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Although antiretroviral therapy has transformed human immunodeficiency virus-type 1
(HIV-1) from a deadly infection into a chronic disease, it does not clear the viral reservoir,
leaving HIV-1 as an uncurable infection. Currently, 1.2 million new HIV-1 infections occur
globally each year, with little decrease over many years. Therefore, additional research is
required to advance the current state of HIV management, find potential therapeutic
strategies, and further understand the mechanisms of HIV pathogenesis and prevention
strategies. Non-human primates (NHP) have been used extensively in HIV research and
have provided critical advances within the field, but there are several issues that limit their
use. Humanized mouse (Hu-mouse) models, or immunodeficient mice engrafted with
human immune cells and/or tissues, provide a cost-effective and practical approach to
create models for HIV research. Hu-mice closely parallel multiple aspects of human HIV
infection and disease progression. Here, we highlight how innovations in Hu-mouse
models have advanced HIV-1 research in the past decade. We discuss the effect of
different background strains of mice, of modifications on the reconstitution of the immune
cells, and the pros and cons of different human cells and/or tissue engraftment methods,
on the ability to examine HIV-1 infection and immune response. Finally, we consider the
newest advances in the Hu-mouse models and their potential to advance research in
emerging areas of mucosal infections, understand the role of microbiota and the complex
issues in HIV-TB co-infection. These innovations in Hu-mouse models hold the potential to
significantly enhance mechanistic research to develop novel strategies for HIV prevention
and therapeutics.
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INTRODUCTION

Currently approximately 38 million people are living with human
immunodeficiency virus-type 1 (HIV-1), the underlying cause of
acquired immune deficiency syndrome (AIDS) (1). Although
treatment with antiretroviral therapy (ART) has transformed HIV
from a deadly infection into a chronic disease, it does not clear the
latent viral reservoir, therefore there is still no cure for HIV infection
(2). Furthermore, even with ART, HIV infection increases risks of
co-infection with other pathogens such as Mycobacterium
tuberculosis (Mtb) (3). Additional research is required to advance
the current state of HIV management and potential therapeutic
strategies, in addition to understanding mechanisms of HIV
pathogenesis. Although animal models such as non-human
primates (NHP) have been used extensively in HIV research and
have provided critical advances in knowledge within the field, there
are several issues including host-restriction factors, ethics, and cost
that can limit their use (4, 5). Furthermore, the human species-
specific tropism of HIV-1 has prevented the use of traditional
murine models leading to a lack of small animal models for in vivo
HIV-1 research (6).

Humanized mouse (Hu-mouse) models, or immunodeficient
mice engrafted with human immune cells and/or tissues, provide a
cost-effective and practical approach to creating models for HIV-1
research. Unlike traditional mouse models, Hu-mouse models
effectively sustain HIV-1 infections while also recapitulating
relatively accurate in vivo immune responses to the infection due
to the reconstitution with human immune cells when compared to
other animal models (7). This review will outline the advances in
Hu-mouse models that have made them useful in HIV-1 research
and a convenient alternate to NHP. Furthermore, numerous novel
modifications of Hu-mice demonstrate potential to advance
knowledge in virus transmission, infection, evolution,
pathogenesis, prevention, latency, cure, and disease interaction
such as Mtb co-infection. Additionally, since the major
physiological route of HIV-1 transmission in humans is by the
mucosal route (intrarectally or intravaginally) (8), this review will
detail the use of Hu-mice in elucidating mechanisms involving
mucosal infections and discuss how microbiota may be involved.
HU-MOUSE MODELS FOR HIV-1
RESEARCH

Currently, some of the most widely used Hu-mouse models in HIV
research take advantage of three major immunocompromised
features which allow for the successful engraftment of human
cells or tissues. NOD.Cg-PrkdcscidIl2rgtm1Sug (NOG) (9),
NOD.Cg-PrkdcscidIl2rgtm1Wjl (NSG) (10, 11), and NOD.Cg-
Rag1tm1MoMIl2rgtm1Wjl (NRG) (12) are on the non-obese diabetic
(NOD) background that leads to suppressed mouse macrophage
phagocytic activity. Mice with the Prkdcscid or Rag1/Rag2 loci
mutation lack mature T and B lymphocytes while the Il2rg gene
mutation effectively eliminates mouse NK cell activity (13). The
most common engraftment method of human cells is the
intravenous or intrahepatic injection of CD34+ hematopoietic
stem cells (14) into adult or newborn immunodeficient mice,
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respectively, after myeloablative irradiation or administration of
myeloablative doses of drugs such as busulfan (15). This
engraftment method has been performed in each model (NOG,
NSG, NRG) yielding reconstitution of human CD4+ and CD8+ T
cells, monocytes, macrophages, dendritic cells (DCs) and progenitor
B cells in peripheral blood, primary and secondary lymphoid tissues
(12, 16).

