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Research on detecting Tuberculosis (TB) findings on chest radiographs (or Chest X-rays: CXR)
using convolutional neural networks (CNNs) has demonstrated superior performance due to
the emergence of publicly available, large-scale datasets with expert annotations and
availability of scalable computational resources. However, these studies use only the
frontal CXR projections, i.e., the posterior-anterior (PA), and the anterior-posterior (AP)
views for analysis and decision-making. Lateral CXRs which are heretofore not studied
help detect clinically suspected pulmonary TB, particularly in children. Further, Vision
Transformers (ViTs) with built-in self-attention mechanisms have recently emerged as a
viable alternative to the traditional CNNs. Although ViTs demonstrated notable
performance in several medical image analysis tasks, potential limitations exist in terms of
performance and computational efficiency, between the CNN and ViT models, necessitating a
comprehensive analysis to select appropriate models for the problem under study. This study
aims to detect TB-consistent findings in lateral CXRs by constructing an ensemble of the CNN
andViTmodels. Severalmodels are trained on lateral CXRdata extracted from two large public
collections to transfer modality-specific knowledge and fine-tune them for detecting findings
consistent with TB. We observed that the weighted averaging ensemble of the predictions of
CNN and ViT models using the optimal weights computed with the Sequential Least-Squares
Quadratic Programming method delivered significantly superior performance (MCC: 0.8136,
95% confidence intervals (CI): 0.7394, 0.8878, p < 0.05) compared to the individual models
and other ensembles. We also interpreted the decisions of CNN and ViT models using class-
selective relevance maps and attention maps, respectively, and combined them to highlight
the discriminative image regions contributing to the final output.We observed that (i) themodel
accuracy is not related to disease region of interest (ROI) localization and (ii) the bitwise-AND of
the heatmaps of the top-2-performing models delivered significantly superior ROI localization
performance in terms of mean average precision [mAP@(0.1 0.6) = 0.1820, 95% CI:
0.0771,0.2869, p < 0.05], compared to other individual models and ensembles. The code
is available at https://github.com/sivaramakrishnan-rajaraman/Ensemble-of-CNN-and-ViT-
for-TB-detection-in-lateral-CXR.
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1 INTRODUCTION

Artificial intelligence (AI) methods, particularly deep learning
(DL)-based convolutional neural network (CNN) models, have
demonstrated remarkable performance in natural and medical
computer vision applications (Schmidhuber, 2015). Considering
chest-X-ray (CXR) analysis, CNN models have outperformed
conventional machine learning (ML) methods for semantic
segmentation, classification, and object detection, among other
tasks (Wang et al., 2017; Irvin et al., 2019; Bustos et al., 2020).

Research on detecting Tuberculosis (TB)-consistent findings
in CXRs using DL methods has demonstrated superior
performance due to the emergence of publicly available, large-
scale datasets with expert annotations and availability of scalable
computational resources (Jaeger et al., 2014; Lakhani and
Sundaram, 2017; Sivaramakrishnan et al., 2018; Pasa et al.,
2019; Rajaraman and Antani, 2020). However, these studies
only use the frontal CXR projections, i.e., the posterior-
anterior (PA), and the anterior-posterior (AP) views, for
analysis and decision-making. To the best of our knowledge,
lateral CXR projections have, heretofore, not been used for AI
detection approaches to pulmonary diseases before this work.
Lateral CXR projections of children with clinically suspected
pulmonary TB, in addition to the conventional frontal
projections, are critical and showed an increase in the
detection sensitivity of enlarged lymph nodes by 1.8% and
specificity by 2.5% (Swingler et al., 2005). Further, the World
Health Organization (WHO) recommends the use of lateral CXR
projections to identify mediastinal or hilar lymphadenopathy
(World Health Organization, 2016), especially in younger
children with primary TB where a bacteriological confirmation
might be challenging. As discussed in (Gaber et al., 2005), lateral
CXRs provide useful spatial diagnostic information on the
thoracic cage, pleura, lungs, pericardium, heart, mediastinum,
and upper abdomen and help identify lymphadenopathy in
children with primary TB (Gaber et al., 2005). Another study
(Herrera Diaz et al., 2020) discusses the current national
Canadian guidelines suggesting using lateral CXR projections
for TB screening upon admission to long-term care facilities.
These studies underscore the importance of using lateral CXR
projections as they carry useful information on disease
manifestation and progression; hence, this study aims to
explore these least studied types of CXR projection (the
lateral) and propose a novel approach for detecting TB-
consistent findings.

