt F 5′-TCATTGAGCGCACCTTCCAT-3′

R 5′-TTCTGCAGGACACGGTTCTC-3′

PI3K F 5′-TGGCCCGGGTAGGTTTGAAT-3′

R 5′-ATGCCCTAGGTGACCTGACA-3′

FoxO1 F 5′-CGGCCCCCAATCTCGG-3′

R 5′-CTTGCCTCCCTCTGGATTGA-3′

IRS-1 F 5′-ACTGAGAGCATCACTGCCAC-3′

R 5′-CCCCATTTCCTTTGCGGTTG-3′

S6K F 5′-TTGGGGCATTTACATCAAAAGGG-3′

R 5′-GACTCCACCAATCCACAGCA-3′

K-Ras F 5′-GACAGGGTGTTGACGATGC-3′

R 5′-AAGTGTGCCTTAAGAAAGAGTACAA-3′

mTOR F 5′-AGCCGGACTCCTTCCACTAA-3′

R 5′-CTGGAGGGCAAAGAGTTGCT-3′

TSC2 F 5′-GCGGGAGCAGTTCTCTACCA-3′

R 5′-ACCTAGGATTTGGCCTTGACG-3′

PDPK1 F 5′-CCACCAGCCAGCTGTATGAC-3′

R 5′-CGGCTCTGAATGGTGGAAGT-3′

PTEN F 5′-AGACCATAACCCACCACAGC-3′

R 5′-ACCTTTAGCTGGCAGACCAC-3′

VEGF-α F 5′-ACAGAAGGGGAGCAGAAAGC-3′

R 5′-GCAACGCGAGTCTGTGTTTT-3′

β-Actin F 5′-CCCGCGAGTACAACCTTCTT-3′

R 5′-CATCGGTAGGTCCGACACAA-3′
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3. Results 

3.1. Effect of SYR and ASC treatments on relative lung weight 

Table 3 shows the lung weight of animals before and after adminis-
trations of NDMA, while Fig. 1 shows the results of relative lung weight 
of animals. In this result, there was a non-significant increase (p > 0.05) 
in the relative lung weight after NDMA administration compared with 
control. SYR and ASC showed no significant effect on relative lung 
weight (Fig. 1) after treatments. 

3.2. Effect of SYR and ASC treatments on lung levels of MDA, NO, and 
GSH 

Lung MDA (Fig. 2A) level was significantly (p < 0.05) increased by 
NDMA administration (by 91.74%) compared with control. MDA level 
was brought down significantly (p < 0.05) by the administration of SYR 
(by 49.65%; SYR/NDMA) and ASC (by 50.40%; ASC/NDMA) compared 
with NDMA only administered rats. Lung NO (Fig. 2B) was insignifi-
cantly (p > 0.05) decreased following administration of NDMA to rats 
compared with control. A significant decrease (p < 0.05) in NO level was 
recorded after SYR (by 30.12%; SYR/NDMA) and ASC (by 18.13%; ASC/ 
NDMA) treatments compared with NDMA only administered rats. For 
lung GSH (Fig. 2C), a significant (p < 0.05) decrease by 27.58% was 
recorded as a result of NDMA administration compared with control 
rats. SYR treatment significantly (p < 0.05) increased GSH level by 
22.97% (SYR/NDMA), but ASC (ASC/NDMA) recorded a non-significant 
(p > 0.05) increase, compared with NDMA administered rats. 

3.3. Effect of SYR and ASC treatments on activities of lung GPx, GST, 
CAT, and SOD 

Compared to the control, activity of lung GPx (Fig. 3A) was signifi-
cantly (p < 0.05) decreased by NDMA administration (by 32.72%). No 
significant effect was seen after ASC intervention (ASC/NDMA), but a 
significant 29.03% increase was seen following SYR (SYR/NDMA) 
treatment, compared with NDMA only. In Fig. 3B, there was a decrease 
in the activity of lung GST by 59.63% compared with the control. After 
treatment with SYR and ASC, there was a significant (p < 0.05) increase 
in the activity of the enzyme by 212.43% (SYR/NDMA) and 431.97% 
(ASC/NDMA) respectively compared with NDMA only administered 
rats. Activity of lung CAT (Fig. 3C) was reduced (by 24.99%) signifi-
cantly (p < 0.05) by NDMA administration compared with control. 
Following treatments, only SYR (SYR/NDMA) was effective and 
increased the activity of CAT by 17.75% compared with NDMA only 
challenged rats. Similarly, activity of lung SOD (Fig. 3D) was reduced 
significantly (p < 0.05) by NDMA administration (by 28.66%) compared 
with control. Following treatments, only SYR was effective and 
increased the activity of SOD by 23.43% (SYR/NDMA) compared with 
NDMA only challenged rats. 