The unique engraftment method using surgical implantation
of human fetal liver and thymus tissues followed by injection of
matched CD34+ hematopoietic stem cells (HSCs) gave rise to the
bone marrow liver thymus (BLT) model (17–19). The human
thymic tissue allows for T cell education in the context of human
cells (20). Both HSC-only and BLT methods are able to
successfully reconstitute human monocytes, dendritic cells, T
cells, and B cells in peripheral blood and tissues, but higher cell
counts were observed in the BLT engraftment method (21, 22).
The HSC-only method demonstrated better human B cell and
myeloid cell development (21) while additional thymus support
yielded higher CD3+ T cell reconstitution in the spleen (21),
gastrointestinal (GI) (22) and gut-associated lymphoid (GALT)
tissues (18, 21, 23) (Table 1). Both methods have demonstrated
similar susceptibility to HIV infection, trends in CD4+ T cell
depletion, and persistent viral reservoirs in vivo (21). The major
difference between the two methods is that BLT-engrafted mice
have measurable T cell response against HIV-1 because the
human thymic tissue allows the resulting T cells to respond to
the HIV-1 antigen presentation by human leukocyte antigen
(HLA) generating HLA-restricted anti-HIV-1 human T cell
response, which is absent in the current HSC-only method (18,
48) (Table 1). This has led to the BLT model being the current
gold standard for studying HIV-1 immune responses (17,
49, 50).
HSC ENGRAFTMENT MODELS (CURRENT
GENERATION): NOG, NSG, NRG, DKO/BRG,
NSG-BLT

NOG and NSG
The NOG and NSG mice differ in the IL-2 receptor gene (Il2rg)
which is truncated in NOG and knocked-out in NSG. Both
humanized NOG (hu-NOG) and humanized NSG (hu-NSG)
mice have demonstrated successful engraftment of HSC with
substantial human lymphoid repopulation (29, 51–53).
Intraperitoneal and intravenous routes of HIV-1 infection into
both types of mice demonstrated viremia and viral dissemination
throughout lymphoid tissues (29, 51–54).

Hu-NOG mice have furthered the understanding of HIV-1
transmission as well as treatment testing and development.
These mice can generate B cells that secrete isotype-switched,
HIV-specific IgG antibodies (16). Studies using hu-NOG models
investigated the role of human anti-viral factors in human
transmission of HIV-1 (55) and treatment options with novel
therapeutics such as zinc-finger nucleases (ZFN) showing
reduced viral loads and increased CD4+ T cell counts (56).
Additionally, viral evolution and replication kinetics have been
March 2021 | Volume 11 | Article 617516
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investigated using this model using various HIV-1 strains (57).
Finally, hu-NOG mice were also used to investigate the efficacy
of ART, long-acting antiretroviral compounds that showed
reduced viral load and recovery of CD4+ T cell counts, and a
Frontiers in Immunology | www.frontiersin.org 3
latent viral reservoir with T cell depletion after treatment was
stopped, similar to that seen in humans (58).

Numerous HIV-1 treatment methods have been tested on hu-
NSG mice including combination ART (cART) (29, 59), highly
TABLE 1 | Summary of reported reconstitution of major human immune cell types within current generation and next generation hu-mice for HIV studies.