Recently, Vision Transformers (ViTs) (Zhai et al., 2021) with
built-in self-attention mechanisms have demonstrated
comparable performance to CNNs in natural and medical
visual recognition tasks, while requiring fewer computational
resources. Several studies (Liu and Yin, 2021; Shome et al.,
2021; Park et al., 2022) used ViTs to improve pulmonary
disease detection in frontal CXRs to detect manifestations
consistent with COVID-19 disease. Another study (Duong
et al., 2021) used a ViT model to detect TB-consistent findings
in frontal CXRs and obtained an accuracy of 97.72%. The
promising performance of ViT models in medical visual
recognition tasks is constrained by sparse data availability

(Zhai et al., 2021). Unlike CNN models, ViT models lack
intrinsic biases, i.e., the properties of translation equivariance,
which is the similarity in processing different image parts
regardless of their absolute position, and they do not consider
the relationship between the neighboring image pixels. Further,
the computational complexity of ViT models increases with the
input image resolution resulting in demand for a higher resource.
In contrast, CNN models have shown promising performance
even with limited data due to their inherent inductive bias
characteristics that help in convergence and generalization.
However, CNN models do not encode the relative position of
different image features and may require large receptive fields to
encode the combination of these features and capture long-range
dependencies in an input image. This leads to increased
convolutional kernel sizes and subsequently the computational
complexity (Alzubaidi et al., 2021). A potential solution could be
to exploit the advantages of both models, i.e., CNNs and ViTs
toward decision-making for the task under study.

Several ensemble methods including majority voting,
averaging, weighted averaging, and stacking, have been studied
for medical visual recognition tasks (Dietterich, 2000).
Considering CXR analysis, particularly TB detection, ensemble
methods have been widely used to improve performance in
semantic segmentation, classification, and object detection
tasks (Hogeweg et al., 2010; Ding et al., 2017; Islam et al.,
2017; Rajaraman et al., 2018a; Rajaraman and Antani, 2020).
However, to the best of our knowledge, we are not aware of
studies that perform an ensemble of ViTs or an ensemble of both
CNN and ViT models for disease detection, particularly detecting
TB-consistent findings using lateral CXRs. The main
contribution of this work is a systematic approach that
benefits from constructing ensembles of the best models from
both worlds (i.e., CNNs and ViTs) to detect TB-consistent
findings using lateral CXRs through reduced prediction
variance and improved performance.

The steps in this systematic study can be summarized as
follows: (i) First, ImageNet-pretrained CNN models, viz,
VGG-16 (Simonyan and Zisserman, 2015), DenseNet-121
(Huang et al., 2017), and EfficientNet-V2-B0 (Tan and Le,
2021) and the ImageNet-pretrained ViT models, viz, ViT-B/
16, ViT-B/32, ViT-L/16, and ViT-L/32 (Zhai et al., 2021) are
retrained on a combined selection of publicly available lateral
CXR collections (Rajpurkar et al., 2017; Bustos et al., 2020). This
step is performed to convert the weight layers specific to the
lateral CXR modality and learn to classify normal and abnormal
lateral CXRs; (ii) Next, the retrained models are used to transfer
the lateral CXR modality-specific knowledge to improve
performance in the related task of classifying lateral CXRs as
showing no abnormalities or other findings that are consistent
with TB; (iii)The predictions of the top-K (K = 2, 3, 5, 7) models
are combined using several ensemble methods such as majority
voting, simple averaging, and weighted averaging using the
optimal weights derived with the Sequential Least-Squares
Quadratic Programming (SLSQP) algorithm (Gupta and
Gupta, 2018). We construct a “model-level” ensemble of the
CNN and ViT models by flattening, concatenating the features
from their deepest layers, and adding the classification layers to
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classify the lateral CXRs to their respective categories; (iv) We
also interpret CNN and ViT model decisions through the use of
class-selective relevance maps (CRM) (Kim et al., 2019) and
attention maps, respectively, and construct an ensemble of
these heatmaps and attention maps using several ensemble
methods. Finally, we analyze and report statistical significance
in the results obtained using the individual models and their
ensembles using confidence intervals (CIs) and p values.

2 MATERIALS AND METHODS

2.1 Datasets
The following publicly available datasets are used in this study:

CheXpert CXR dataset: The authors in (Irvin et al., 2019)
released a collection of frontal and lateral CXR projections,
showing normal lungs, and other pulmonary abnormalities.
The dataset contains 224,316 CXRs collected from 65,240
patients at the Stanford University Hospital in California. The
CXRs are labeled using a natural language processing (NLP)-
based automatic labeler for the presence of 14 thoracic
abnormalities mentioned in radiological reports. The collection
includes 23,633 lateral CXRs manifesting various pulmonary
abnormalities and 4,717 lateral CXRs showing no
abnormalities. In this study, the lateral CXR projections are
split at the patient level into 90/10 proportions for the train
and test sets and are used during CXR modality-specific
pretraining.

PadChest CXR dataset: A collection of 160,000 frontal and
lateral CXRs and their associated radiological reports are released
by (Bustos et al., 2020). The collection includes normal and
abnormal CXRs collected from 67,000 patients at the San Juan
Hospital in Spain. The CXR images are automatically labeled for
174 radiographic findings, based on the Unified Medical
Language System (UMLS) terminology. The collection includes
33,454 lateral CXRs manifesting several pulmonary abnormalities
and 14,229 lateral CXRs showing no abnormalities. The abnormal
lateral CXR collection also includes 530 CXRs collected from
patients diagnosed with TB. The set of CXRs manifesting TB-
consistent findings and an equal number of lateral CXRs with no
abnormalities are used during the fine-tuning. The ground truth
annotations for the hold-out test set consisting of 53 images, and
showing findings that are consistent with TB, are provided by an
expert radiologist (with >30 years of experience). The radiologist
used the web-based VGG Image Annotator tool (VIA, Oxford,
England) (Dutta and Zisserman, 2019) to annotate the test
collection by manually setting boundary boxes for what is

believed to be TB-consistent findings. Table 1 shows the
datasets, the numbers of images, and their respective patient-
level train/test splits used in this study. The lateral CXR images
from the PadChest and CheXpert collections are resized to 224 ×
224 pixel dimensions to reduce computational overhead.

