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Network analysis has emerged as a powerful tool for examining structural biology systems. The spatial
organization of the components of a biomolecular structure has been rendered as a graph representation
and analyses have been performed to deduce the biophysical and mechanistic properties of these com-
ponents. For proteins, the analysis of protein structure networks (PSNs), especially via network centrality
measurements and cluster coefficients, has led to identifying amino acid residues that play key functional
roles and classifying amino acid residues in general. Whether these network properties examined in var-
ious studies are sensitive to subtle (yet biologically significant) conformational changes remained to be
addressed. Here, we focused on four types of network centrality properties (betweenness, closeness,
degree, and eigenvector centralities) for conformational changes upon ligand binding of a sensor protein
(constitutive androstane receptor) and an allosteric enzyme (ribonucleotide reductase). We found that
eigenvector centrality is sensitive and can distinguish salient structural features between protein confor-
mational states while other centrality measures, especially closeness centrality, are less sensitive and
rather generic with respect to the structural specificity. We also demonstrated that an ensemble-
informed, modified PSN with static edges removed (which we term PSN*) has enhanced sensitivity at dis-
cerning structural changes.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The functions of biomolecular systems are frequently tied to the
spatial organization of the components of the system and how
these components dynamically change upon perturbation [1–3].
When the structural information is rendered as binary contact
information, the pairwise physical interactions between compo-
nents (e.g., amino acid residues in the case of proteins) in spatial
proximity are captured. These contacts can be further arranged
systematically in an adjacency matrix form and displayed as a con-
tact map. Specifically, network representations of amino acid resi-
due interactions for proteins are referred to as protein structure
networks (PSNs) or protein contact networks (PCNs) [4,5]. When
the mapping from a 3D protein structure to an abstract graph is
made, mathematical properties of the abstract graph [6–8] can
be further utilized for inspecting the properties of amino acid resi-
dues of the protein. PSNs have been shown to have the potential
for bridging graph theory concepts and mechanisms of protein sys-
tems. Such connection not only enriches the statistical analysis of
networks by providing a class of practical networks with unique
properties, but also assists a better (quantitative) understanding
of structure–function relationships in proteins [9–22].

One category of important concepts in network analysis is net-
work centrality. Measurements of centrality are a set of definitions
that assigns a value to each node of the network (in the case of
PSNs, each amino acid), which roughly quantifies the ‘‘connectiv-
ity” of each node with respect to a specific definition [6–8]. These
nodes with high centrality values are considered to be noteworthy
since they either directly have more neighboring nodes and/or on
the path of major communication channels. In subsequent applica-
tions of PSNs, the amino acid residues with highly connected resi-
dues (measured using centrality values) are considered to be
biologically significant in various studies [23–25].

There are a number of centrality measures [6–8] that have been
explored to describe network structure and identify key nodes. The
current work focuses on four frequently studied measures:
betweenness centrality (BC), closeness centrality (CC), degree cen-
trality (DC), and eigenvector centrality (EC). These measurements
may be roughly classified into two groups: path-oriented (BC and
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CC) and site-oriented (DC and EC) definitions. Both BC and CC are
evaluated based on path lengths that end at (incidental to) or pass
through each node, whereas site-based measures such as DC and
EC are evaluated by adjacency or node degree. Given that there is
an established structure–function relationship in structural biol-
ogy and there is also a definitive topology-centrality relationship
in network theory, it makes sense to use these concepts to explore
PSNs for biologically relevant features.

All four PSN centrality measurements have been reported in a
number of studies [23–28,5,29,30]. At times, a specific measure-
ment was used in an application to specific PSNs and no rationale
on choosing a measurement or comparison between measure-
ments was given. Nevertheless, residues with high BC values have
been identified in important biological roles such as the inter-
subunit interfaces of oligomeric proteins [31], the stability of the
enzymatic core of c-Abl and c-Src kinases [32], and the conserved
(predominantly hydrophobic) residues of cyclophilin A [33]. Fur-
thermore, two studies (using 178 and 283 structures respectively)
found that catalytic sites have significantly higher CC values
[34,35]. In one study, a strong positive correlation between surface
accessibility, conservation and high CC values was found in a set of
128 proteins [36]. In another study, PSN properties (mean node
degree in particular) are used to distinguish between correctly
and incorrectly predicted protein structures, with correct struc-
tures reported to have high DC values [37]. Other studies reported
that residues with significantly higher DC also contribute to pro-
tein thermal stability [38,39]. Additionally, residues with higher
DC were found to be significant to the structural communication
in the calcium sensors [40,41] and GPCRs [42]. It is also worth not-
ing that in a study of 795 proteins, a strong negative correlation
was found between evolutionary rate and residues with the high-
est BC, CC, and DC values [14]. EC has also been used to study PSNs
in various protein systems, such as identifying important effector-
binding residues of enzyme imidazole glycerol phosphate synthase
[43], substrate-binding residues of enzyme cyclophilin A [33], and
protein-glycan interaction of osteopontin–heparin complex [44].
One can argue whether there is a universal answer when it comes
to choosing a centrality measurement or other network properties
of nodes that can identify a strong contact interaction between
residues (high connectivity of nodes).