3.4. Effect of SYR and ASC treatments on levels of lung TNF-α, IL-1β, 
caspase-3, bax, and bcl-2 

TNF-α level in the lung of rats administered NDMA was significantly 
(p < 0.05) elevated by 79.87% compared with TNF-α level of control 
animals (Fig. 4A). Following treatments, there was a significant (p <
0.05) decrease by 38.31% for SYR (SYR/NDMA), while there was a 

decrease by ASC (ASC/NDMA) treatment but was not significant (p >
0.05), when both treatments were compared with NDMA only. Simi-
larly, lung IL-1β (Fig. 4B) was significantly increased (p < 0.05) by 
123.56% compared with control. Following treatment, only SYR (SYR/ 
NDMA) was significantly effective (p < 0.05) in lowering the level of IL- 
1β (by 18.66%) compared with NDMA only. Caspase-3 level (Fig. 4C) in 
the lung was also elevated (p < 0.05) significantly by 76.60% as a result 
of NDMA administration compared with control. Treatments with SYR 
and ASC were effective, as evidenced by a significant (p < 0.05) decrease 
in lung caspase-3 level by 30.18% (SYR/NDMA) and 32.67% (ASC/ 
NDMA) respectively, compared with NDMA only. Similarly, for Bax 
(Fig. 4D), a significant (p < 0.05) elevation by 55.77% in its level was 
recorded following NDMA administration compared with control. At the 
end of treatments, both treatments with SYR and ASC were potent as 
evidenced by the significant (p < 0.05) decrease by 14.91% (SYR/ 
NDMA) and 15.91% (ASC/NDMA) respectively compared with NDMA 
only. On the other hand, following NDMA administration, Bcl-2 level 
(Fig. 4E) was significantly (p < 0.05) reduced by 57.20% compared with 
control. This decrease was significantly (p < 0.05) increased after 
treatments with SYR by 66.22% (SYR/NDMA) and ASC by 75.57% 
(ASC/NDMA) compared with toxicant only group. A percentage in-
crease of 212.55% was recorded when the Bax/Bcl-2 (Fig. 4F) ratio of 
NDMA group was compared with control. This significant (p < 0.05) 
increase in the ratio was significantly (p < 0.05) lowered by both SYR 
(by 40.91%; SYR/NDMA) and ASC (by 42.73%; ASC/NDMA) treatments 
compared with control. 

3.5. Effect of SYR and ASC treatments on immunohistochemical protein 
expressions of lung Nrf2 

Following immunohistochemical examination, there was a signifi-
cant (p < 0.05) reduction in the protein expression of Nrf2 in the NDMA 
only group by 84.44% compared with control (Fig. 5A). After SYR and 
ASC treatments of NDMA-induced toxicity, there was a significant (p <
0.05) elevation by 220.09% (SYR/NDMA) and 265.65% (ASC/NDMA) 
respectively in the Nrf2 protein expressions compared with NDMA only 
(Fig. 5A). 

Table 3 
Lung weights before and after NDMA administrations.  

Lung weight (g) before NDMA 
administrations 

Lung weight (g) after NDMA 
administrations 

0.86 ± 0.04 1.49 ± 0.14 

Values are expressed as mean ± SEM. NDMA = N-Nitrosodimethylamine. 

Fig. 1. Effects of SYR and ASC treatments on relative weights in NDMA- 
induced lung fibrosis. Bars represent the mean ± SEM. NDMA = N-Nitro-
sodimethylamine; SYR = syringic acid; ASC = ascorbic acid. 
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3.6. Effect of SYR and ASC treatments on immunohistochemical protein 
expressions of lung collagen-1 and α-SMA 

Collagen-1 level in the lung was significantly (p < 0.05) increased by 
734.92% after NDMA administration compared with control (Fig. 5B). 
Treatments of this lung toxicity by SYR and ASC were significant (p <
0.05) judging by the reduction in collagen-1 level by 72.82% (SYR/ 
NDMA) and 49.35% (ASC/NDMA) respectively compared with the 
toxicant only (Fig. 5B). Similarly, lung α-SMA (Fig. 5C) expression was 
significantly (p < 0.05) increased by 113.51% in the NDMA only group 
compared with control. After treatments with SYR and ASC (Fig. 5C), 
α-SMA protein expression was significantly (p < 0.05) brought down by 
30.71% (SYR/NDMA) and 48.98% (ASC/NDMA) respectively compared 
with NDMA only administered rats. 

3.7. Effect of SYR and ASC treatments on immunohistochemical protein 
expressions of lung p53, mdm2 and cyclin D1 

NDMA administration significantly (p < 0.05) increased the protein 
expression of lung tumor suppressor p53 (Fig. 5D) by 375.46% 
compared with control. This elevation in the p53 level was brought 
down by SYR (63.88%; SYR/NDMA) and ASC (43.16%; ASC/NDMA) 
treatments compared with NDMA only (Fig. 5D). On the other hand, the 

protein expressions of both mdm2 (Fig. 5E) and cyclin D1 (Fig. 5F) in the 
NDMA only group were significantly (p < 0.05) decreased by 84.83% 
and 91.04% respectively compared with control. Both treatments with 
SYR and ASC were highly effective in increasing the expressions of the 
two proteins. SYR significantly (p < 0.05) increased the expressions of 
mdm2 (Fig. 5E) and cyclin D1 (Fig. 5F) by 1656.12% (SYR/NDMA) and 
852.94% (SYR/NDMA) respectively, while ASC significantly (p < 0.05) 
increased the expressions of mdm2 (Fig. 5E) and cyclin D1 (Fig. 5F) by 
1046.94% (ASC/NDMA) and 280.54% (ASC/NDMA) respectively 
compared with NDMA only. 

