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ABSTRACT

Motivation: Annotation Enrichment Analysis (AEA) is a widely used
analytical approach to process data generated by high-throughput
genomic and proteomic experiments such as gene expression
microarrays. The analysis uncovers and summarizes discriminating
background information (e.g. GO annotations) for sets of genes
identified by experiments (e.g. a set of differentially expressed genes,
a cluster). The discovered information is utilized by human experts
to find biological interpretations of the experiments.

However, AEA isolates and tests for overrepresentation only
individual annotation terms or groups of similar terms and is limited
in its ability to uncover complex phenomena involving relationship
between multiple annotation terms from various knowledge bases.
Also, AEA assumes that annotations describe the whole object of
interest, which makes it difficult to apply it to sets of compound
objects (e.g. sets of protein—protein interactions) and to sets of
objects having an internal structure (e.g. protein complexes).
Results: We propose a novel logic-based Annotation Concept
Synthesis and Enrichment Analysis (ACSEA) approach. ACSEA fuses
inductive logic reasoning with statistical inference to uncover more
complex phenomena captured by the experiments. We evaluate
our approach on large-scale datasets from several microarray
experiments and on a clustered genome-wide genetic interaction
network using different biological knowledge bases. The discovered
interpretations have lower P-values than the interpretations found
by AEA, are highly integrative in nature, and include analysis of
quantitative and structured information present in the knowledge
bases. The results suggest that ACSEA can boost effectiveness of
the processing of high-throughput experiments.

Contact: mjiline@site.uottawa.ca
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1 INTRODUCTION

High-throughput methods, such as expression microarrays, promoter
microarrays, genome-wide physical and genomic interaction
screens, while allowing to monitor the behavior of the cell as
a whole, are generating wealth of information that needs to be
studied and interpreted. One of the main challenges of modern
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Fig. 1. AEA approach. Study Set is a set of genes identified by an experiment
(such as differentially expressed genes or one of the clusters). Universe Set
is the set of all the genes that participated in the experiment or some other
reference set of genes that the study set will be compared against. Annotation
Database is a source of annotations attached to genes. Result of the analysis
is a set of annotations that are over- or underrepresented in the Study Set
comparing to the Universe Set.

bioinformatics is to develop methods and techniques that can help
inferring knowledge from accumulated datasets and large-scale
experimental data.

High-throughput experimental techniques typically generate sets
of genes that require further investigation. For example, such sets
may be produced by clustering microarray data or by extracting
differentially expressed genes. The sets usually contain dozens
or hundreds of genes, and their biological interpretation poses
significant challenge to biology experts.

Recently a number of algorithms have been developed
to help experts interpreting experimental data. One of the
most popular approaches is Annotation Enrichment Analysis
(AEA) (Huang et al., 2009; Khatri and Draghici, 2005). AEA
uses the biological knowledge already accumulated in public
databases to systematically examine large lists of genes trying to
suggest biological interpretations of the experimental data. AEA
algorithms extract descriptive information (called gene annotations)
characterizing each gene and compare the statistical distributions of
gene annotations between the gene set of interest (known as study
set) and the rest of the genome or the rest of the microarray (known
as universe set). Figure 1 illustrates the approach.

AEA is agnostic to the way universe and study sets
are constructed. It contrasts it with other approaches,
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Fig. 2. Bag-of-annotations data model.

such as Reconstruction of Formal Temporal Logic Models
(Ramakrishnan et al., 2005) which implicitly includes temportal
annotations into analysis.

A variety of algorithms and tools are based on the AEA
framework. They differ by the knowledge bases used as source
for annotations (Gene Ontology: a controlled vocabulary of gene’s
attributes, KEGG: pathway information, BIND: protein—protein
interactions, etc. (Alibés et al., 2008; Al-Shahrour et al., 2004,
Minguez et al., 2007; Sherman et al., 2007), statistical hypothesis
testing models (X2, Fisher’s exact test, Binomial distribution,
Hypergeometric distribution, etc.), types and organization of
annotation terms, and sets of reference genes (Huang et al., 2009;
Khatri and Draghici, 2005).

The data representation model used in AEA is bag-of-annotations
(Fig. 2). By analogy with a bag-of-words representation used in
text mining, bag-of-annotations associates a set of annotation terms
with each gene (Beiflbarth and Speed, 2004; Berriz et al., 2003;
Zhang et al., 2005; Zhou and Su, 2007). While bag-of-annotations
is a very popular and efficient model allowing natural application
of statistical inference methods, it has a number of disadvantages.
The main weakness of the model is the limitation in the types of
annotation terms and relations that may be used as well as the types
and the complexity of enriched phenomena that can be discovered
and described.