In this work, we compare four frequently mentioned measure-
ments and examine which metric(s) best discern biologically rele-
vant structural changes. We focus on advancing PSN analysis from
three new aspects. First, we examine whether network analysis
results can discriminate between subtle (yet significantly different
function-wise) protein conformations [45–47]. This perspective
has not been extensively explored previously. It is well-
established that a group of protein functions may be related by
only subtle structural changes. Examples of such changes are con-
formational switches [48–50] triggered by ligand binding,
oligomerization, and post-translational modification [51–55] and
these events result in a change of conformations (inactive to active
conformation, or vice versa). Frequently, such protein conforma-
tional switches are not dramatically different from a structural
viewpoint. Exploring how drastic the corresponding differences
are in network properties is one focus of this study. We report in
the below sections that these network properties, when selected
carefully and especially when applied to the modified networks
(which we will later introduce), are sufficiently sensitive to discern
subtle structural changes in proteins.

Second, we compare how different centrality measurements
vary under conformational changes. Despite extensive studies,
there has been little direct comparison between different types
of centrality used in PSN analysis. As reported below, we found
that different centralities are not equally useful in describing pro-
tein structures and structural changes. For example, closeness cen-
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trality is highly correlated to the distance between the residue and
the center of the protein and it is a relatively poor indicator for
conformational switches. On the other hand, some other centrali-
ties (especially EC) can be used to discern subtle changes of the
protein structure and identify functionally important amino acid
residues.

Third, in previous studies of PSNs, each analysis was performed
on a network derived from a single static structure or in the case of
an ensemble of structures, an aggregated PSN using a single
threshold. For any single protein conformation, one can directly
obtain a set of contacts that are formed and convert them into a
PSN composed of nodes (residues) and edges (residue-residue con-
tacts). For an ensemble of structures, often sampled frommodeling
and simulations [56,57], a standard conversion scheme assigns
edges based on a contact frequency with a single cutoff [58]. Here,
we propose a modified scheme with a tandem cutoff, i.e., we not
only remove the contacts that are rarely formed but also the con-
tacts that are nearly always formed. We will demonstrate how this
new scheme takes advantage of the ensemble average properties in
a unique angle, and we term the newly converted network PSN*, an
ensemble informed PSN.

The rationale behind removing the contacts that are nearly
always formed is to remove the ‘‘static” contacts. Although these
static contacts are a part of the protein structure network, they
may not encode dynamic or function-related motion for a specific
protein [59]. When one uses centralities to characterize the ‘‘com-
munication” between different parts of a protein, the always-
formed contacts may be less relevant as they do not represent
the protein dynamics. Here, we report that the properties of the
traditionally defined PSNs are less sensitive to conformational
changes, whereas PSN*s are able to discern subtle conformational
switches. Another motivation for studying network properties of
PSN* is that the truncated network can be useful for studying pro-
tein contact dynamics [60,61] (a set of orthogonal dynamic modes
indicating the concerted protein motions using contact forming
and breaking) where the static edges are ignored [60,61].
2. Method and systems

In this section, we first recapitulate the conventional definition
of PSN and our modified definition for PSN*. We then review four
different centrality calculations performed on PSN and PSN*.