3.8. Effect of SYR and ASC treatments on mRNA expressions of lung K- 
ras, PI3K, PDPK1, Akt and NFkB 

Compared with control, administration of NDMA to rats significantly 
(p < 0.05) decreased the mRNA expression level of Kras (Fig. 6A) by 
20.16%, and significantly (p < 0.05) increased the mRNA expression of 
PI3K (Fig. 6B) by 12.82%. mRNA expression level of PDPK1 (Fig. 6C) 
was also significantly (p < 0.05) decreased by 12.90%, while expression 
levels of Akt (Fig. 6D) and NFkB (Fig. 6E) were significantly (p < 0.05) 
elevated by 7.96% and 50.33% respectively. Following treatment with 
SYR, mRNA expression level of Kras was significantly (p < 0.05) 
increased by 8.16% (SYR/NDMA), while it was significantly (p < 0.05) 

Fig. 2. Effects of SYR and ASC treatments on levels of MDA (A), NO (B), and GSH (C) in NDMA-induced lung fibrosis. Bars represent the mean ± SEM. *significantly 
different compared with control (p > 0.05); #significantly different compared with NDMA only. NDMA = N-Nitrosodimethylamine; SYR = syringic acid; ASC =
ascorbic acid. 
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decreased by ASC (35.24%; ASC/NDMA) compared with NDMA only 
(Fig. 6A). PI3K mRNA expression was significantly (p < 0.05) reduced 
by SYR (42.29%; SYR/NDMA) and ASC (32.88%; ASC/NDMA) treat-
ments compared with NDMA only (Fig. 6B). PDPK1 expression on the 
other hand, was significantly (p < 0.05) decreased by SYR (11.71%; 
SYR/NDMA), and increased (p < 0.05) by ASC (16.77%; ASC/NDMA) 
compared with toxicant only (Fig. 6C). For both SYR and ASC treat-
ments, there was a significant (p < 0.05) decrease in the mRNA levels of 
Akt by 48.20% (SYR/NDMA) and 33.61% (ASC/NDMA) respectively 
(Fig. 6D), while for NFkB, the significant (p < 0.05) decrease was by 
6.50% (SYR/NDMA) and 10.95% (ASC/NDMA) respectively compared 
with the toxicant only (Fig. 6E). 

3.9. Effect of SYR and ASC treatments on mRNA expressions of lung 
mTOR, S6K, IRS-1 and VEGF-α 

mRNA expression level of mTOR was significantly (p < 0.05) 
increased by 7.45% following the administration of NDMA in rats 
compared with control (Fig. 7A). This expression was significantly (p <
0.05) reduced by 27.21% and 13.66% following treatments with SYR 
(SYR/NDMA) and ASC (ASC/NDMA) respectively compared with 
NDMA only (Fig. 7A). Administration of NDMA did not have a signifi-
cant (p > 0.05) effect on mRNA expression of S6K compared with con-
trol, but a significant (p < 0.05) increase was seen only after SYR 
treatment (by 8.18%; SYR/NDMA) compared with NDMA alone 

(Fig. 7B). Elsewhere, the mRNA levels of both IRS-1 (Fig. 7C) and VEGF- 
α (Fig. 7D) were significantly (p < 0.05) decreased by the administration 
of NDMA to rats by 28.62% and 25.00% respectively compared with 
control. For IRS-1, it was only SYR that further reduced the expression of 
IRS-1 significantly (p < 0.05) by 16.33% (SYR/NDMA) compared with 
NDMA alone (Fig. 7C), while both SYR and ASC were able to further 
decrease the mRNA level of VEGF-α significantly by 6.48% (SYR/ 
NDMA) and 11.03% (ASC/NDMA) respectively compared with NDMA 
only (Fig. 7D). 

3.10. Effect of SYR and ASC treatments on mRNA expressions of lung 
PTEN, FoxO1 and TSC2 

Administration of NDMA to rats significantly (p < 0.05) decreased 
the mRNA expression levels of PTEN, FoxO1, and TSC2 by 37.38% 
(Fig. 8A), 28.41% (Figs. 8B), and 16.14% (Fig. 8C) respectively, 
compared with control. After treatments, both SYR and ASC signifi-
cantly (p < 0.05) increased PTEN mRNA expression by 82.49% (SYR/ 
NDMA) and 84.60% (ASC/NDMA) respectively compared with the 
toxicant only (Fig. 8A). For FoxO1 level, only treatment with ASC was 
effective in lowering it by 22.22% (ASC/NDMA) compared NDMA alone 
(Fig. 8B), while for TSC2, it was only SYR that significantly (p < 0.05) 
increased the expression by 10.16% (SYR/NDMA) also when compared 
with NDMA only (Fig. 8C). 