Humanized Mouse Model Human immune cell reconstitution References

Current Generation Models

HSC-DKO/BRG PB: CD45+ lymphocytes, CD4+ T cells, CD8+ T cells
BM: CD45+ lymphocytes, mature and immature B cells
LT: CD45+ lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, T regulatory cells, mature and immature B cells

(24–27)

HSC-NOG PB: CD45+ lymphocytes, CD3+ T cells, immature B cells
BM: CD45+ lymphocytes, immature B cells
LT: CD45+ lymphocytes, CD4+ T cells, CD8+ T cells, immature B cells

(16, 28)

HSC-NSG
HSC-NRG

PB: CD3+ T cells, immature B cells
BM: CD45+ lymphocytes, mature and immature B cells, immature NK cells
LT: CD4+ T cells, CD8+ T cells, mature and immature B cells
FRT: CD45+ cells, CD4+ T cells, CD68+ macrophages

(12, 29–31)

NSG-BLT* PB: CD3+ T cells, CD4+ T cells, CD8+ T cells, immature B cells
BM: CD45+ lymphocytes, mature and immature B cells
LT: CD4+ T cells, CD8+ T cells, mature and immature B cells
GI: CD45+ lymphocytes, CD4+ T cells, CD8+ T cells, B cells, CD68+ macrophages, dendritic cells
FRT: CD3+ T cells, CD4+ T cells, CD68+ macrophages, CD11c+ dendritic cells

(18, 32, 33)

Next Generation Models

HSC-DRAG*
HSC-DRAGA*

PB: CD3+ T cells, CD4+ T cells, CD8+ T cells, isotype switched mature B cells
BM: CD45+ lymphocytes
LT: CD45+ lymphocytes, CD4+ T cells, CD8+ T cells, T regulatory cells, dendritic cells
GI: CD45+ lymphocytes, CD4+ T cells, CD8+ T cells, naïve and memory B cells
FRT: CD4+ T cells, T follicular helper cells, naïve and memory B cells

(34–36)

HSC-BRGST
HSC-BRGSA2DR2*

PB: CD45+ lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, T follicular helper cells (HSC-BRGST only),
isotype switched mature B cells
BM: CD45+ lymphocytes, isotype switched B cells
LT: CD45+ lymphocytes, CD4+ T cells, CD8+ T cells, isotype switched mature B cells, T follicular helper cells (HSC-
BRGST only), central and effector memory T cells

(37, 38)

NSGW-NeoThy PB: CD45+ lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, regulatory T cells, B cells, monocytes/
macrophages
BM: CD45+ lymphocytes, CD3+ T cells, B cells
LT: CD45+ lymphocytes, CD3+ T cells, regulatory T cells, B cells, monocytes/macrophages

(39)

HSC-NOG-EXL PB: CD4+ T cells, CD8+ T cells, CD33+ myeloid cells, basophils, neutrophils, NK cells, monocytes, dendritic cells
BM: CD3+ T cells, B cells, mast cells, basophils
LT: CD3+ T cells, B cells, mast cells, basophils, dendritic cells
GI: Mast cells, basophils

(40, 41)

HSC-NSGS/NSG-SGM3 PB: CD4+ T cells, B cells, T regulatory cells
BM: CD3+ T cells, CD4+ T cells, T regulatory cells, B cells, dendritic cells
LT: CD3+ T cells, CD4+ T cells, T regulatory cells, B cells, CD33+ myeloid cells

(42–44)

HSC-SRG-15 PB: CD45+ lymphocytes, mature NK cells
BM: mature NK cells, CD45+ lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells
LT: tissue-resident NK cells, CD45+ lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells

(31)

HSC-NSG-15 PB: mature NK cells, CD3+ T cells
BM: mature NK cells, CD45+ lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, B cells
LT: mature NK cells, CD45+ lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, B cells

(45)

HSC-MITRG
HSC-MISTRG

PB: Monocytes, functional NK cells, CD45+ lymphocytes, CD3+ T cells, naïve CD4+ T cell, naïve CD8+ T cell,
immature B cells
BM: CD45+ lymphocytes, CD33+ myeloid cells, functional monocytes
LT: functional NK cells, monocytes, dendritic cells
GI: CD68+ myeloid cells