2.2 Classification Models
The following CNN and ViT Models are used in this study: (i)
VGG-16 (Simonyan and Zisserman, 2015); (ii) DenseNet-121
(Huang et al., 2017); (iii) EfficientNet-V2-B0 (Tan and Le, 2021);
(iv) ViT-Base (B)/16 (Zhai et al., 2021); (v) ViT-B/32 (Zhai et al.,
2021); (vi) ViT-Large (L)/16 (Zhai et al., 2021); and (vii) ViT-L/32
(Zhai et al., 2021). The CNN models are selected based on their
superior performance in CXR-based visual recognition tasks
(Wang et al., 2017; Rajaraman et al., 2018b; Irvin et al., 2019;
Rajaraman et al., 2020a). The numbers 16 and 32 in the ViT
models denote the size of input image patches. The length of the
input image patch sequence is inversely proportional to the
square of the patch size. Thus, the ViT models with smaller
patch sizes are computationally more expensive (Zhai et al.,
2021). Interested readers are referred to (Wang et al., 2017;
Rajaraman et al., 2018b; Irvin et al., 2019; Rajaraman et al.,
2020a; Zhai et al., 2021) for a detailed description of these
models’ architecture.

2.3 CXR Modality-Specific Pretraining,
Fine-Tuning, and Ensemble Learning
During CXR modality-specific pretraining, the CNN models are
instantiated with their ImageNet pretrained weights, truncated at
their optimal intermediate layers (Rajaraman et al., 2020b), and
appended with the following layers: (i) a zero-padding (ZP) layer,
(ii) a convolutional layer with 512 filters, each of size 3 × 3, (iii) a
global averaging pooling (GAP) layer; and (iv) a final dense layer
with two nodes and Softmax activation. The optimal intermediate
layers are identified from pilot analyses for the task under study.
The ViT models are instantiated with their pretrained weights
learned from a combined selection of ImageNet and
Imagenet21K datasets. These models are then truncated at the
output classification token layer and appended with a flattening
layer and a final dense layer with two nodes to output prediction
probabilities. Figure 1 shows the block diagram of models used in
CXR modality-specific pretraining and fine-tuning stages.

The CNN and ViT models are then retrained on a combined
selection of lateral CXRs from the CheXpert and PadChest
datasets (Table 1). This process is called CXR modality-
specific pretraining and it is performed to impart CXR

TABLE 1 | Datasets and their respective patient-level train/test splits. Data in parenthesis denotes the 90/10 train/test splits. A part of the lateral CXRs in the PadChest CXR
collection that show no abnormalities and those with TB-consistent manifestations are used for fine-tuning. The rest of the data from the PadChest and CheXpert lateral
CXR collections are used for CXR modality-specific pretraining.

Dataset CXR modality-specific pretraining Fine-tuning

Abnormal Normal TB Normal

PadChest 32923 (29631/3292) 13698 (12328/1370) 530 (477/53) 530 (477/53)
CheXpert 23633 (21270/2363) 4717 (4245/472) - -
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modality-specific knowledge to (i) coarsely learn the
characteristics of normal and abnormal lateral CXRs and (ii)
convert the weight layers learned from natural images to the input
CXR modality. The modality-specific pretrained CNN and ViT
models are then fine-tuned to classify the lateral CXRs as showing
no abnormalities or other findings that are consistent with TB.
The datasets are split at the patient level into 90% for training and
10% for testing during the CXRmodality-specific pretraining and
finetuning stages as shown in Table 1. We allocated 10% of the
training data for validation with a fixed seed. The training data is
augmented using affine transformations such as rotation (−5, +5),
horizontal flipping, width, and height shifting (−5, +5), and
normalized so the image pixel values lie in the range (0, 1).
During CXR modality-specific pretraining, the CNN and ViT
models are trained for 100 epochs, using a stochastic gradient

descent (SGD) optimizer with an initial learning rate of 1e-2 and
momentum of 0.9, to minimize the categorical cross-entropy loss.
We used callbacks to store model checkpoints and reduced the
learning rate whenever the validation loss ceased to decrease. The
best-performing model, delivering the least validation loss at the
end of the training epochs is stored to predict the hold-out test set.
During fine-tuning, the CXRmodality-specific pretrained models
are finetuned using the SGD optimizer with an initial learning
rate of 1e-4 and momentum of 0.9. We used callbacks for early
stopping and learning rate reduction. The best-performing
model, delivering the least validation loss at the end of the
training epochs is stored to predict the hold-out test set.