Fig. 3. Effects of SYR and ASC treatments on activities of GPx (A), GST (B), CAT (C), and SOD (D) in NDMA-induced lung fibrosis. Bars represent the mean ± SEM. 
*significantly different compared with control (p > 0.05); #significantly different compared with NDMA only (p > 0.05). NDMA = N-Nitrosodimethylamine; SYR =
syringic acid; ASC = ascorbic acid. 
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3.11. Effects of SYR and ASC treatments on lung alveolar and bronchi 
architecture 

Bronchi and alveolar of control rats appeared normal with no visible 
lesions. NDMA administration led to disruption of architecture, alveolar 
thickening, hemorrhage, infiltration of inflammatory cells, and hyper-
plasia of the alveolar (Fig. 9A). In the bronchi, severe infiltration by 
inflammatory cells were also seen, and presence of very severe 

hemorrhage and disrupted epithelial cells (Fig. 9B). After SYR and ASC 
(ASC/NDMA) intervention, there was an intact alveolar architecture 
with mild infiltration of inflammatory cells (SYR/NDMA) and mild 
alveolar hyperplasia, hemorrhage with few inflammatory cells (Fig. 9A). 
In the bronchi (Fig. 9B), a mild to moderate infiltration of inflammatory 
cells and intact bronchi epithelium were seen following SYR (SYR/ 
NDMA) treatment, while ASC treatment (ASC/NDMA) showed moderate 
hemorrhage with few infiltrations of inflammatory cell and slight 

Fig. 4. Effects of SYR and ASC treatments on levels of pro-inflammatory (TNF-α and IL-1β) and apoptotic (caspase-3, bax, and bcl-2) markers in NDMA-induced lung 
fibrosis. Bars represent the mean ± SEM. *significantly different compared with control (p > 0.05); #significantly different compared with NDMA only (p > 0.05). 
NDMA = N-Nitrosodimethylamine; SYR = syringic acid; ASC = ascorbic acid. 
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disruption of the bronchial epithelium. 

4. Discussion 

Idiopathic lung fibrosis (ILF) is a severe and life threatening lung 
disorder that is still characterized by poor pathophysiology and prog-
nosis [45]. The common outcomes of ILF in patients are development of 
honeycomb-like lung, which can lead to uncontrolled loss of lung 
function [44]. In ILF, there is a formation of both fibroblast and myo-
fibroblast foci, leading to the production of fibrillary collagens, which 
are examples of extracellular matrix (ECM), causing their accumulation, 
scarring and damage to lung architecture [46]. This study therefore 
investigated the effects of both SYR and ASC treatments on 
NDMA-induced pulmonary fibrosis, and the roles played by 
PI3K-Akt-mTOR signaling pathway in rats. 

Features marking the pathophysiology of lung fibrosis are damage to 
pulmonary tissues, their apoptosis, increased proliferation of lung fi-
broblasts, as well as over secretion and deposition of collagen matrix 
[47] and α-SMA [48]. Our findings in this study are not different from 
these, which were marked by the mass deposition of collagen type 1 and 
α-SMA in the lung tissues of rats. Administration of NDMA to the rats 
may have led to the activation of the lung fibroblast causing it to 
metamorphose to myofibroblasts that resulted into the accumulation of 
these extracellular matrix proteins, and the replacement of normal lung 
tissues with scarred tissues [49]. Administrations of SYR and ASC 
however protected against these deposition of collagen-1 and α-SMA. 
The antioxidant and cytoprotective properties of these two compounds 
may have conferred this protection on the lung tissues. High levels of 
collagen type 1 and α-SMA have also been reported to accumulate in 
lung tissues in bleomycin-induced pulmonary fibrosis [48], and SYR has 
been reported to lower the gene expressions of collagen type 1 and 
α-SMA in carbon tetrachloride-induced liver injury [50]. 

PI3K-Akt/PKB signaling pathway is among the major and most 
important cellular pathways that manage cell metabolism, proliferation, 
growth, and survival [51]. Studies have reported and linked the over-
expression of α-SMA in pulmonary fibrosis to activation of PI3K-Akt 
pathway [52]. A past study reported that Akt-null mice were pro-
tected against lung fibrosis and inflammation induced by bleomycin 
[53], pointing to the fact that PI3K-Akt signaling is crucial to ILF 
development. Our findings in this study are not different, judging by the 
increased levels of lung relative mRNA expressions of PI3K and Akt, 
implicating the activation of the PI3K-Akt signaling pathway in 
NDMA-induced pulmonary fibrosis. Both treatments (SYR and ASC) 
were observed to decrease the expressions of lung PI3K and Akt, which 
may suggest their ability to prevent the activation of the signaling 
pathway. This ability may be due to their rich antioxidant and 
anti-inflammatory prowess as previously documented [54–57]. PDPK1 
has been established to phosphorylate Akt at T308, a site which is 
necessary for the activity of Akt [58]. Though, lung mRNA expression 
levels of PI3K and Akt were significantly elevated in this study, other-
wise is the case of PDPK1 level, suggesting that the phosphorylation and 
activation of Akt may not be PDPK1-dependent. 