2.1. Contact matrices and network construction

A PSN is often obtained directly from a contact matrix u of a sin-
gle protein conformation. For a given conformation, the contact
between residue i and j is considered formed when any atoms of
i and atoms of j are within a distance cutoff dc , i.e., ui;j ¼ 1. When
the contact is not considered formed, ui;j ¼ 0. Additionally, contacts
between polymer sequence neighbors and self contact (ui;i�1 and
ui;i) are ignored and set to zero, because they represent the generic
nature of polymers and contribute little to conformational dynam-
ics. The specific contact matrices used were obtained from previ-
ous studies [62,63], where a cutoff distance dc ¼ 4:2Å was used.
By using the ligand-binding domain (LBD) of the constitutive
androstane receptor (CAR) system as an example, we displayed
the rendering from the 3D representation of two distinct CAR con-
formations to their contact matrices in Fig. 1. Note that the dis-
tance cutoff dc used here was based on the previous studies on
contact interaction energy [64]. The contact formation clearly
depends on this cutoff value, and a more stringent cutoff leads to
a network with fewer edges. In Supplementary Information (SI)
Figure S1, we show the level of changes when we use an alterna-
tive distance cutoff.



Fig. 1. The connection between protein structures, contact matrices, and networks is illustrated using the ligand-sensing domain of a nuclear hormone receptor CAR (PDBs:
1XLS and 1XNX). In the 3D representation, the regions with major structural changes are colored (green, agonist-bound and purple, inverse agonist-bound). In the network
representation of the agonist-bound structure using PSN and PSN*, each node represents an amino acid residue and each edge indicates a contact formed between residues.

D. Foutch, B. Pham and T. Shen Computational and Structural Biotechnology Journal 19 (2021) 3599–3608
The connection to network theory is straightforward in the case
of a single conformation (as demonstrated using single-frame PSN
in Fig. 1), where the corresponding adjacency matrix of the graph
follows the assignment Aij ¼ uij to generate the PSN. When an
ensemble of structures is available, as in the case of computer sim-
ulations, one can obtain multiple frames and further define a mean
contact matrix U ¼ hui where each element represents the ensem-
ble average (i.e., an average over snapshots of conformations) of
contacts formed during the simulation. Thus, we define a mean
contact Uij ¼

PN
a¼1uij;a=N, where N is the total number of frames.

The mean contact values are ensemble averaged (average of the
frames) and they range from 0 (never in contact) to 1 (always in

contact). In this case, we define a lower bound cutoff Ul and include
edges only when the contacts form more frequently than the cut-
off. Therefore, the elements of the corresponding adjacency matrix

Aij ¼ 1 when Uij P Ul, and 0 otherwise. A practical value of

Ul ¼ 0:02 is used for the lower bound throughout this work. Note
that the ideal lower bound value used in PSN depends on both
the number of snapshots in the structural ensemble and the innate
structural fluctuation of the system. A value too low would not fil-
ter discrete noise due to finite sampling, and vice versa, a value too
high would cut off the subtle protein dynamics. Furthermore, in
the case of PSN*, we filter out the static edges of the PSN. Together,

we define Aij ¼ 1 when Ul 6 Uij 6 Uu and 0 otherwise. A practical
value of the upper bound Uu ¼ 0:98 is used throughout this work.
As illustrated in Fig. 1, PSN* of the agonist-bound CAR is shown to
be visibly thinner than PSN.

Our practical values of Ul and Uu are fairly arbitrary but they can
be justified by the sensible results from studying various protein
dynamics systems including the examples used in this study. To
provide an idea of how our results depend on the boundary cutoffs,
we compare the centrality results with an alternative scheme of
different cutoff parameters, and the results can be found in
SI Figure S2. We conclude that both the distance and the boundary
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cutoff parameters mainly affect the overall density of the network
(measured by the number of edges of the network). However, the
networks are robust enough and still able to reveal consistent
essential feature differences between the centrality measurements.

2.2. Definitions of centrality measurements

Once PSN and PSN* are obtained, four types of network central-
ity measurements (Fig. 2) were studied here [6]. Centrality values
are coefficients that are assigned to nodes based on their position
in the network. Therefore, each centrality measure reflects certain
characteristic features about the connectivity of the network under
consideration.

As illustrated in Fig. 2b, betweenness centrality (BC) of residue i
(values range from 0 to 1) is defined as the proportion of the short-
est paths (formed between any two residues) passing through resi-
due i among all the shortest paths in the network. The rationale
that betweenness might be an important indicator of residue func-
tion stems from the assumption that removing of such residues
will eliminate important nodes that sit on multiple shortest paths
and impair the ‘‘communication” between residues in PSN. Simi-
larly, a second centrality definition, closeness centrality (CC) of
residue i (values range from 0 to 1), measures the inverse of the
mean distance of residue i to all other residues [6–8]. Thus, the
amino acid residues with the highest CC values are the set of nodes
positioned at the geodesic ‘‘center” of the graph. Both BC and CC
are considered path-oriented definitions. The principle difference
between them is how the distances are measured. BC evaluates
the shortest path from residue j to k through i and then assigns a
value for residue i. CC emphasizes paths that begin at residue i
and evaluates the distance to every other j and then assigns a value
for residue i.