The top-K (K = 2, 3, 5, 7) fine-tuned models that deliver
superior performance with the hold-out test set are used to
construct ensembles. We constructed “prediction-level” and

FIGURE 1 | A systematic approach of training the models during CXR modality-specific pretraining and fine-tuning stages. (A) ViTs and (B) CNNs.
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“model-level” ensembles. At the prediction level, we used several
ensemble strategies such as majority voting, simple averaging,
and SLSQP-based weighted averaging to combine the top-K
model predictions. For SLSQP-based weighted averaging, we
computed the optimal weights by minimizing the total
logarithmic loss using the SLSQP algorithm (Gupta and
Gupta, 2018) to help convergence. For the model-level
ensemble, the top-K models are instantiated with their fine-
tuned weights. The ViT models are truncated at the flatten
layer. The CNN models are truncated at their deepest
convolutional layer and added with a flatten layer. The output
from the flattened layers of the ViT and CNN models are then

concatenated and appended with the final dense layer to output
class probabilities. The weights of trainable layers are frozen and
only the final dense layer is trained to output probabilities of
classifying the lateral CXRs into normal or TB categories. The
model-level ensemble is trained using an SGD optimizer and an
initial learning rate of 1e-5. Callbacks are used to store model
checkpoints and reduce the learning rate whenever the validation
performance did not improve. The best-performing model with
the least validation loss is stored to predict the hold-out test set.
Figure 2 illustrates the construction of model-level ensembles
using the fine-tuned CNN and ViT models. The performance of
the models during CXR modality-specific pretraining, fine-
tuning, and ensemble learning are evaluated using the
following metrics: (i) accuracy; (ii) area under the receiver-
operating-characteristic curve (AUROC); (iii) area under the
precision-recall curve (AUPRC); (iv) precision; (v) recall; (vi)
F-score; (vii) Matthews correlation coefficient (MCC), (viii)
Diagnostic Odds Ratio (DOR), and (ix) Cohen’s Kappa. These
metrics are expressed in Eqs 1–11.

Accuracy � TP + TN

TP + TN + FP + FN
(1)

Recall � TP

TP + FN
(2)

Precision � TP

TP + FP
(3)

F − score � 2 ×
Precision × Recall

Precision + Recall
(4)

MCC � TP × TN − FP × FN

((TP + FP)(TP + FN)(TN + FP)(TN + FN))1/2 (5)

DOR � (TP × TN)
(FP × FN) (6)

Po � (TP + TN)
(TP + FP + FN + TN) (7)

Ptrue � (TP + FN)(TP + FP)
(TP + FP + FN + TN)2 (8)

Pfalse � (FP + TN)(FN + TN)
(TP + FP + FN + TN)2 (9)
Pe � Ptrue + Pfalse (10)

Cohen’s Kappa � (Po − Pe)
1 − Pe

(11)

Here, TP, TN, FP, and FN denote the true positive, true
negative, false positive, and false negative values, respectively.
The models are trained and evaluated using Tensorflow Keras
version 2.6.2 on a Linux system with NVIDIA GeForce GTX 1080
Ti GPU, and CUDA dependencies for GPU acceleration.

2.4 Model Explainability
DL models are often criticized for their “black box” behavior,
i.e., lack of explanations toward their predictions. This lack of
explainability could be attributed to (i) their architectural
depth that may not allow decomposability into explainable
components and (ii) the presence of non-linear layers that
perform complex data transformations and result in non-
deterministic behavior that adversely impacts clinical

FIGURE 2 | A model-level ensemble constructed using fine-tuned CNN
and ViT models.
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interpretations. Methods have been proposed (Selvaraju et al.,
2017) to explain model predictions by highlighting
discriminative parts of the image that causes the model to
classify the images to their respective categories. In this study,
we used class-selective relevance maps (CRM) (Kim et al.,
2019) to discriminate image regions used by the fine-tuned
CNN models to categorize the CXRs as showing TB-consistent
findings. It has been reported that the CRM-based
visualization (Kim et al., 2019) outperformed the
conventional gradient-based class activation maps (Selvaraju
et al., 2017) in interpreting model predictions.

We computed the attention maps from the fine-tuned ViT
models using the attention rollout method discussed in (Zhai
et al., 2021). The steps involved in computing the attention map
consists of (i) getting the attention weights from each transformer
block, (ii) averaging the attention weights across all the heads, (iii)
adding an identity matrix to the attention matrix to account for
residual connections, (iv) re-normalizing the weights and
recursively multiplying the weight matrices to mix the
attention across tokens through all the layers, and (v)
computing the attention from the output token to the input
space. The bounding box coordinates of the heatmaps and
attention maps are computed as follows: (i) A difference
binary image is generated using the original input lateral CXR
image and the heatmap/attention map-overlaid image; (ii) the
polygonal coordinates of the connected components in the binary
image are measured that gives the coordinates of the vertices and
that of the line segments making up the sides of the polygon, and
(iii) a binary mask is generated from the polygon and the
coordinates are stored for further analysis. The delineated
ROIs are compared against the ground truth annotations
provided by the radiologist.