mTOR function is executed by two various complexes namely mTOR 
complexes 1 and 2 (mTORC1 and mTORC2) [59]. It has been established 
that Akt is phosphorylated by mTORC2, thereby enhancing the process 
of cell survival and proliferation. In this study, we recorded a significant 
increase in lung mRNA expression of mTOR following NDMA adminis-
tration, a signal that NDMA administrations have tendencies to stimu-
late lung cell proliferation and their survival. Also from the information 
provided above, the significant high level of mTOR expression in this 
study also suggests that mTORC2 and not PDPK1 may be responsible for 
the phosphorylation and activation of Akt. Also, from the report of 
Lawrence and Nho [60], mTOR is said to play a pivotal role in regulating 
metabolic pathways that positively influence pulmonary fibrogenesis. 

Fig. 5A. Effects of SYR and ASC treatments on immunohistochemical expressions of p53 in NDMA-induced pulmonary fibrosis at 100× magnification. i = control; ii 
= NDMA only; iii = NDMA + SYR; iv = NDMA + ASC; v = SYR; vi = ASC; vii = graph showing percentage p53 positivity; each bar represents mean ± SEM. 
*significantly different compared with control (p > 0.05); #significantly different compared with NDMA only (p > 0.05). NDMA = N-Nitrosodimethylamine; SYR =
syringic acid; ASC = ascorbic acid. 
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Fig. 5B. Effects of SYR and ASC treatments on immunohistochemical expressions of mdm2 in NDMA-induced pulmonary fibrosis at 100× magnification. i = control; 
ii = NDMA only; iii = NDMA + SYR; iv = NDMA + ASC; v = SYR; vi = ASC; vii = graph showing percentage mdm2 positivity; each bar represents mean ± SEM. 
*significantly different compared with control (p > 0.05); #significantly different compared with NDMA only (p > 0.05). NDMA = N-Nitrosodimethylamine; SYR =
syringic acid; ASC = ascorbic acid. 

Fig. 5C. Effects of SYR and ASC treatments on immunohistochemical expressions of collagen-1 in NDMA-induced pulmonary fibrosis at 100× magnification. i =
control; ii = NDMA only; iii = NDMA + SYR; iv = NDMA + ASC; v = SYR; vi = ASC; vii = graph showing percentage collagen-1 positivity; each bar represents mean 
± SEM. *significantly different compared with control (p > 0.05); #significantly different compared with NDMA only (p > 0.05). NDMA = N-Nitrosodimethylamine; 
SYR = syringic acid; ASC = ascorbic acid. 
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Fig. 5D. Effects of SYR and ASC treatments on immunohistochemical expressions of α-SMA in NDMA-induced pulmonary fibrosis at 100× magnification. i = control; 
ii = NDMA only; iii = NDMA + SYR; iv = NDMA + ASC; v = SYR; vi = ASC; vii = graph showing percentage α-SMA positivity; each bar represents mean ± SEM. 
*significantly different compared with control (p > 0.05); #significantly different compared with NDMA only (p > 0.05). NDMA = N-Nitrosodimethylamine; SYR =
syringic acid; ASC = ascorbic acid. 

Fig. 5E. Effects of SYR and ASC treatments on immunohistochemical expressions of Nrf-2 in NDMA-induced pulmonary fibrosis at 100× magnification. i = control; 
ii = NDMA only; iii = NDMA + SYR; iv = NDMA + ASC; v = SYR; vi = ASC; vii = graph showing percentage Nrf-2 positivity; each bar represents mean ± SEM. 
*significantly different compared with control (p > 0.05); #significantly different compared with NDMA only (p > 0.05). NDMA = N-Nitrosodimethylamine; SYR =
syringic acid; ASC = ascorbic acid. 
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Fig. 5F. Effects of SYR and ASC treatments on immunohistochemical expressions of cyclin D1 in NDMA-induced pulmonary fibrosis at 100× magnification. i =
control; ii = NDMA only; iii = NDMA + SYR; iv = NDMA + ASC; v = SYR; vi = ASC; vii = graph showing percentage cyclin D1 positivity; each bar represents mean 
± SEM. *significantly different compared with control (p > 0.05); #significantly different compared with NDMA only (p > 0.05). NDMA = N-Nitrosodimethylamine; 
SYR = syringic acid; ASC = ascorbic acid. 