Another centrality, degree centrality (DC) of residue i, simply
counts the number of edges (degree) connected to residue i in
the PSN. Since the values are normalized by dividing by the maxi-



Fig. 2. (a) A pedagogical graph composed of 25 nodes and 27 edges is shown. (b-d)
The same graph is used to illustrate different centrality measurements. The darker
nodes correspond to the relatively higher values. BC and CC are path-oriented
measurements. BC counts the paths (such as red line connecting two ending green
circled nodes) that go through a target node (blue circle) while CC focuses on the
red paths terminating at the target node. In contrast, DC and EC focus on the
number of neighboring nodes of the target node. DC is a direct count of the number
of the nearest neighbors (green circles), whereas EC is a weighted version with
further neighbors being considered.
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mum possible contact formation in principle (N � 1), they also
range from 0 to 1. Because DC only counts the contacts to the
immediate neighbors, it is considered a short-ranged, local prop-
erty. A modified version of DC that recursively weighs other neigh-
bors so that longer-ranged connectivity can be included is called
eigenvector centrality (EC). If the nodes that are the most well-
connected (highest ranked by degree centrality) exert the most
influence on the network, then the nodes immediately adjacent
to these are likely vertices that are also ‘‘influential”. Operation-
wise, the EC of residue i satisfied Ei ¼ 1

k

PN
j¼1AijEj. Here, k is the lar-

gest eigenvalue of the adjacency matrix, Av ¼ kv [6–8]. Thus, the
centrality of ith residue is connected to all other residues.

Practically, all four centrality calculations were performed using
the software NetworkX [65]. Although our work focuses on com-
paring these four commonly studied centrality measures, it is
important to point out that there are other generalized centrality
concepts such as Katz centrality [6,66]. In addition, more general-
ized concepts and definitions can be used to describe the connec-
tivity of nodes in a network such as cluster coefficients and
many variant definitions. Even though they are not necessarily
classified as centralities, these generalized node properties may
link to the four types that we studied here.
3602
3. Results and discussion

3.1. Different centrality measures emphasize a range of local to global
structural properties

We illustrate the differences between the ligand-free (apo) and
ligand-bound conformations by evaluating four centrality mea-
sures of the PSN and PSN* representations of each system. Here,
we use the constitutive androstane receptor (CAR) as the first test
protein system. The mean contact matrices of ligand-free and
ligand-bound CARs were obtained from a previous study [62].
CAR plays a crucial role as a xenobiotic-sensing nuclear receptor
involved in regulating hepatic drug metabolism and cancer devel-
opment [67,68]. The structure of the LBD of CAR contains 12
helices, with helices H11, HX, and H12 comprising the C-terminal
region. The conformation of the C-terminus changes drastically
depending on whether CAR binds to an agonist or an inverse ago-
nist, as shown from the canonical viewing angle in Fig. 1a. Further
structural biology information of this system can be found in [62].
The agonist-bound formmakes the protein bind more effectively to
a coactivator and become active, whereas the inverse agonist-
bound form suppresses activation by binding to a corepressor.
Without ligand binding, CAR is still partially activated, and the
unliganded CAR shares a similar conformation to the agonist-
bound CAR [62]. The two forms are still quite different and the
ligand-bound form has stronger intraprotein contacts induced by
ligand. The differences between bound and unbound structures,
though subtle, can have an impact on CAR activity. One of the
objectives of this work is to determine whether the corresponding
network properties can distinguish between these subtle but sali-
ent differences. Specifically, two ensembles of structures generated
from MD simulation were used in this work: the ligand-bound
structure ensemble is the ligand-binding domain of murine CAR
bound to the agonist ligand TCPOBOP, and the starting point of
the corresponding apo system simulation comes from the same
TCPOBOP-bound murine CAR system but with the ligand removed
(PDB 1XLS) [62].