For evaluating localization performance, we used several
ensemble methods, such as simple averaging, SLSQP-based
weighted averaging, and a bitwise-AND of the heatmaps and
attention maps of top-K performing models. In simple averaging,
the heatmaps and attention maps obtained respectively using the
CNN and ViT models are averaged to produce the final heatmap,
highlighting discriminative ROIs toward TB detection. In SLSQP-
based weighted averaging, the optimal weights obtained using the
SLSQP method are used while averaging the heatmaps and
attention maps. In a bitwise-AND ensemble, the heatmaps and
attention maps are binarized and bitwise-ANDed. The
corresponding pixel in the final heatmap is activated only if
there is complete agreement among activations in the candidate
heatmaps and attention maps. The ROI localization performance
of the constituent models and their ensembles is measured in
terms of the mean average precision (mAP) metric. The mAP is
calculated by taking the mean precision over 11 IoU threshold
values within the range [0.1, 0.6] at equal intervals of 0.05
[denoted as mAP@[0.1, 0.6]] (GTUA et al., 2014).

2.5 Statistical Significance Analysis
It has been reported in (Diong et al., 2018) that 90–96% of the
studies published in scientific journals do not measure statistical
significance in the reported results, casting doubt on algorithm
reliability and confidence. In this study, we analyzed statistical

significance using the 95% confidence intervals (CIs) for theMCC
metric measured as the Clopper–Pearson binomial CI interval.
For RoI localization, we measured the 95% CIs measured as the
Clopper–Pearson binomial CI interval for the mAP metric
achieved by the individual models and their ensembles to
report statistical significance. The StatsModels and SciPy
Python packages are used in this analysis. We obtained the p-
value from the CIs using the methods reported in (Altman and
Bland, 2011). Considering the upper and lower limits of the 95%
CI as u and l respectively, the standard error (SE) is measured as
given in Eq. 12.

SE � (u − l)(2 × 1.96) (12)
The test statistic z is given by Eq. 13

z � Diff

SE
(13)

Here, Diff denotes the estimated differences between the
models for the measured metric.

The p-value is then calculated as given in Eq 14.

p � exp( − 0.717 × z − 0.416 × z2) (14)

3 RESULTS

3.1 CXR Modality-Specific Pretraining and
Fine-Tuning
Recall that the CNN and ViT models are instantiated with their
ImageNet-pretrained weights and retrained on a combined
selection of lateral CXRs from the CheXpert and PadChest
datasets. The test performance achieved during CXR modality-
specific pretraining is shown in Table 2. From Table 2, we
observed the following: (i) The training time for CNN models
is comparatively small than ViT models. The EfficientNet-V2-B0
model took the least while the ViT-L/16model took themost time
for training and convergence. (ii) The VGG-16 model
demonstrated superior performance in terms of accuracy,
F-score, MCC, DOR, Kappa, AUROC, and AUPRC metrics.
The EfficientNet-V2-B0 model demonstrated superior recall
and ViT-B/32 demonstrated superior precision compared to
other models. However, considering a balanced measure of
precision and recall, as provided by the MCC metric, the
VGG-16 model demonstrated superior performance compared
to other models. (iii) We observed that the 95% CIs obtained for
the MCC metric using the VGG-16 model are not significantly
different (p > 0.05) from other models. Due to this lack of
statistical significance, all modality-specific pretrained models
are fine-tuned to evaluate performance in the TB classification
task. Table 3 shows the performance achieved by the fine-tuned
models that classify the lateral CXRs as showing no abnormalities
or other abnormalities that are consistent with TB.

The following are observed from Table 3: (i) The CNNmodels
took comparatively lesser time to converge than the ViT models.
This observation is analogous to CXR modality-specific
pretraining. (ii) The DenseNet-121 model demonstrated
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superior performance in terms of accuracy, precision, F-score,
MCC, DOR, Kappa, AUROC, and AUPRC metrics. The ViT-L/
16 model demonstrated superior recall compared to other

models. However, considering the MCC metric, the DenseNet-
121 model demonstrated superior performance compared to
other models. (iii) The 95% CIs for the MCC metric achieved

TABLE 2 | Test performance achieved by the CNN and ViT models during lateral CXR modality-specific pretraining. The values in parenthesis denote the 95% CI measured
as the Clopper–Pearson binomial interval for the MCC metric. Bold numerical values denote superior performance.

Model Accuracy Recall Precision F MCC DOR Kappa AUROC AUPRC Training
time

(seconds)

ViT-B/16 0.7747 0.7988 0.8913 0.8425 0.4596 (0.3647,0.5545) 9 0.4512 0.8276 0.9334 17582.14
ViT-B/32 0.7394 0.7151 0.9218 0.8054 0.4621 (0.3671,0.5571) 11 0.4293 0.8375 0.9375 10739.29
ViT-L/16 0.7678 0.7846 0.8946 0.8360 0.4555 (0.3606,0.5504) 9 0.4442 0.8276 0.9332 54949.73
ViT-L/32 0.7872 0.8324 0.8792 0.8552 0.4584 (0.3635,0.5533) 9 0.4560 0.8364 0.9373 28797.83
EfficientNet-V2-B0 0.7794 0.8391 0.8645 0.8516 0.4231 (0.3290,0.5172) 8 0.4223 0.8152 0.9281 2296.54
VGG-16 0.8009 0.8361 0.8931 0.8637 0.4998 (0.4046,0.5950) 11 0.4960 0.8526 0.9441 9316.52
DenseNet-121 0.7886 0.8230 0.8885 0.8545 0.4747 (0.3796,0.5698) 10 0.4701 0.8401 0.9393 7281.22

TABLE 3 | Performance achieved by the fine-tuned models toward the TB classification task. The values in parenthesis denote the 95% CI measured as the
Clopper–Pearson binomial interval for the MCC metric. Bold numerical values denote superior performance.