Fig. 6. Effects of SYR and ASC treatments on relative mRNA expressions of Kras (A), PI3K (B), PDPK1 (C), Akt (D), and NFkB (E) in NDMA-induced pulmonary 
fibrosis. NDMA = N-Nitrosodimethylamine; SYR = syringic acid; ASC = ascorbic acid. Bars represent the mean ± SEM. *significantly different compared with control 
(p > 0.05); #significantly different compared with NDMA only (p > 0.05). NDMA = N-Nitrosodimethylamine; SYR = syringic acid; ASC = ascorbic acid. 
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The significant reduction in mTOR level following treatments with SYR 
and ASC can also be attributed to their antioxidant, anti-inflammatory, 
free radical scavenging and cytoprotective abilities [57,61] that may 
have blocked the activated mTOR to initiate the lung cell proliferation 
and survival. mTORC1, S6K and other protein kinases that are down-
stream players, promote IRS1/2 phosphorylation and activation, tar-
geting IRS1 for degradation and thereby lessening the activation of PI3K 
[62]. Therefore, in this study, the increased level of mTOR mRNA after 
NDMA administration may be responsible for the significant decrease in 
lung IRS1 expression. S6K is a downstream effector of mTOR that is 
phosphorylated by the latter to stimulate protein translation responsible 
for cell growth and proliferation [63]. From the results gathered in this 
study, low level of lung S6K was recorded and this may also be the 
reason for the significantly low mRNA expression levels of IRS1. VEGF is 
also another downstream player of the mTOR signaling pathway, an 
angiogenic factor that participates in angiogenesis. From this study, 
administration of NDMA did not have effect on the expression of VEGF, 
and this may be due to the short period of exposure in this study (28 

days) that has not warranted angiogenesis, a characteristic of trans-
formed or cancer cells [64]. 

PTEN is a tumor suppressor gene capable of stopping fibroblast 
proliferation and promoting cellular apoptosis [65]. It is an important 
negative effector of the PI3K signaling pathway that can stop or block 
the phosphorylation of PIP2 to PIP3 and then inhibit the activation Akt 
and other downstream kinases [66]. Low mRNA expression level of 
PTEN was recorded in this study. This is as a result of NDMA adminis-
trations which favor the activation of both PI3K and Akt, thereby 
overwhelming PTEN expression. This further proved that exposure to 
NDMA is capable of inducing lung cancer via the suppression of PTEN as 
well as activation of PI3K-Akt-mTOR signaling pathway. It has been 
reported that in ILF patients, there was a resistance to stress-induced 
apoptosis resulting from an abnormally high activation of the 
PI3K-Akt-mTOR signaling, due to PTEN downregulation [67]. Decline in 
PTEN expression and high levels of Akt have also been seen in biopsy 
specimens of ILF patients [68]. Again, high level of lung PTEN mRNA 
expression that was recorded after treatments with SYR and ASC is a 

Fig. 7. Effects of SYR and ASC treatments on relative mRNA expressions of mTOR (A), S6K (B), IRS-1 (C) and VEGF (D) in NDMA-induced pulmonary fibrosis. NDMA 
= N-Nitrosodimethylamine; SYR = syringic acid; ASC = ascorbic acid. Bars represent the mean ± SEM. *significantly different compared with control (p > 0.05); 
#significantly different compared with NDMA only (p > 0.05). NDMA = N-Nitrosodimethylamine; SYR = syringic acid; ASC = ascorbic acid. 

Fig. 8. Effects of SYR and ASC treatments on relative mRNA expressions of PTEN (A), FoxO1 (B) and TSC2 (C) in NDMA-induced pulmonary fibrosis. NDMA = N- 
Nitrosodimethylamine; SYR = syringic acid; ASC = ascorbic acid. Bars represent the mean ± SEM. *significantly different compared with control (p > 0.05); 
#significantly different compared with NDMA only (p > 0.05). NDMA = N-Nitrosodimethylamine; SYR = syringic acid; ASC = ascorbic acid. 
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proof that both compounds have antioxidant, anti-apoptotic and 
cell-protecting abilities, capable of blocking the activities of activated 
PI3K and Akt, and surmounting tumor development via the induction of 
apoptosis. In this study, the proposed mechanism of action of SYR and 

ASC is via PTEN-induced inhibition of PI3K and Akt. Some of other 
compounds that have been previously documented to have 
PI3K-Akt-mTOR inhibition in ILF are quercetin [69], LY294002 [70], 
and wortmannin [70]. 

Fig. 9A. Effects of SYR and ASC treatments on lung alveolar architecture (magnification x100). Control (i) showing no visible lesion; NDMA (ii) showing disrupted 
architecture, alveolar thickening, hemorrhage, infiltration of inflammatory cells, and alveolar hyperplasia; NDMA + SYR (iii) showing intact alveolar architecture 
with mild infiltration of inflammatory cells; NDMA + ASC (iv) showing mild alveolar hyperplasia, mild hemorrhage and with few inflammatory cells; SYR (v) 
showing no visible lesion; ASC (vi) showing no visible lesion. NDMA = N-Nitrosodimethylamine; SYR = syringic acid; ASC = ascorbic acid. 