Before we provide a detailed comparison of conformational
changes of CAR reflected by network centrality properties, we first
demonstrate that certain network centrality measurements, such
as closeness centrality, may reflect the overall geometry of the
protein and thus are insensitive to subtle protein conformational
switches. To quantify the position of a given residue in the
structure, we used the distance measurement dCM , which is defined
as the distance from the given residue to the mass center of the
protein calculated using the average structure of the protein. Note
that the calculated distance is the real Euclidean distance mea-
sured in Angstrom, not a topological distance measurement in a
network. As shown in Fig. 3a, there is a strong correlation between
the dCM and the CC values of the residues in the apo murine CAR
system. For PSN, the absolute value of the correlation coefficient
is 0.89. For PSN*, they are slightly less correlated with a corre-
sponding value of 0.73. We further examined the correlation of
dCM vs BC, dCM vs EC, and dCM vs DC (scatter plots shown in SI Fig-
ure S3), whose corresponding correlation coefficients are 0.60,
0.16, 0.17 (0.34, 0.19, and 0.12 for PSN*) respectively. The PSN*
results are mainly following the PSN trend but less correlated over-
all, which suggests that removing the static contacts breaks apart
the global geometry aspect of a network. We only used the
ligand-free CAR system for this task and all the other protein sys-
tems (introduced in the next subsection) also show similar results
on CC and BC being global properties of PSN and that they may not
be sensitive to conformational switches.

There are several contributing factors to the strong correlation
between closeness centrality and dCM . The main reason is that



Fig. 3. Network centrality properties of nuclear receptor CAR. (a) The scatter plot of individual residue’s distance to the protein center versus the CC value of the
corresponding residue in PSN (left panel) and PSN* (right panel) for the ligand-free protein. The scatter plots for the apo versus agonist-bound CAR systems are shown for BC,
CC, DC, and EC in the respective (b-e) panels. In the 3D representation, the top 15% ranked residues are color-coded: yellow indicates residues that are top ranked for the apo
system only, blue for the ligand-bound only, and green residues are top ranked for both networks. Additionally, these top ranked residues are indicated by red dashed lines,
which separate the scatter plot into four quadrants. The residues in the lower-right, upper-left, and upper-right quadrants are interpreted as yellow, blue, and green residues
respectively.
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PSN is generally a homogeneous network where residues are
nearly uniformly distributed and the network path length (highly
influential on CC) is quite comparable to the physical distance in
such a case. BC is also seen to be correlated with dCM (SI Figure S3),
but this correlation is weaker than the correlation between CC and
dCM . Given that BC depends on the count of the pairwise shortest
paths, the residues with the highest BC values would also be geo-
metrically central to the PSN. Both DC and EC show much less (if
any) correlations with the dCM . This follows the fact that these
properties weigh more on the local features of PSN, such as edge
counts (Figs. 2(d,e)).

Figure panels 3b-e show scatter plots comparing four centrality
values (BC, CC, DC, and EC respectively) between the apo and
agonist-bound mCAR systems for PSN (left panels) and PSN* (right
panels). In addition to using the scatter plots, we also labelled
amino acids with the highest centrality values (top 15%) directly
onto the corresponding 3D structures in Fig. 3b-e, which helps
enhance visual display and add spatial information on the distribu-
tion of residues with high connectivity. Together, one can observe a
degree of correlation between the two structure ensembles for
each centrality property, especially for PSN (left panels). The stron-
ger correlation on the left scatter plots compared to the right ones
in Fig. 3b-e indicates that the inclusion of static elements increases
the degree of structural similarity between the apo and ligand-
bound CAR systems. One can observe that in both the PSN and
the PSN*, the CC values are more aligned between the two systems
than the correlation for other centralities. This is consistent with
the geometric nature of CC. Out of the four centralities, EC values
(Fig. 3e) exhibit the least similarity between the ligand-free and
ligand-bound conformations. In the PSN, the EC values for the
two conformations are poorly correlated, whereas the correspond-
ing scatter plot for PSN* shows that they are uncorrelated. The loss
of correlation demonstrates that the static contacts strongly influ-
ence the topology of the resulting EC values, since they emphasize
the consensus features of both conformations and potentially
obscure the information associated with conformational switches
and contact rearrangements.