Model Accuracy Recall Precision F MCC DOR Kappa AUROC AUPRC Training
time

(seconds)

ViT-B/16 0.7642 0.6792 0.8182 0.7422 0.5361 (0.4411,0.6311) 12 0.5283 0.8548 0.8668 828.30
ViT-B/32 0.8302 0.7547 0.8889 0.8163 0.6680 (0.5783,0.7577) 30 0.6604 0.9227 0.9351 338.46
ViT-L/16 0.8302 0.8302 0.8302 0.8302 0.6604 (0.5702,0.7506) 24 0.6604 0.8943 0.9084 1539.06
ViT-L/32 0.7736 0.7170 0.8085 0.7600 0.5507 (0.4560,0.6454) 12 0.5472 0.8786 0.8911 574.24
EfficientNet-V2-B0 0.8019 0.6981 0.8810 0.77900 0.6172 (0.5246,0.7098) 22 0.6038 0.8896 0.9025 114.89
VGG-16 0.8208 0.7358 0.8864 0.8041 0.6510 (0.5602,0.7418) 27 0.6415 0.9110 0.9219 267.40
DenseNet-121 0.8585 0.8113 0.8958 0.8515 0.7202 (0.6347,0.8057) 41 0.7170 0.9288 0.9423 313.44

FIGURE 3 | Performance curves achieved by the models used in this study. CXR modality-specific pretraining (VGG-16): (A) AUROC; (B) AUPRC; (C) Confusion
matrix. Fine-tuning (DenseNet-121): (D) AUROC; (E) AUPRC, and (F) Confusion matrix.
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by the DenseNet-121 model demonstrated a tighter error margin,
hence higher precision, compared to other models. We observed
that the MCC metric achieved by the DenseNet-121 model is
significantly superior to ViT-B/16 (p = 0.0001), ViT-L/32 (p =
0.0002), and EfficientNet-V2-B0 (p = 0.0183) models. We also
observed that the MCC metric achieved by the VGG-16 model is
significantly superior to the ViT-B/16 (p = 0.0133) and ViT-L/32
(p = 0.0304) models. These observations underscore the fact that
the CNN models delivered superior classification performance
compared to the ViT models. Figure 3 shows the AUROC,
AUPRC, and confusion matrices achieved by the VGG-16 and
DenseNet-121 models during the CXR modality-specific
pretraining and fine-tuning stages, respectively. A no-skill
classifier fails to discriminate between the classes and would
predict a random or a constant class in all circumstances.

The ensemble of the top-K models (K = 2, 3, 5, 7) is
constructed to evaluate any improvement in classification
performance during fine-tuning. Table 4 shows the

performance achieved using various ensemble methods
discussed in this study. From Table 4, we observe that the
performance obtained through SLSQP-based weighted
averaging is comparatively higher than other ensembles and
their constituent models. This demonstrates that, unlike using
equal weights, the use of optimal weights to combine the
predictions of constituent models improved classification
performance. (ii) The SLSQP-based weighted averaging
[optimal weights: (0.65, 0.35)] of the predictions of the top-2
fine-tuned models, viz. DenseNet-121 and ViT-B/32 delivered
superior performance in terms of accuracy, Kappa, and
significantly superior performance in terms of the MCC metric
(0.8136, 95% CI: (0.7394, 0.8878)) compared to its constituent
models, viz. DenseNet-121 (p = 0.0137), and ViT-B/32 (p =
0.0002). This ensemble also demonstrated significantly
superior performance in terms of MCC metric compared to
other models, viz. VGG-16 (p = 0.0001), EfficientNet-V2-B0
(p = 0.0001), ViT-B/16 (p = 0.0001), ViT-L/16 (p = 0.0001),

TABLE 4 | Test performance obtained using prediction-level and model-level ensembles. The values in parenthesis denote 95% CI for the MCC metric measured as the
Clopper-Pearson binomial interval. Bold numerical values denote superior performance.