Fig. 9B. Effects of SYR and ASC treatments on lung bronchi architecture (magnification x100). Control (i) showing no visible lesion; NDMA (ii) showing severe 
infiltration by inflammatory cells of the bronchi, small vascular submucosa, and surrounding tissues. There is presence of very severe hemorrhage and disrupted 
epithelial cells; NDMA + SYR (iii) showing mild to moderate infiltration of inflammatory cells. The bronchi epithelium is intact; NDMA + ASC (iv) showing moderate 
hemorrhage with few inflammatory cell infiltration and slight disruption of the bronchial epithelium; SYR (v) showing no visible lesion; ASC (vi) showing no visible 
lesion. NDMA = N-Nitrosodimethylamine; SYR = syringic acid; ASC = ascorbic acid. 
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Another inhibitor in the PI3K-Akt-mTOR signaling pathway is TSC2. 
PI3K-Akt signaling is associated with cellular growth and its survival by 
interacting with TSC1/2 along mTOR pathway and also, via the inhi-
bition of pro-apoptotic players or signals [71]. Activation of Akt blocks 
the TSC1/2 complex formation, allowing Rheb to activate mTORC1. 
Following Akt phosphorylation of TSC2, there is dissociation of the 
TSC1-TSC2 complex, causing mTORC1 activation. mTORC1 activation 
therefore inhibits autophagy [72]. Similarly, NDMA-induced significant 
reduction in TSC2 mRNA expression level was observed. This observa-
tion may be due to NDMA-induced Akt activation, which can phos-
phorylate and inactivate TSC2 that is supposed to check mTORC1 
activity through the inhibition of Rheb, a direct activator of mTORC1. 
The inhibition of TSC2 as a result of Akt phosphorylation may therefore 
be responsible for the significant high level of mTOR mRNA level 
recorded in this study. SYR only was able to increase the TSC2 expres-
sion significantly and therefore, may serve as a good candidate for 
blocking mTOR activity. Mechanism of action of SYR may be by its 
ability to stimulate TSC2 to inhibit Rheb, after PTEN inhibition of 
PI3K-Akt pathway. 

Nrf2 is a transcription factor that regulates the nuclear transcription 
of many genes coding for antioxidant proteins that are needed to abro-
gate oxidative stress [73,74]. Nrf2 is among the downstream target of 
Akt, and the interplay of PI3K-Akt and Nrf2 signaling pathways super-
intends over the defense system of cells, guarding against tissue oxida-
tive and inflammatory damage [75]. Depletion of Nrf2 protein 
expression level was observed in this study. This may be attributed to 
NDMA-induced over generation of reactive species that were capable of 
overwhelming Nrf2 expression. The over generated reactive species 
were surmounted by both SYR and ASC treatments, thereby sparing and 
restoring the lung Nrf2 level. These effects of SYR and ASC are due to 
their antioxidant and free radical scavenging properties. Oxidative stress 
has also been linked to the development of lung fibrosis. The imbalance 
between pro-oxidative and anti-oxidative state may initiate epithelial 
cells apoptosis and the activation of fibrogenesis [76]. In this study, 
NDMA-induced lung lipid peroxidation and oxidative stress marked by 
elevated level of MDA, and decreased level of GSH, as well as activities 
of CAT, SOD, GST and GPx were seen, which is attributed to free radical 
formation as previous reported [44,57,77]. Lung lipid peroxidation and 
oxidative stress were suppressed by SYR and ASC treatments. This 
anti-oxidative property of both compounds has been linked to their free 
radical scavenging (antioxidant) abilities as reported by Rashedinia 
et al. [78], Cikman et al. [79], Somade et al. [56] and Somade et al. [57]. 
High level of Nrf2 recorded following treatments with SYR and ASC may 
be responsible for the restoration of the endogenous antioxidant systems 
in the animals. 

NFκB is a transcription factor that is known to play a significant role 
in the regulation of inflammation and immune responses [80]. One of 
the signaling pathways linked to NFκB signaling is the PI3K-Akt [81]. 
Akt has numerous downstream targets, one of which is IkB kinase (IKK) 
[82]. NFkB is usually sequestered with IkB in the cytoplasm in an un-
stressed state. Following stress, IKK is activated and phosphorylate IkB, 
thereby stopping their sequestration. Upon separation, NFkB becomes 
activated and translocate to the nucleus where it exerts its nuclear 
transcriptional role [40,41]. In this study, NDMA-induced NFkB mRNA 
expression was observed. This is unsurprising as NFkB is one of the 
downstream targets of the PI3K-Akt pathway, and the proposed mode of 
NFkB activation by Akt may be by the mechanism described above, i.e 
via Akt phosphorylation of IKK. The significant decrease in the mRNA 
expression of NFkB after treatments with SYR and ASC is an indication 
and proof of their cyto-protective and anti-inflammatory properties that 
make them capable of checking and maintaining NFkB in an inactive 
state, which may be through inhibition of IKK phosphorylation by Akt 
[83]. Studies have shown that tissue injuries are marked by inflamma-
tion characterized by production of pro-inflammatory cytokines like 
IL-1β and TNF-α [40]. Production of these cytokines poses harmful ef-
fects at the site of formation, and that is why studies have focused on 

these cytokines in understanding and treating tissue inflammation [84]. 
Elevated levels of TNF-α and IL-1β are indications of NDMA-induced 
lung inflammation in the rats [77]. High levels of IL-1β and TNF-α 
recorded in this study may also be responsible for the activation of 
NF-kB and its translocation to the nucleus [85]. The anti-inflammatory 
effects of SYR and ASC were exerted as evidenced by a significant 
reduction in levels of TNF-α and IL-1β, and these could be due to their 
cytoprotective and antioxidant properties [55,86]. 