Several research projects have proposed improvements to AEA
algorithms and statistical models to address the issues partially
rooted in the bag-of-annotation model. For example, graph
decorrelation methods (Alexa et al., 2006; Bauer et al., 2008;
Grossmann et al., 2007) modify statistical tests to consider the
GO graph; ProfCom method (Antonov et al., 2008) finds enriched
combinations of annotation terms using and, or, not operators;
GSEA method (Subramanian et al., 2005) compares the study set
to curated sets; DAVID tool (Huang et al., 2007) partitions a set of
genes based on the annotations; CLEAN tool uses cluster analysis of
annotations (Freudenberg ez al., 2009). However, these are solutions
targeting specific databases or output structure.

To overcome the analytical challenges posed by the bag-of-
annotations model, we propose a new paradigm: Annotation Concept
Synthesis and Enrichment Analysis (ACSEA). ACSEA utilizes a
logic-based data representation model and a fusion of inductive
logic reasoning and statistical inference in the general framework
of AEA. The results of ACSEA’s evaluation suggest that it is a
very potent technique capable of increasing the efficiency (i.e. the
ease of data analysis by a human expert) and effectiveness (i.e. the

quality and quantity of the obtained knowledge) of the processing
of high-throughput experiments.

2 METHODS

The cornerstone of ACSEA is a logic-based representation and mining model.
In this model, all readily available information about genes is represented by
logic statements. Inductive logic reasoning together with statistical inference
is then applied to synthesize logic formulas (called annotation concepts)
discriminating genes belonging to the study set from genes belonging to
the universe set. Then, following AEA approach, constructed annotation
concepts are sorted according to their P-value and the best of them are
presented to the biology expert.

2.1 Logic-based knowledge representation

Due to the evolutionary, distributed and complex nature of biological
research, modern biological knowledge is spread over many annotation
databases. The captured knowledge itself is of very diverse and often complex
structure: Gene Ontology (multiple ontologies/DAGs); KEGG (pathways);
InterPro motifs (DAG of sequence patterns); Swiss-Prot keywords (bag of
words); PubMed (literature); BIND (interaction map); Protein Databank
(sequences, 3D structures, global properties); and UniProt, NCBI (cross-
references).

The relational and structured nature of the collected information makes it
hard to represent it in the bag-of-annotations model. At the same time, the
logic representation, specifically First-Order Logic (FOL), has the following
clearly identifiable advantages:

 diverse domain-specific knowledge can be easily integrated with the
original data without loss of information;

* any other available knowledge such as conditions of the experiment,
constraints, source and reliability of information can be represented
and included into the analysis;

* study and universe sets containing compound objects (such as gene—
gene interactions or protein complexes) can be naturally portrayed by
representing relationships as logic predicates;

* avariety of annotation concepts can be easily described due to the high
expressive power of FOL;

* significant amounts of domain-specific knowledge are already captured
and formalized as OWL (Web Ontology Language) and RDF (Resource
Description Framework) knowledge bases, which are essentially
formalisms based on Description Logic, a subset of FOL; and

¢ obtained annotation concepts can be straightforwardly interpreted by a
human expert.

Each fact from the background knowledge, e.g. a gene function, a
protein—protein interaction, etc., is transformed into a FOL statement
in a form relation_name(entity;, entitys, .., entityy).
Table 1 illustrates the typical types of knowledge included into analysis.
Table 2 shows an example of how the GO structures and the GO gene
annotations can be represented by FOL formulas.

2.2 Annotation concept inference

The heart of ACSEA is the Annotation Concept Inference algorithm. The
algorithm fuses Inductive Logic Programming (ILP) (Muggleton, 1995;
Muggleton and De Raedt, 1994; Page and Srinivasan, 2003) and Statistical
Inference (Rivals et al., 2007) approaches.

2.2.1 ILP ILP is an approach to Machine Learning that takes as input
a set of positive examples ET, an optional set of negative examples E~,
background knowledge B, and produces a hypothesis 4, such that BAREE™,
BAhRAE™F L. All the data in the system (E*, E~,B,h) are definite clauses
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Table 1. Typical types of background knowledge

Table 2. Logic-based representation of GO annotations

Type Description Source

Type Formula Comments

Annotations are associative
relations between objects of
interest in a study set and
objects in annotation databases.
This is the part of knowledge
typically covered by the
bag-of-annotations
representation. For logic-based
representation, annotation
relations may also include
attributes characterizing
confidence in the annotation
(for not-curated data sources),
source of the annotation, etc.