Ensemble Models Accuracy Recall Precision F-score MCC DOR Kappa AUROC AUPRC Training
time

(seconds)

Majority voting Top-2 0.8774 0.8868 0.8704 0.8785 0.7549 (0.6730,0.8368) 51 0.7547 0.8774 0.9069 NA
Top-3 0.8679 0.8302 0.898 0.8628 0.738 (0.6542,0.8218) 47 0.7358 0.8679 0.9065 NA
Top-5 0.8585 0.7925 0.913 0.8485 0.7233 (0.6381,0.8085) 47 0.717 0.8585 0.9046 NA
Top-7 0.8585 0.7925 0.913 0.8485 0.7233 (0.6381,0.8085) 47 0.717 0.8585 0.9046 NA

Simple averaging Top-2 0.8679 0.8113 0.9149 0.86 0.7406 (0.6571,0.8241) 53 0.7358 0.9388 0.9525 NA
Top-3 0.8491 0.8113 0.8776 0.8431 0.7001 (0.6128,0.7874) 34 0.6981 0.9377 0.9515 NA
Top-5 0.8679 0.8113 0.9149 0.86 0.7406 (0.6571,0.8241) 53 0.7358 0.937 0.949 NA
Top-7 0.8396 0.7925 0.875 0.8317 0.6823 (0.5936,0.7710) 30 0.6792 0.9313 0.9441 NA

SLSQP-weighted averaging Top-2 0.9057 0.8679 0.9388 0.902 0.8136 (0.7394,0.8878) 110 0.8113 0.9409 0.9542 NA
Top-3 0.9057 0.8868 0.9216 0.9039 0.8119 (0.7375,0.8863) 96 0.8113 0.9352 0.9492 NA
Top-5 0.8962 0.8491 0.9375 0.8911 0.796 (0.7192,0.8728) 94 0.7925 0.9388 0.952 NA
Top-7 0.9057 0.8679 0.9388 0.902 0.8136 (0.7394,0.8878) 110 0.8113 0.937 0.9503 NA

Model-level Top-2 0.8962 0.8113 0.9773 0.8866 0.8041 (0.7285,0.8797) 223 0.7925 0.9491 0.9587 91.4263
Top-3 0.8679 0.7736 0.9535 0.8542 0.7493 (0.6667,0.8319) 87 0.7358 0.9274 0.9433 418.05
Top-5 0.8679 0.7736 0.9535 0.8542 0.7493 (0.6667,0.8319) 87 0.7358 0.9427 0.9525 555.088
Top-7 0.8585 0.7547 0.9524 0.8421 0.7329 (0.6486,0.8172) 79 0.717 0.9366 0.9493 758.957

FIGURE 4 | Performance curves achieved using SLSQP-based weighted averaging of the predictions of top-2 fine-tuned models, i.e., DenseNet-121, and ViT-B/
32 models. (A) AUROC; (B) Confusion matrix, and (C) AUPRC.
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and ViT-L/32 (p = 0.0001) models. The model-level ensemble of
the top-2 fine-tuned models, i.e., DenseNet-121 and ViT-B/32
demonstrated superior values for the DOR metric. Figure 4
shows the AUROC, AUPRC, and confusion matrices achieved
by the SLSQP-based weighted averaging of the predictions of the
top-2 fine-tuned models.

3.2 Evaluating TB-Consistent ROI
Localization Performance
As described in Section 2.4, we use CRMs and attention maps to
interpret the predictions of the CNN and ViT models,
respectively. The delineated ROIs are compared against the
ground truth annotations provided by the radiologist. Figure 5
shows a sample lateral CXR with expert-annotated ROI

consistent with TB and the discriminative ROIs highlighted by
the fine-tuned CNN and ViT models discussed in this study.
Table 5 shows the TB-consistent ROI localization performance in
terms of mAP metric, achieved by the individual models.

Further, we constructed ensembles of the heatmaps of the top-
2 models from Table 5, viz. VGG-16 and DenseNet-121 models
using simple averaging, SLSQP-based weighted averaging, and
bitwise-AND techniques. Figure 6 shows the box plots for the
range of mAP values achieved by the individual models and other
ensembles. Table 6 shows the TB-consistent ROI localization
performance achieved in terms of the mAP metric by the model
ensembles.

From Figure 6, we observe that the maximum, mean,
median, the total range, and the inter-quartile range of the
mAP values achieved with the Bitwise-AND ensemble is
significantly higher (p < 0.05) than those obtained with the
ViT models and considerably higher than the averaging and
weighted averaging ensembles. From Table 6, we observe that
all ensemble methods demonstrated superior values for the
mAP metric compared to the individual models (Table 5). The
bitwise-AND operation resulted in superior values for the
mAP metric compared to the constituent models, other
models, and ensembles. The mAP metric achieved by the
bitwise-AND ensemble is observed to be significantly
superior to ViT-B/16, ViT-L/16, ViT-L/32 (p = 0.0199),
ViT-B/32 (p = 0.0193), and EfficientNet-V2-B0 (p = 0.0014)
models. This performance is followed by the SLSQP-based
weighted averaging ensemble that demonstrated significantly

FIGURE 5 | TB-consistent ROI localization achieved using the fine-tuned models. (A) An instance of lateral CXR with expert-annotated ROI consistent with TB
(shown with a red bounding box); (B) VGG-16; (C) DenseNet-121; (D) EfficientNet-V2-B0; (E) ViT-B/16; (F) ViT-B/32; (G) ViT-L/16, and (H) ViT-L/32.

TABLE 5 | TB-consistent ROI localization performance achieved by the fine-tuned
CNN and ViT models. The values in parenthesis denote the 95% CI measured
as the Clopper-Pearson binomial interval for the mAP metric. Bold numerical
values denote superior performance.