(46, 47)
March 2021 | Volume 11 | A
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active antiretroviral therapy (HAART), and neutralizing
antibody treatment (54). Similar to the response seen in hu-
NOG mice, latent infection was established and persisted during
treatment (29, 59). Resting memory CD4+ T cells were the major
viral reservoir (29), unaffected by the length of cART treatment
(59). A recent study using hu-NSG mice showed that HIV-1
hematopoietic stem/progenitor cell-based gene therapy targeting
CCR5 and HIV-1 LTR could be used as anti-HIV strategy (60).
Another study tested long-acting, slow-release antiviral therapy
in combination with CRISPR-Cas9 gene editing to eliminate
latent HIV-1 in Hu-mice, and was the first to demonstrate that
permanent viral elimination is possible (61). Additionally, the
hu-NSG model has been used to provide better understanding of
HIV-1 pathogenesis. The model revealed that cell-to-cell viral
transmission efficiently disseminated infection within tissues,
suggesting anatomically localized spread would be an area of
future investigation for targeted treatments (62). HIV-1 disease
progression was also investigated in hu-NSG mice by tracking
viral seeding into different tissue compartments providing a
picture of the HIV-1 infection timeline (63). Although it has
been demonstrated that hu-NSG mice successfully reconstitute
human CCR5+ CD4+ T cells within the female reproductive
tract (FRT) (29, 30), to date, HSC-engrafted NSG mice have not
been utilized widely to study mucosal and sexual transmission of
HIV-1 (30).

NRG and DKO (BRG)
Like the NSG model, the more radioresistant hu-NRG have
similar successful engraftment of human peripheral blood
mononuclear cells (PBMCs) or HSCs (12). HSC-engrafted
NRG mice demonstrated successful mucosal HIV-1 challenge
with viral dissemination throughout the FRT and lymphoid
tissues (64, 65). An older, yet similar model without the NOD
background termed Rag1nullIl2rgnull or Rag2nullIl2rgnull (DKO)
mice (also known as BRG mice) (11, 66), also demonstrated
susceptibility to both R5- and X4-tropic variants of HIV-1 via
vaginal and rectal mucosal transmission with insights on therapy
efficacy, latency and chronic infection (24–26, 67, 68).
Furthermore, hu-DKO/hu-BRG mice have greatly contributed
to cross-species transmission and viral evolution investigations
(69, 70), as well as the development of Hu-mice based viral
outgrowth assays to further the understanding of HIV latency
(71, 72). Successful mucosal infection in hu-DKO and hu-NRG
mice best models natural human routes of HIV-1 transmission
and allows studies of microbiota alteration (65) and topical pre-
exposure prophylaxis (PrEP) (67, 73–76).

Studies using hu-NRG mice investigated the role of
plasmacytoid dendritic cells during infection (77) and HIV-1
latency, and revealed the persistence of type 1 interferon (IFN)
signaling after cART treatment (78). Furthermore, therapeutics
that enhance ART treatment such as broadly neutralizing
antibodies (79) showed promise in this model for prevention
of cell-to-cell HIV-1 transmission (80, 81). Novel CRISPR/CAS9
genome editing technology was used in PBMC-engrafted NRG
mice and demonstrated excision of HIV-1 pro-viral DNA which
reduced levels of HIV-1 (82). Additionally, single-cell RNA-
sequencing was used in this model to characterize human innate
Frontiers in Immunology | www.frontiersin.org 4
immune cells in lymphoid tissues (83). Interestingly, despite the
lack of isotype-switched mature B cells, hu-NRGs can still be a
useful tool for certain vaccine investigations (84).

NSG-BLT Engraftment Model
Compared to HSC-engrafted DKO, NSG, and NRG, the BLT
engrafted NSG (NSG-BLT) hu-mice have the best overall
reconstitution and functional human immune system for
studying immune responses to HIV-1 infection (18, 49, 85,
86). For this reason, the BLT mice are currently considered the
gold standard for HIV-1 research in murine models (17, 49, 50).
BLT mice have been shown repeatedly to sustain mucosal HIV-1
infection and CD4+ T cell reconstitution in the FRT (32, 87).