Annotations Content of biological

databases

Structured Structured background knowledge Meta information
background reflects relations between about a biological
knowledge annotations themselves. database
Typically, it contains the
definition of ontology or a map
of annotation terms.
Expert Expert knowledge contains higher Experts in
knowledge level relations about annotation bioinformatics and
terms and their organization biology, published
that are not directly expressed research based on
by the structured knowledge. data from
For example, for ontology biological
analysis it is customary to add databases.
notions such as parent, child,
sibling; for a graph, it is
neighbor, clique and node
distance.
Other Other knowledge may include Experiment
knowledge information describing description

phenotypes tested,
environmental impact,
experimental setup, etc.

of the following form: h <—by,bs,...,b, where h,by,b,,...,b, are atoms. As
E* and E~ represent examples, they usually are ground clauses.

An ILP algorithm constructs a theory in a greedy fashion, adding
hypotheses one by one. Typically an ILP algorithm consists of the following
sequence of steps (Srinivasan, 2007):

(1) Select an example from the E* set.

(2) Using the background knowledge B, build the most specific clause
describing the selected example.

(3) Try to generalize the most specific clause (do a search in a clause
lattice formed by the most specific clause and an empty clause). If a
generalized clause that meets fitness criteria is found (with respect to
E* and E~ coverage), add it to the theory.

(4) Remove from E* all examples covered by the generalized clause and
repeat from step 1.

2.2.2 Statistical inference Statistical Inference relies on the statistical
hypothesis testing methodology (specifically on null-hypotheses tests)
to detect a significant enrichment of annotation terms. Generally, the

The formula states
that gene AAH1
is annotated with
GO category
GO0:0005634
from the
component
ontology.

go_is_a (go_0044424,20_0044464).  The formulas
go_part_of(go_0044424,g0_0005622). define relations
between GO
categories. The
whole GO direct
acyclic graph can
be represented in
such way.

The formulas
define useful
relations on a
graph such as
ancestor and
sibling.

Annotations  go_annotation (aah1,go_0005634,c).

Structured
background
knowledge

Expert
knowledge

go_anc(A,P) :- go_is_a (A,P).
go_anc (A,P) :- go_is_a (A,X),
go_anc(X,P).
go_sibling(A,B) :- go_is_a(A,P),
go_is_a(B,P).

null-hypothesis test consists of the following steps:

(1) Define a null hypothesis Hp, which we will try to disprove during the
test. The null hypothesis is selected to contrast the tested (alternative)
hypothesis H;. For Enrichment Analysis, the null hypothesis usually
states that the property of a gene to have specific annotation and
its property to belong to the study set are independent. The tested
hypothesis states that these properties are dependent and thus the
annotation has different distributions in the study set and in the
universe set.

2

-

Select a statistic that will be used to test hypothesis. For Enrichment
Analysis, it is the number of times an annotation appears in the study
set.

3

=

Assuming that the null hypothesis is correct, compute the probability
(P-value) of observing a value for the test statistic that is as extreme or
more extreme as the value that was actually observed. For Enrichment
Analysis, this step relies on the universe set and the statistical
distribution model (such as hypergeometric distribution) to compute
the probability.

(4

=

Based on the computed P-value, the null hypothesis can be rejected
if the P-value falls below a significance threshold (critical value).

2.2.3 Annotation concept inference By fusing the inductive logic
reasoning and the statistical inference approaches we obtain an inference
algorithm capable of mining complex knowledge structures while tolerant
to noise and data incompleteness.

While several probabilistic/logic inference models exist (such as
Probabilistic Inductive Logic Programming), they incorporate statistical
information directly into the produced hypotheses. As a result, they are
very potent models for classification problems; however, they significantly
diminish the key advantage of logic-based approaches, namely the human
understandability of generated hypotheses. Hypotheses produced by PILP
are complex Bayesian networks with attached sets of probability tables (see
Figure 10.4 in Kersting and De Raedt, 2007). Therefore, they are not well
suited for the explanatory type of analysis ACSEA is performing.
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The ACSEA approach consists of the following key elements: annotation
concept synthesis, a hypothesis fitness measure, a theory building strategy,
integration of specialized algorithms, and methods for controlling the quality
of the theory.

Annotation concept synthesis: ACSEA processes experimental data by
synthesizing relevant annotation concepts. Annotation concepts are logic
formulas that capture discriminating information about the study and
universe sets. The concepts are synthesized following the Inductive Logic
Programming framework. ET is populated from the study set. E~ is
populated by the universe set less the study set. Hypotheses constructed
during the inference process, by the design of the system (see below),
correspond to the annotation concepts that capture discriminating knowledge.