p53, a tumor suppressor protein, is a cell security protein that guards 
the cells against any cellular dysfunction via coordination of cell cycle 
function (arrest) and apoptosis [87,88]. Mdm2 on the other hand, is a 
target of Akt and an inhibitor of p53 protein and as such can control and 
regulate p53 signaling pathway [89]. In this study, the significant in-
crease in lung p53 expression as a result of NDMA administration is an 
indication of lung damage in the rats. Oxidative stress that is marked by 
overproduction of free radicals and overwhelming of the endogenous 
antioxidant systems resulting from NDMA administration may be 
responsible for the damage, leading to the activation of p53 and sub-
sequent activation of downstream pro-apoptotic players [90]. Lung 
mdm2 expression on the other hand was significantly lowered in the 
NDMA only animals despite the high mRNA expression of Akt. This 
might have occurred in the animals as a means to allow apoptosis to take 
place. This could have been through PTEN inhibition of mdm2 in the 
rats. The PI3K-Akt signaling pathway is also involved in the activation of 
cyclin D1, a major stakeholder in the progression of cell cycle. In this 
study, significantly low lung cyclin D1 expression was seen as a result of 
NDMA exposure. Since cyclin D1 is involved in the progression of G1 to S 
phase of cell cycle, the reduced cyclin D1 level recorded may have 
resulted to block cell proliferation and ensure cellular apoptosis. We 
propose that the mechanism that led to the reduced cyclin D1 level may 
be via p53 activation of p21, which in turn inhibited cyclin D1, and thus, 
block proliferation of damaged cells to favor apoptosis. Both Bax and 
Bcl-2 are involved in apoptosis. While the former is pro-apoptotic, the 
latter is anti-apoptotic, and they regulate apoptosis through control of 
mitochondrial function [91,92]. Overproduction of Bcl-2 stops mito-
chondrion pore formation, and so its inhibition potentiates cytochrome c 
release [91,93]. Inhibition of Bcl-2 and up-regulation of Bax leads to the 
formation of Bax homodimer, hence, the up-regulation of apoptosis 
[94]. From our findings, the simultaneous increase in Bax as well as 
Bax/Bcl-2 ratio and decrease in Bcl-2 by NDMA administration is an 
indication of p53-induced apoptosis, since both apoptotic players are 
coordinated by p53. Extruded cytochrome c from the mitochondrion 
interacts with apoptotic protease activating factor 1 (Apaf-1), which 
favors the activation of procaspase-9 [95,96]. Once activated, caspase-9 
encourages the activation of downstream caspase-3 that is involved in 
executing apoptosis [97]. This explains the increase in caspase-3 level 
after NDMA administration observed in this study. The significant 
decrease in lung p53, Bax, caspase-3, Bax/Bcl-2 ratio and a concomitant 
increase in Bcl-2 and mdm2 levels by SYR and ASC acids are indications 
that both compounds possess anti-apoptotic properties, capable of 
stopping NDMA-induced apoptosis. In this study, the anti-apoptotic 
mechanism of both SYR and ASC is via mdm2-induced inhibition of 
p53, leading to Bcl-2 upregulation and inhibition of Bax and caspase-3. 

Akt is involved in the regulation of cell survival through the inhibi-
tion of pro-apoptotic signals, including FoxO1, a transcriptional factor. 
FoxOs promotes target gene transcription, thereby stimulating cell cycle 
arrest and cell death [98]. Phosphorylation by Akt inactivates this 
transcription factor, leading to their cytoplasmic degradation and thus 
ensuring cell survival. Increased mRNA expression of lung FoxO1 seen in 
this study after NDMA administration and before treatments with SYR 
and ASC may be as a result of cellular response to apoptosis, which may 
have resulted to prevent the unwanted proliferation of damaged cells. 
This observation was further supported by the increased levels of other 
apoptotic markers including p53, Bax, caspase-3, and decreased level of 
Bcl-2 that were also observed in this study following NDMA adminis-
trations. Administration of ASC was the only treatment that was 
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effective in lowering the mRNA expression of FoxO1. This implies that 
the anti-apoptotic mechanism of ASC may be FoxO1 gene related, but 
may not be the case for SYR. 

5. Conclusion 

Findings from this study have revealed the participation of the PI3K- 
Akt-mTOR pathway in the etiology of NDMA-induced lung fibrosis. Both 
SYR and ASC investigated in this study have rich antioxidant, anti- 
inflammatory, and anti-apoptotic properties that were exerted via 
PTEN-mediated inhibition of PI3K-Akt-mTOR, NFkB, and mdm2-p53 
signaling pathways. SYR had better therapeutic effect, and may join 
wortmannin and LY294002 in the league of drugs that are PI3K-Akt 
inhibitors. 
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