The NSG-BLT mice have been frequently used for testing
HIV-1 prevention and therapy. Studies examining therapeutics
such as the long-acting ART raltegravir (88), ultra-long-acting
antiretroviral dolutegravir (89), and PreP therapies such as the
nucleoside reverse transcriptase inhibitor (NRTI) 4’-ethynyl-2-
fluoro-2’-deoxyadenosine (EFdA) take advantage of the
reconstituted human immune cell population in the mucosa
(90). These studies have demonstrated effective inhibition of
HIV-1 replication, reduction of HIV-1 viral load, and protection
from multiple high-dose HIV-1 challenges (87, 88, 89, 90). Other
studies using the NSG-BLT model provided valuable insights
into HIV-1 treatment, viral evolution, prevention strategies, dose
testing, tissue concentration, and pharmacokinetic data (74, 91–
95). NSG-BLT Hu-mice have also been used to investigate
potential treatment methods including anti–human IFN
receptor 2 (IFNR2) (96) and anti-IFN-a/b receptor (IFNAR)
antibodies (78) in conjunction with ARTs to successfully
diminish viral reservoir size in lymphoid tissue and delay viral
rebound (78, 96). A novel therapeutic strategy using chimeric
antigen receptor modified stem cells successfully repopulated
NSG-BLT mice with HIV-specific lymphoid populations and
demonstrates potential for use in HIV treatment and cure studies
(97). The efficacy of both HIV-1 reverse transcriptase inhibitor
EFdA (98) and latency-reversing agents such as panobinostat
(99) were also studied within the lymphoid compartments to
elucidate effects on viral reservoir and latency. Finally, the NSG-
BLT model is among the Hu-mice that can be used to evaluate
the efficacy of potential HIV vaccines as demonstrated through
significant T cell protection upon gag-specific vaccine
administration (100). The development of proof of concept
vaccines for therapeutic treatment has also been tested in the
NSG-BLT model. In a lentiviral-based DC vaccine, HIV-1
antigen (SL9 epitope) is expressed with CD40 ligand to
stimulate DC responses and Programmed Death 1 (PD-1) to
prevent checkpoint activation (101). This vaccine demonstrated
the ability to induce antigen-specific T cells and memory (101).
Although unable to induce protection it was able to decrease viral
load in the short term (101). In a similar model (NRG with fetal
thymus implanted), another therapeutic vaccine expressing 5
CD4 and CD8 HIV specific T cell epitopes with CD40 ligand and
administered with TLR3 agonist PolyI:C was successful at
inducing anti-HIV CD8 and CD4 T cell responses, reactivated
HIV reservoirs in cART controlled HIV infected mice, and
decreased cell associated viral DNA (102).
March 2021 | Volume 11 | Article 617516
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UNDERSTANDING MUCOSAL
TRANSMISSION OF HIV-1 AND THE
EFFECT OF MICROBIOTA USING
HU-MOUSE MODELS

It is well recognized that more than 80% of HIV-1 infections
occur through sexual transmission at mucosal surfaces, primarily
the lower intestinal tract and female and male genital tract (8).
While significant progress has been made in the understanding
of mucosal transmission and pathogenic progression of HIV-1
through clinical studies and NHP models, the Hu-mice models
present excellent model systems to recapitulate many features of
mucosal infection in humans (103–106).

Most Hu-mouse experiments that have focused on mucosal
(intrarectal or intravaginal) HIV-1 transmission have assessed
prevention of infection using a wide variety of potential
prophylactic agents. In these experiments, cell-free (including
transmitted/founder strains) and cell-associated HIV-1 were used
to challenge Hu-mice via the rectal or vaginal routes (24, 33, 64, 65,
94). While most of the mucosal prevention studies focused on the
vaginal route of transmission, several have assessed the efficacy of
PrEP preventions in Hu-mice challenged intrarectally. Topical
microbicides (91), C5A in BLT mice (107), topically delivered
ARVs (tenofovir disoproxil fumarate (TDF) and emtricitabine
(FTC)) in BLT (108) are some of the prophylactic agents tested.
Many studies tested various formulations, routes, pharmacokinetic
and challenge routes. Different studies reported complete or partial
protection against a single dose intrarectal challenge with HIV-1
(91, 94). Using the DKO model, tissue distribution of the
interventions has also been assessed (73, 74). In studies focused
on the vaginal route of transmission, many studies examined the
efficacy of topical microbicides in DKO and BLT models (75, 92,
108–116). While most studies reported complete protection against
single dose intravaginal challenge with HIV-1, others report only
partial (89, 110, 113–117), or no protection (110).

Repeated, and often high dose, intravaginal exposure model has
been tested to examine the effectiveness of the prophylactic
intervention (88, 89, 94, 114). While it is likely that repeated, low
dose viral challenges mimic vaginal transmission of HIV-1 in
women more closely than high dose challenges, both
experimental designs provide the opportunity to answer different
research questions about prophylactic interventions. Interestingly, a
few studies found delayed HIV-1 infection and dissemination when
vaginal and systemic levels of drug were reduced or after drug
cessation (112, 114, 115). Thus Hu-mice models can be useful in
studying imperfect patient adherence and how this might impact
HIV-1 transmission.