Hypothesis fitness measure: the hypothesis fitness measure guides the
hypothesis generalization search in the clause lattice and is used to compare
and select the best hypothesis. ILP classification systems typically employ
accuracy, entropy, coverage, or similar measures. ACSEA applies statistical
hypothesis testing based on the hypergeometric model as its hypothesis

fitness measure.
] ny m—m
min (n, . .
min (n,m; ) i n—i

P(t)=P(X=n)= Y

=)

where P(t) is the P-value of enrichment of annotation ¢ in the study set S,
according to the one-sided hypergeometric test; n,m, are the sizes of the
universe and the study sets, n;,m; are the numbers of genes annotated by ¢
in the universe and the study sets, respectively.

The hypothesis fitness measure is also consulted to prune parts of the
search space. The pruning decision is based on the possibility of finding a
hypothesis that either (i) is better than the best hypothesis found so far, or (ii)
has the fitness above a predefined threshold. The ACSEA system includes
an estimation algorithm to compute the hypotheses fitness bounds for parts
of the search space based on the statistical hypothesis testing measure.

Theory building strategy: ILP classification systems typically build theory
according to one of the following greedy strategies: induction of minimal
covering theory, induction of maximal theory, or feature construction. The
goal of the first two strategies is to find a fairly limited number of hypotheses
covering all examples. Such strategies are not particularly suited for ACSEA
as in most cases no complete trustworthy coverage exists due to the noise
in experimental data as well as the noise and omissions in background
knowledge. Furthermore, one example may potentially lead to several
significantly different annotation concepts. The goal of the last strategy is to
find all (potentially a very high number) of hypotheses that meet the fitness
criteria. Such type of strategies would generate an overwhelming amount of
hypotheses.

The most natural goal for an ACSEA-specific theory building strategy is
to find a limited number of the highest quality hypotheses. To meet this goal,
ACSEA defines a sliding-window theory building strategy. During the search,
a fixed size set of hypotheses meeting the fitness criteria is maintained. When
a better hypothesis is found, it’s added to the set, while the worst hypothesis
in the set is removed. The fitness criteria are revised to a higher standard as
a result.

Such approach has a 2-fold advantage:

@

(1) at the end of the search, the theory contains a predefined number of
the highest quality hypotheses;

(2) the efficiency of the fitness-based search space pruning is constantly
increases during the search.

In the preliminary experiments, we compared the performance of ACSEA
with and without the sliding window strategy on several datasets. The sliding
window ACSEA version outperformed the feature construction ACSEA
version on all datasets according to all used measured (see Section 3.1)
with confidences >90%.

Integration of specialized algorithms: a significant advantage of the logic-
based systems is their ability to integrate external specialized data mining

algorithms. Originally, such integration was proposed to make ILP systems
capable of performing numerical data analysis (Srinivasan and Camacho,
1999). In the bioinformatics context, the same approach can be used to
process gene’s quantitative properties, sequences, keywords, etc.

The external algorithms are inserted into an ILP system as a special
kind of predicates (lazily evaluable predicates implementing learning and
classification forms of execution). During the hypothesis search, they are
inserted into the clause as one of the atoms and the underlying algorithm is
invoked.

To validate the usefulness of such integration in ACSEA, we implemented
a statistical pattern recognition algorithm that compares the distributions of
numerical attributes based on the one-dimensional Gaussian model. ACSEA
successfully applied the algorithm to model the gene distributions along
chromosomes (Fig. 3).

Controlling the quality of the theory: as the theory built by ACSEA
is going to be presented and evaluated by human experts, a number of
measures have been incorporated into the algorithm to control the objective
and subjective quality of the theory, i.e. its size, redundancy, readability and
understandability.

The theory building strategy selects a predefined number of the highest
quality hypotheses evaluated with a hypothesis fitness measure. This measure
includes quantitative thresholds such as the maximum P-value and minimal
positive example coverage as well as qualitative requirements to hypotheses.

The qualitative requirements are stated as syntactic integrity constraints
that are used to discard individual hypotheses or prune parts of the lattice.
Meta-information contained in annotation datasets is one source of the
integrity constraints (so they are part of the background knowledge). The
integrity constraints can also be provided by a biology expert, when they are
dictated by the expert’s area of research or conditions of the experiments. For
example, one may restrict hypotheses to have no more than one reference to
each ontology from GO.

Another technique to improve the quality of a theory is filtering out
highly overlapping (synonymic) hypotheses. A high number of synonymic
hypotheses is a natural consequence of the abundance of alternative terms in
the background knowledge and multiple ways of expressing essentially the
same hypothesis by the FOL formulas. Currently, we utilize an algorithm that
assesses the hypotheses based on their coverage of the study and universe
sets and discards more complex hypotheses having the identical coverage.