Model mAP@[0.1, 0.6]

ViT-B/16 0.0573 (0,0.1205)
ViT-B/32 0.0567 (0,0.1196)
ViT-L/16 0.0573 (0,0.1205)
ViT-L/32 0.0573 (0,0.1205)
EfficientNet-V2-B0 0.0690 (0.0001,0.1379)
VGG-16 0.1283 (0.0374,0.2192)
DenseNet-121 0.1052 (0.0218,0.1886)
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superior localization performance compared to ViT-B/16,
ViT-L/16, ViT-L/32 (p = 0.0264), and EfficientNet-V2-B0
(p = 0.0029) models. Figure 7 shows a Bitwise-AND
ensemble of the heatmaps produced by the top-2 models,
viz. VGG-16 and DenseNet-121 models, for instances of test
images.

4 DISCUSSION

Following findings from our pilot studies which are consistent
with prior observations [34], the ImageNet-pretrained CNNs
with their total depth and the ImageNet-pretrained ViT
models demonstrated sub-optimal performance toward the
task of TB detection. Therefore, we truncated the
ImageNet-pretrained CNN models at their optimal
intermediate layers, appended them with the classification
layers. Further, instead of using ImageNet weights learned
from stock photographic images we trained the CNN and
ViT models on a large-scale collection of lateral CXR data.
These CXR modality-specific pretrained weights serve as a
promising initialization to promote modality-specific
knowledge transfer and improved adaptation and

performance of the models in the relevant task of detecting
TB-consistent manifestations.

From our findings and evaluation results, we observe that
the ViT models demonstrate sub-optimal classification and
ROI localization performance and significantly higher training
time, compared to the CNN-based DL models. These findings
confirm our suspicion that these may be due to the lack of
intrinsic inductive biases. On the other hand, CNN models
show superior performance at lower training times even with
our limited dataset. Even though CheXpert and PadChest data
sets have a cumulative of over 384,316 CXRs only 76,033
lateral CXRs are found in them with only 530 lateral CXRs
(0.13% of the total number of lateral CXRs) exhibiting
manifestations consistent with TB. This could be a
significant factor in the sub-optimal performance exhibited
by the ViT models. We improved both classification and ROI
localization performance, qualitatively and quantitatively,
using CXR modality-specific training, fine-tuning, and
constructing model ensembles. This performance
improvement with ensemble learning is consistent with the
literature (He et al., 2016; Rajaraman et al., 2018a; Rajaraman
et al., 2019).

We also show that classification performance is not indicative
of reliable disease prediction. For example, even though the
average classification performance of ViT models is
approximately 80%, their average MAP score is only 5.7%
which is evident from the visualization studies, examples of
which are shown in Figures 5E–H. This underscores the need
for visualization of localized disease prediction regions to verify
model credibility.

Regarding the use of ensembles, we find in the literature a
frequent use of methods such as majority voting, simple
averaging, and weighted averaging with equal eights.
However, we show that using optimized weighting using

FIGURE 6 | Box plots showing the range of mAP values obtained by the individual models and other ensembles.

TABLE 6 | TB-consistent ROI localization performance achieved by the model
ensembles. The values in parenthesis denote the 95% CI measured as the
exact Clopper-Pearson binomial interval for themAPmetric. Bold numerical values
denote superior performance.

Model mAP@[0.1, 0.6]

Simple averaging 0.1332 (0.0408,0.2256)
SLSQP-weighted averaging 0.1742 (0.0711,0.2773)
Bitwise-AND 0.1820 (0.0771,0.2869)
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specialized techniques, such as SLSQP, result in significantly
superior classification performance, e.g., the SLSQP accuracy
achieved with the top-2 models is 0.9057 compared to 0.8679
for simple averaging (p = 0.0001). Similar behavior is observed
for localization performance as well.

Our study has the following limitations: (i) Lateral CXRs
help confirm abnormal opacification spatial location,
however, have more overlapping structures (e.g., shoulders
including scapula and humeral heads), decreasing conspicuity
relative to frontal projections. Given that there are more
frontal projection CXRs available with TB manifestations,
we provide an avenue to explore the combination including
lateral images that we believe will improve performance. (ii)
There are a very small number of lateral CXRs with TB-
consistent findings available for fine-tuning the models which
have, very likely, affected the sub-par performance of ViT
models as they demand more training data and training time
due to their functional characteristics. We expect that the
performance of the models would scale with increased data
and appropriate empowerment of computational resources.
(iii) There is also an imbalance in the number of left or right
lateral CXRs in an already small dataset of 530 TB disease-
positive images. On the positive side, through augmentation,
ensemble learning, and optimized weighting of model
predictions, we were able to achieve a lateral-view agnostic

performance that was significantly high. However, it is
important to consider that the anatomical view presented
in a left lateral image is different from the one presented in the
other. For clinical diagnostic or screening applications, it
would be necessary to train the classifier on these
differences so that a reliable and robust interpretation of
the prediction can be obtained. Further, research is
ongoing in building combination model architectures like
ConViT (d’Ascoli et al., 2021) that combines characteristics
of the CNN and ViT architectures toward improving
performance. Such models should be studied in future studies.
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