Work done by our group has highlighted the critical factors
for successful mucosal transmission using a Hu-mouse model.
We demonstrated that the frequency of circulating human CD45
+ cells was the primary determinant of successful HIV-1
infection following intravaginal exposure in HSC-engrafted
NRG mice. Furthermore, a significant correlation existed
between peripheral blood CD45+ cells and HIV-1 target cells
in the vaginal mucosa (64). This study highlighted that for
successful HIV-1 infection through the intravaginal route,
Frontiers in Immunology | www.frontiersin.org 5
access to target cells in the mucosa is required. This highlights
the importance of developing prophylactic interventions that
limit target cells in mucosa, such as limiting tissue inflammation
(118), to prevent HIV-1 infection.

The role of the microbiota in altering HIV susceptibility is a
growing area of interest and the subject of many clinical studies. Hu-
mice might be a useful model to examine the effect of themicrobiota
(vaginal and/or rectal) on HIV-1 acquisition, as a diverse vaginal
microbiota low in Lactobacillus species is associated with a 4-fold
increased risk of acquisition in women (119). If the next generation
of Hu-mouse models engrafted with HSCs could be developed as
gnotobiotic (germ-free) mice, this would allow for the reconstitution
of Hu-mouse vagina/rectum/gut with human microbiota and
assessment of HIV-1 acquisition risk. Although germ-free Hu-
mice are not presently commercially available, a recent
publication reported the generation of “pseudo-gnotobiotic” Hu-
mice. NSG-BLT Hu-mice were treated with broad spectrum
antibiotics, and subsequently transplanted with a human gut
microbiota via fecal transplant; generating NSG-BLT mice
reconstituted with human immune cells and a human gut
microbiota. The authors found unique gut microbiota signatures
in the mice that resembled those of the human donor, and they
demonstrated that the human-like gut microbiota was stable in
these mice for the duration of their study (14.5 weeks) (120).
However, the relevance of this type of model and of other types
of doubly-reconstituted Hu-mice (immune cells and microbiota)
that we may be able to generate in the future is controversial at
present. This is for a variety of reasons including, but not limited to,
our lack of knowledge on generalizability of results obtained in mice
to humans, a lack of standardized protocols, inter-donor, ethnic,
and geographical microbial variability that makes replication of data
challenging, and anatomical and physiological differences between
mice and humans that might impact the microbiota (121).
Nevertheless, germ-free humanized mouse models that can be
reconstituted with a human-like microbiota may one day be key
advancements that improve our understanding of the role of the
vaginal, rectal and gut microbiota in mucosal HIV-1 transmission,
epithelial barrier disruption, and inflammation. Furthermore, they
may be useful in examining prophylactic interventions to decrease
systemic inflammation and prevent HIV-1 transmission.
USING HU-MICE FOR UNDERSTANDING
TUBERCULOSIS-HIV CO-INFECTION

Currently animal models for HIV co-infection with other pathogens
are lacking. Although Hu-mice have been used to investigate HIV
co-infection with pathogens such as Epstein–Barr virus and
Neisseria gonorrhoeae (30, 122), co-infection with Mycobacterium
tuberculosis (Mtb) is of particular interest as it is the most common
cause of AIDS-related death (1). HIV-1 infection increases the risk
of latent tuberculosis (TB) reactivation (123). HIV/TB co-infection
increases morbidity and mortality while complicating therapies
associated with both diseases due to multiple factors including the
development of Immune Reconstitution Inflammatory Syndrome
(IRIS) and TB drug resistance (124). The current inbred mouse in
March 2021 | Volume 11 | Article 617516
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vivomodels of TB do not develop organized granulomas (125) and
show inconsistent immune responses (126).