2.3 Search space tractability

A weakness shared by algorithms based on Inductive Logic Programming
is a large search space and fairly large computational requirements for
the evaluation of hypotheses. The size of the search space can be roughly
estimated as (‘r’), where r is the maximum number of atoms in considered
hypotheses, and a is the number of statements in the background knowledge
that can be used as atoms for hypotheses. For example, for one of
the problems considered in this article, the full search space roughly
contains (17200)3 10'2 hypotheses. We address the tractability issue with
the following countermeasures integrated into our approach:

« Utilize strict hypotheses fitness criteria allowing to significantly prune
the search space.

« Assert constraints on the size of hypotheses (the number of atoms in
a logic formula). A human expert should be able to quickly assess the
hypotheses, so limiting the size of hypotheses helps to reduce the search
space and improve the quality of the results.

 Integration of specialized algorithms. Specialized algorithms to analyze
specific data types can outperform a logic program as many algorithms
are more efficient when implemented in imperative or functional
paradigms.

¢ Pruning of the background knowledge. The background knowledge
may be pruned if it contains no information that can be referred to
from the study and universe sets. The pruning is performed when data
are converted from biomedical databases to a logic representation.
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chromosome num(G, chromosome 20), €—

chromosome loc (G, 54426, 7619, 34697, 18933),

go_category (G, go 0044237)

f

Gene is annotated with GO:0044237 cellular metabolic
process function or its children in the GO biological
process ontology

Gene is located on chromosome 20

Gene location on the chromosome (study vs
universe sets) follows the statistical pattern
model (solid line - study set, dashed line - un-
iverse set)

Fig. 3. Anexample of a synthesized annotation concept. chromosome_num predicate describes the relation between a gene and a chromosome, chromosome_loc
tests the location of the gene on a chromosome against a learned model (the location is specified in base pairs, the predicate parameters are populated with
the mean and variance of two normal distributions modeling the study and universe sets), go_category specifies the relation between a gene and a GO term.

Table 3. Microarray datasets

Table 4. Annotation databases for microarray datasets

Dataset name Dataset description Name Description
Bioconductor Data of T- and B-cell acute lymphocytic GO Gene ontology, released October 2009

LEUKEMIA from the Ritz Gene ontology annotation for human, released October
ALL Laboratory at the DFCI 2009

GSEA gender Transcriptional profiles from male and female
lymphoblastoid cell lines

GSEA p53 Transcriptional profiles from p53+ and p53 mutant
cancer cell lines

GSEA diabetes Transcriptional profiles of smooth muscle biopsies
of diabetic and normal individuals

GSEA leukemia Transcriptional profiles from leukemias—OALL and
AML

GSEA lung cancer  Transcriptional profiles from lung cancer outcome
datasets

3 RESULTS

We evaluated the performance of ACSEA! applied to two widely
used experimental techniques: expression microarrays and genetic
interaction screens.

This section contains summary of the performed experiments.
More detailed experimental logs and raw results are available at
ACSEA home page (http://www.epiphan.com/~zhilin/ACSEA).

3.1 Expression microarrays

To evaluate the performance of ACSEA, we selected six well-known
microarray datasets listed in Table 3.

For each dataset, we applied nonspecific filtering, removing
genes having inter-quartile range less than 0.5. Such filtering
leaves only genes with sufficient variability to be informative.
Next, we applied the standard z-test with the P-value threshold
of 0.05 to identify differentially expressed genes. Differentially
expressed genes formed the study set, while all genes left after
the nonspecific filtering formed the universe set. Further, for each

'The ACSEA system described in this article was implemented
based on R, a statistical computation system (http://www.r-project.org/);
Bioconductor, a system for the analysis and comprehension of genomic
data (http://www.bioconductor.org/); YAP, a high-performance Prolog
compiler (http://www.dcc.fc.up.pt/~vsc/Yap/); and Aleph, an ILP system
(http://web.comlab.ox.ac.uk/activities/machinelearning/Aleph/). The system
is available at http://www.epiphan.com/~zhilin/ACSEA

GCM (gene to  Gene to chromosome mapping (chromosome,

chromosome chromosome band, and start/end base pairs) from
mapping) Ensembl 56 database
GO +GCM Combination of the two annotation sources above

individual experiment, depending on the used annotation database,
genes without any annotation attached were removed from both
sets. Each dataset was analyzed with the annotation sources listed
in Table 4.

We defined a family of performance measures to evaluate the
proposed approach. The measures are based on assessing the P-
values for the set of generated hypotheses. The main idea is that after
‘synonymic’ hypotheses are removed, we would like to minimize the
P-value of several top hypotheses.

PvAvr, (T) = 1 ZPvalue(ti) )
n

i=1

where T is a theory consisting of a list of hypotheses {f;} sorted in
ascending order by their P-values, and n is the number of the top
hypotheses included into evaluation. The similar measures can be
defined for P-values adjusted for multiple testing.

OvAvry (T) = % Z Qvalue(t;) 3)

i=1

In our work we used Bonferroni correction, which is the strictest
way of addressing the problem of multiple testing.

Qvalue () = ||T||Pvalue t) 4)

where ||T|| represents the total number of unique tested hypothesis.

Parameter n in PvAvr,(T) and QvAvr,(T) allows to evaluate the
quality of theories of different sizes produced by an algorithm.
As a biological experiment may capture several phenomena, it is
reasonable to expect that the enrichments theory will include more
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Table 5. Quantitative performace evaluation of AEA and ACSEA on gene expression microarray datasets

Dataset Annotations QVAvr| QVAuvrs QVAvr)g QVAvrs
AEA ACSEA AEA ACSEA AEA ACSEA AEA ACSEA
ALL GO 6.33e-02 4.48e-04 1.45e-01 6.85¢-04 3.41e-01 1.06e-03 7.36e-01 2.89¢-03
GCM 4.55e-01 3.37e-01 8.91e-01 6.61e-01 9.45¢-01 8.30e-01 9.78e-01 9.32¢-01
GO+GCM 1.30e-01 1.19¢-03 2.33e-01 1.63e-03 5.88e-01 3.81e-03 8.35e-01 8.07e-03
GSEA Gender GO 8.25e-04 1.86e-05 2.29e-02 5.13e-05 2.76e-01 6.79¢-05 7.11e-01 1.14e-04
GCM 1.25e-04 5.35e-05 2.22e-01 9.86e-03 6.11e-01 1.18e-01 8.44e-01 6.31e-01
GO +GCM 8.12e-04 8.13e-05 6.38¢-03 9.92¢-05 7.08e-02 1.45¢-04 6.05¢-01 8.17e-04
GSEA p53 GO 1.00e + 00 1.39¢-01 1.00e + 00 2.11e-01 1.00e + 00 2.79¢-01 1.00e +00 4.64e-01
GCM 6.23e-04 3.93e-05 6.84e-01 7.27e-02 8.42e-01 2.10e-01 9.37e-01 5.82e-01
GO +GCM 1.76e-02 6.18e-03 8.04e-01 3.18e-02 9.02¢-01 7.16e-02 9.61e-01 2.07e-01
GSEA Diabetes GO 1.00e + 00 2.89¢-01 1.00e + 00 6.96e-01 1.00e +00 8.48e-01 1.00e +00 9.3%¢-01
GCM 1.00e +00 1.40e-01 1.00e +00 4.51e-01 1.00e +00 7.26e-01 1.00e +00 8.90e-01
GO +GCM 1.00e + 00 3.61e-01 1.00e + 00 6.80e-01 1.00e +00 8.40e-01 1.00e +00 9.36e-01
GSEA Leukemia GO 4.80e-02 2.48e-01 5.51e-01 2.83e-01 7.76e-01 3.40e-01 9.10e-01 4.96e-01
GCM 6.49¢-01 6.28e-01 9.30e-01 8.69¢-01 9.65¢-01 9.35e-01 9.86e-01 9.74e-01
GO+GCM 8.39¢-02 3.25e-01 6.81e-01 3.69e-01 8.41e-01 4.35e-01 9.36e-01 6.18e-01
GSEA Lung Cancer GO 2.67e-01 1.37e-01 8.53e-01 3.48e-01 9.26e-01 4.22¢-01 9.71e-01 5.85e-01
GCM 1.79¢-05 6.17e-06 5.41e-01 9.02¢-02 7.70e-01 2.69¢-01 9.08¢-01 6.92¢-01
GO+GCM 5.29e-04 2.07e-04 6.55e-01 2.23e-04 8.28e-01 2.50e-04 9.31e-01 4.45e-04

Lesser is better (better values are highlighted). The differences in performance are statistically significant with 95% (n = 1) and 99% (n = 5, 10, 25) confidence levels.

than one interpretation. At the same time, the size of a theory must be
limited by a number of enrichments a biology expert can comfortably
assess in an allocated time frame. In our work we used several values
of n ranging from 1 to 25.