On the other hand, the use of Hu-mouse models (HSC-
engrafted (127, 128) and BLT-engrafted (129) NSG mice) has
demonstrated tremendous potential to recapitulate human TB
infection, immune response, and formation of organized
granulomas (127–129). With the vastly successful Hu-mice
studies in HIV-1, they serve as a viable model for co-infection. In
early HIV/TB co-infection studies, NSG-BLT mice were infected
with HIV-1 followed by Mtb. HIV-1 was localized in pulmonary
granulomas and exacerbated TB lesions and lung pathology were
seen (130). A more recent study demonstrated that the same model
can be used for studying TB relapse in co-infection by
administration of HIV-1 intravenously after paucibacillary TB
infection was established (131). Although only NSG-BLT model
has been used thus far for TB-HIV co-infection, newer generation
Hu-mouse models using the easier and more accessible HSC-only
engraftment method for HIV/Mtb co-infection would allow for
more widespread use of the model, thus addressing the lack of
literature on HIV/TB co-infection studies in vivo.
IMPROVED HU-MOUSE MODELS FOR
HIV-1 RESEARCH (NEXT GENERATION):
NSG-A2, DRAG, DRAGA, AND BRGST

Addressing the Challenges With the
BLT Model
Even though the BLT model is currently the gold standard for
HIV-1 research, there are several disadvantages that limit its use.
Xenogenic GvHD that develops post-engraftment (132, 133)
remains a concern despite efforts to extend longevity using a
triple-knockout model (134, 135). This reduces the sample
population of mice in studies (17) and prevents long-term
studies. Humanized BLT mice also lack high levels of B cell
populations and hyper-mutated, class-switched IgG antibodies
(136). Furthermore, the engraftment of human fetal liver and
thymus tissue is time-consuming and requires great technical
skill to execute. Finally, a major issue with using the fetal BLT
method is material availability, as restrictions on the use of fetal
tissue in research is of increasing concern (137). To address this
shortcoming, a novel method of using neonatal thymus tissue to
replace the use of fetal tissue was developed within NOD,
B6.SCIDIl2rg-/-KitW41/W41 (NSGW) mice (NSGW-NeoThy)
(39, 138). The addition of the KitW41/W41 alleles offers the
advantage of accepting HSC engraftment without prior
irradiation (138, 139). Neonatal thymic samples are easier to
obtain, and yield much larger quantities of tissue and can thus
humanize more mice per sample compared to using fetal tissue
(39). NSGW-NeoThy mice developed smaller thymic organoids
but with either autologous or allogeneic HSC engraftment, the
model successfully repopulated human myeloid and lymphoid
populations comparable to fetal thymus-only engrafted NSG
mice (39), thus demonstrating its potential for future use in
HIV investigations. Some evidence also presented the potential
of reduced GvHD in NSGW-NeoThy mice by administration of
Frontiers in Immunology | www.frontiersin.org 6
anti-human CD2 antibodies to remove GVHD-associated
passenger thymocytes, but a more comprehensive study must
be conducted to elucidate GvHD development in the model (39).

Next Generation of Transgenic Mice
NSG-A2 mice were developed from the NSG background strain
and are transgenic for the human HLA class I-A2 molecule.
When humanized with HLA-matched HSCs, this allows human
CD8+ T cells to be functionally mature (140). However, neither
total CD8+ T cell reconstitution levels nor B cell function were
significantly better than NSG mice (140, 141). To improve the
humoral immune response, the HLA class II transgene
(specifically, HLA-DR4) molecule has been expressed in the
NOG (142), NSG (143), and NRG mice (34). Here we are
focusing on the more popularly used and radiation-tolerant
NRG background termed DRAG mice.

Humanized DRAG (hu-DRAG) mice with HSC derived
HLA-DR-matched umbilical cord blood engraftment resulted
in significantly higher counts of human CD4+ and CD8+
T cells compared to its non-transgenic NRG counterpart (34)
(Table 1). Human B cells were highly functional, and could
undergo immunoglobulin (Ig) isotype class-switching (34). To
adequately compare the benefits between transgenic HLA class I
and II, a model co-expressing both the HLA-A2 and HLA-DR4
molecules, termed DRAGA mice was developed (35).
Comparisons between NRG-A2, DRAG, and DRAGA models
engrafted with HLA-matched HSCs demonstrated that both hu-
DRAG and hu-DRAGA models had significantly better human
T-cell reconstitution, CD4/CD8+ T cell function, and most
importantly, significant B cell Ig class-switching when
compared to NRG-A2 mice (35) and even the hu-BLT models
(136) (Table 1). These results demonstrate that the HLA-DR4
transgene can confer more benefits in human lymphoid
reconstitution compared to HLA-A2.