Theoretically, the P-value based performance results of ACSEA
cannot be worse than results of AEA for the same task. It is because
the hypothesis space of ACSEA contains the hypothesis space of
AEA. However, it is true only if both algorithms exhaustively
walk through their search spaces. For ACSEA, in the presence of
significant amounts of background knowledge, the exhaustive search
is intractable in practice. Thus, the P-value based performance
measure helps to evaluate the algorithms as a whole, including the
crucial optimizations that made ACSEA feasible for practical use.
Moreover, in our analysis we mostly use Q-value based measures.
Q-values are derived from P-values by applying a Multiple Testing
Correction (MTC) procedure. MTC penalizes an algorithm for
each additional statistical test it performs (such as evaluation of
a hypothesis). Therefore, the O-value is a performance measure that
compares algorithms on one scale regardless of the sizes of their
hypothesis spaces.

We compared the ACSEA approach to the AEA approach
represented by Bioconductor’s Category/GOstats algorithm. The
Category and GOstats packages were extended to analyze arbitrary
annotations so the algorithms can be compared on a variety of
different annotation sources. The same final statistical analysis
was followed to calculate the P-values for enriched annotations
discovered by AEA and ACSEA. Consequently, the Bonferroni
correction was applied to address the problem of multiple
comparisons. The family of measures was transformed accordingly.

The algorithms produced theories consisting of lists of annotation
terms for AEA or logic formulas for ACSEA. The quantitative

performance evaluation results> are presented in Table 5. In a
majority of cases the ACSEA approach suggested annotations at
least one (often two and three) order of magnitude better than the
bag-of-annotations based AEA algorithm. The quality of constructed
annotations and the level of the integrative information analysis
performed by ACSEA can be illustrated by the enriched annotation
discovered during the Diabetes/GO+GCM experiment (Fig. 3).

3.2 Protein and genetic interaction screens

The ACSEA approach was evaluated on the DRYGIN (Data
Repository of Yeast Genetic Interactions) dataset (Costanzo et al.,
2010; Koh et al., 2010). DRYGIN contains genetic interaction
results for 1712 x 3885 tested pairs of genes. The raw results are
grouped into the stringent-cutoff, intermediate-cutoff and lenient-
cutoff datasets based on the strength of the evidence supporting
detected interactions. The stringent-cutoff dataset contains only
interactions having strong experimental support, while lenient-cutoff
dataset includes interaction supported by weaker evidences. The
stringent-cutoff dataset was selected for ACSEA evaluation.

The gene interaction information from DRYGIN was converted
to a symmetric Boolean matrix. Two-dimensional clustering
algorithms were applied to the matrix. Two clustering algorithms
were selected: PAM (Partitioning Around Medoids) and K-means
(Hartigan and Wong variant).

>Generally, ACSEA is a slower algorithm than AEA in approximately 10—100
times depending on the task. We did not include formal comparison as our
implementation of ACSEA is not optimized on programming language, code
and compiler levels. The speed may be improved by switching from the
interpretation of Prolog to the compilation of Prolog or the use of C/C++
code.
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The list of detected clusters was filtered by removing clusters
that include less than 25 genes or more than 33% of all genes, or
have less than 25 intra-cluster interactions. Then, for each cluster an
independent ACSEA and AEA experiment was performed, where
the set of intra-cluster interactions formed a study set while all
interactions formed the universe set.

Each experiment was carried out with the annotation sources listed
in Table 6.

For ACSEA, annotations for each interacting pair of genes were
converted to logic statements. For the AEA algorithm, for each
interaction the set of annotation terms {a;} was obtained by taking
the union of the two sets of annotation terms describing interacting
genes {al-l} and {aiz}.

QvAvr, measures were computed for each experiment for
the ACSEA and AEA algorithms. The quantitative performance
evaluation results are presented in Table 7. The quality of constructed
annotations and the types of structural analysis performed by
ACSEA can be illustrated by a synthesized concept in Figure 4.

3.3 Results summary

Tables 5 and 7 show that ACSEA outperforms the AEA algorithm
in almost all cases, even when the most conservative Bonferroni

Table 6. Annotation databases for genetic interaction screens

Name Description

GO GO annotations. Bioconductor GO.db package,
version 2.2.11. Bioconductor org.Sc.sgd.db package,
version 2.2.12

GCM (Gene to  Gene to chromosome mapping. Bioconductor

chromosome org.Sc.sgd.db package, version 2.2.12

mapping)

GO +GCM Combination of the two annotation sources above

correction is applied. ACSEA tends to exhibit the best results on
larger, well-structured annotation sets (such as GO+GCM in our
tests), which is expected (as Inductive Logic Programming relies on
the rich background knowledge) and welcomed (as the most help is
needed from annotation enrichment tools in such cases).

ACSEA demonstrated (Fig. 3) that more complex and advanced
(comparing to AEA’s treatment of numerical annotations as nominal
values) analysis of numerical annotations can be performed as an
integral part of the enrichment analysis. In a similar manner, the
enrichment analysis can be extended to directly operate on any
data type essential for an experiment such as strings, sequences,
vectors, etc.

ACSEA was capable of uncovering enriched phenomena tied to
the structure of the analyzed objects (Fig. 4). That, by itself, opens
a new dimension in the enrichment analysis. Such analysis is likely
to be even more important for sets of yet more complex objects than
gene interactions (protein complexes, for example).

The obtained results suggest that ACSEA boosts the efficiency and
effectiveness of the processing of high-throughput experiments such
as expression microarrays and genetic interaction screens by finding
better, more integrative interpretations of biological experiments.

4 DISCUSSION

AEA is becoming the dominant technique for the secondary
processing of data generated by high-throughput experimental
techniques. Significant progress in AEA algorithms has been
obtained by improving the statistical models and by incorporating a
variety of annotation databases into the analysis. In this article, we
present a novel paradigm, ACSEA, which relies on a logic-based
representation of annotations and employs a fusion of inductive logic
inference and statistical inference.

The methodological advantage of ACSEA is 5-fold. First, it
is easier to represent complex, structural annotation information.

Table 7. Quantitative performance evaluation of AEA and ACSEA on genetic interaction screens

Dataset Annotations QVAuvr| QvAvrs QvAvr)g QVAuvr;s
AEA ACSEA AEA ACSEA AEA ACSEA AEA ACSEA
PAM GO 8.27¢-09 8.33e-10 5.70e-06 1.42¢-09 1.20e-04 1.85e-09 2.75e-04 3.24e-09
GCM 1.09e-06 6.08e-06 2.88e-01 2.30e-03 6.44e-01 2.64e-02 7.63e-01 9.43e-02
GO +GCM 8.31e-09 3.32¢-10 3.20e-06 1.24e-09 9.20e-05 1.37¢-08 2.28e-04 3.10e-08
K-means GO 7.36e-06 1.42e-06 3.50e-04 2.10e-06 1.66e-03 3.81e-06 2.68e-03 5.38e-06
GCM 1.12e-02 1.66e-02 3.81e-01 1.14e-01 6.79¢-01 1.88e-01 7.86e-01 2.88e-01
GO+ GCM 2.59¢-07 3.37e-09 3.41e-07 6.51e-09 2.12e-06 1.52¢-08 2.14e-05 2.11e-08

Lesser is better (better values are highlighted). The differences in performance are statistically significant with 99% (n=5, 10, 15) confidence level.

Interactions in the study set are such that both interacting genes (Ga and Gb) are anno-
both go_ category(Ga,Gb,go _0016570), 4 tated with GO: 0016570

any go category (Ga,Gb,go 0048519)

'\ AND at least one interacting gene from each pair is annotated with GO: 0048519

Fig. 4. An example of a synthesized annotation concept. Preservation of the internal structure of object ‘genetic interaction” allows reasoning on and inferring
statements dealing with the substructure of the object under analysis. Particularly, in this experiment we were able to utilize quantifiers such as both..., any...,
one... to better understand relationship between GO categories and the set of interacting genes.
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Information already captured and formalized in OWL and RDF
knowledge bases can be directly utilized. Secondly, it is possible
to synthesize and analyze complex annotation concepts. Thirdly, it
is possible to perform the enrichment analysis for sets of aggregate
objects (such as sets of genetic interactions, physical protein—protein
interactions or sets of protein complexes). Fourthly, annotation
concepts are straightforward to interpret by a human expert. Fifthly,
the logic data model and logic induction are a common platform that
can integrate specialized analytical tools.

We evaluated ACSEA on several microarray and genetic
interaction datasets. Our results demonstrate that the proposed
approach synthesizes higher quality integrated interpretation of
biological phenomena captured by biological experiments.

The work presented here can also be viewed as an innovative
application of the ILP theory. While normally ILP techniques are
used for classification tasks involving relational data, this research
shows how an approach, incorporating inductive logic ideas, can
serve as a knowledge integration mechanism, enriching the data with
relational background knowledge and resulting in comprehensible
interpretations of the experimental data.

For future work, we plan to pursue the following research
directions. First, we will advance the theory consolidation algorithm
that can remove ‘synonymic’ annotations based on coverage
and elements of theorem proving. Secondly, inductive annotation
construction can be extended by abduction (Kakas et al., 1993) to
immediately suggest annotations missing in the annotation databases
that can be directly inferred based on new experimental data. Thirdly,
we are going to investigate the possibility of using Description Logic
as a more efficient alternative to FOL.

Contflict of Interest: none declared.
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