Recently the BRG background was altered to produce a
promising model with consistent lymph node reconstitution and
development addressing the shortcomings of secondary lymphoid
tissue formation within current Hu-mouse models (37, 144). Balb/
c Rag2−/−Il2rg−/−SirpaNOD (BRGS) mice (145) that express
transgenic thymic-stromal-cell-derived lymphopoietin (TSLP),
termed the BRGST model, boast robust human cellular and
humoral responses (37). TSLP is similar in structure and
function to IL-7, but is IL2rg independent and thus can
promote B and T cell responses (39). In particular, when
compared to the older hu-BRGS model, hu-BRGST mice
demonstrated enhanced Ig-isotype class switching, central/
effector memory T cell, and T follicular helper (TFH) cell
development in secondary lymphoid tissues with pronounced B
cell zones (37).When the BRGS background hosts HLA class I and
II transgenes (termed BRGSA2DR2 mice), improvements in
T and B cell development and functionality including Ig-isotype
class switching and antigen-specific responses were also
observed (38).

Hu-DRAG mice are capable of supporting HIV-1 infections
when challenged intravaginally as the mucosa of the FRT and gut
both repopulate with CD4+ T cells and TFH cells (36, 146). Hu-
BRGSTmice successfully sustain HIV-1 infection and replication
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upon intraperitoneal inoculation (37). Viral reservoir and latency
was also demonstrated after HAART administration, thus also
offering possibilities in HIV latency and cure investigations (37).
As hu-DRAG, hu-DRAGA, hu-BRGST, and hu-BRGSA2DR2
mice develop robust antigen-specific Ig responses, these models
have tremendous potential for use in testing novel HIV-1 vaccine
formulations. Immunization of both hu-DRAG and hu-DRAGA
models for the investigation of other pathogenic viruses such as
influenza (35, 147, 148) and Zika (149) have already yielded
promising results (34, 35, 146–149). Therefore, the hu-DRAG
and hu-DRAGA demonstrate tremendous potential for future
use in HIV-1 therapeutic antibody and vaccine research.

Other Novel Models for HIV-1 Studies
The reconstituted human immune cell population in the current
HSC-engrafted models for HIV-1 studies consist mainly of
lymphoid cells with lower overall functional NK cell and
myeloid repopulation (42, 150–152). Reduced myeloid
populations may result in decreased endogenous cytokine
signals, preventing the model from providing the full human
inflammation process (42). Additionally, this may limit aspects
of HIV-1 investigation such as innate immunity, antigen
presentation interactions, or humoral immunity and vaccine
studies. Table 1 summarizes some of the novel models
including, MITRG/MISTRG models (discontinued by the
Jackson Laboratory- short life span of 10-16 weeks post
engraftment), NSGS (also called NSG-SGM3) model (NSG
mice expressing human myeloid promoting cytokines SCF,
GM-CSF, and IL-3, life span issue after 20 weeks) (42–44), and
NOG-EXL (NOG mice expressing GM-CSF and IL-3) (40, 41) for
better human myeloid cell engraftment of monocytes/macrophages
and NK cells reconstitution (46, 47). Furthermore, the NSG-15 (45)
and SRG-15 (31) models have been developed to express transgenic
human IL-15 specifically for improved NK cell development.
Overall, these models have all demonstrated success in their use
for HIV-1 investigations, and their myeloid and NK reconstitution
improvements can further extend HIV-1 in vivo research
capabilities. It is important for researchers to note that until all
shortcomings of Hu-mouse models have been addressed, choosing
Frontiers in Immunology | www.frontiersin.org 7
the optimal model for a study will depend on the experiment itself
with special considerations for study timeline and immune cells
of interest.
CONCLUSION

In summary, the development of Hu-mouse models has
provided a cost-effective and practical approach for HIV-1
research. These mice provide a useful pre-clinical tool, since
they allow researchers to directly examine interactions between
HIV-1 and the human immune system. Novel modifications in
generating Hu-mice is increasing the feasibility of using these
models to investigate more complex clinical problems, such as
immune response in co-infections like HIV and TB, and
understanding interactions between immune responses and
microbiota in regulating HIV-1 susceptibility. As we continue
to make improvements in humanization of mice by developing
novel models with new features and gain better understanding of
how to tailor the models to answer specific questions, we will
continue to push the envelope and make breakthroughs in HIV-
1 research.
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