The differences between four types of network centrality calcu-
lations suggest that these calculations emphasize different aspects
of a network structure. For example, some emphasize local struc-
tural properties and others are more global. DC is the most local
property as the value of DC only depends on its contacting neigh-
bors. At the other end of the spectrum, CC was found to be the most
global and its values are highly correlated with the spatial geome-
try of the network as shown in Fig. 3a. Meanwhile, EC and BC lie in
the middle. EC is a variant of DC and less local since it depends on
the values of neighbours. BC, on the other hand, focuses on the
available paths of the network and it is quite global to a similar
degree as CC.

Another way of interpreting network properties is in terms of
robustness versus sensitivity. It is desirable to define properties
that best distinguish two sets of related structures differing in bio-
logical functions. However, one wants to avoid overly sensitive
properties that may point out irrelevant changes between two
structures. In the case of protein conformations, we think CC is a
robust property that locates where the residue is relative to the
geometric center of the protein. Its value is insensitive to subtle
structure changes. As shown by the correlation from the scatter
plots in Fig. 3b-e of the structural changes of CAR and other exam-
ples below, one can observe that CC and BC are the most consistent
between two sets of structures. We believe that the property in the
middle of the spectrum, EC, is more ideal in terms of describing
structural changes in biomolecular structures.

One can examine the robust-vs-sensitive nature of centrality
definitions by directly tracking how residues with high values
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(top 15% nodes) shift from one structure to the other in the 3D rep-
resentation of Fig. 3. Fig. 3d shows that DC is quite sensitive (and it
also only takes on discrete values) as it does not show as one ‘‘clus-
ter” on the 3D structure. On the other hand, BC has a smaller move-
ment and CC nearly stays at the center as expected. It is interesting
to point out that residues with high EC values form large and well-
defined spatial regions. These ‘‘patch” regions likely contain impor-
tant biological functions. Upon ligand binding to CAR, the highest
EC region transitions from a wide region loosely centered around
the N-terminus to a more focused region at the C-terminus around
helices H11, HX and H12. This C-terminal region is known to be
important for the function of the CAR protein [62], since its
ligand-induced conformation determines whether the protein
becomes active or inactive.

3.2. Residues with high eigenvector centrality values are related to
significant structural differences in proteins

We examined a second and more complex protein, the a sub-
unit of ribonucleotide reductase (RNR), which can help us assess
our conclusions drawn from CAR. The a subunit of RNR is a rela-
tively larger protein (comprising of 742 residues) than the
ligand-binding domain of CAR (242 residues). RNR also has a more
complex ligand-binding status and ligand-induced conformational
changes which can further test network centrality measurements.
Function-wise, RNR catalyzes the synthesis of building blocks of
DNA, which is essential for all known life-forms [63]. As a promis-
cuous enzyme, not surprisingly RNR has an extremely complicated
sensing and regulation scheme in order to balance the population
of various nucleotide products dXDP, where X = A, U, G, C. The
human RNR has two ligand-binding sites (allosteric sites), the
specificity site (s-site) which can sense different types of small
nucleotides and direct which substrate to be catalyzed and the
activity site (a-site) for an additional overall control. For example,
when dTTP is bound at the s-site and ATP is bound at the a-site at
the same time, this protein is considered to be active. In the current
work, we compare four human RNR systems, where RNR1 has no
ligand association whereas RNR2, RNR3, and RNR4 are different
ligand-bound states. Fig. 4a shows the main structural differences
between the unliganded (RNR1) and dTTP-bound forms (RNR2),
which are present in three different regions known as the a-site
(top), the s-site (bottom), and the s*-site (middle). The s*-site con-
tains an important region called loop2, which in this case, refers to
the loop region which the s-site interacts with in the dimer coun-
terpart of RNR. As shown in Fig. 4a, all three liganded systems have
dTTP bound to the s-site, and additionally, RNR3 and RNR4 have a
second ligand effector (ATP and dATP, respectively) bound to the a-
site. The details of the structural modeling (based on a series of
PDBs: 3HNC, 3HNE, and 3HNF) and the molecular dynamics simu-
lation that leads to the ensemble-averaged contact matrices can be
found in Table I of Ref. [63].

We display in Fig. 4b-e the four centrality properties (BC, CC, DC
and EC) for the two RNR systems, RNR1 versus RNR2. The top 15%
ranked residues for each centrality are also visualized as 3D repre-
sentations in SI Figure S4. Compared to CAR (Fig. 3b-e), the scatter
plots in Fig. 4b-e show more pronounced dissimilarities in central-
ity values between the apo (RNR1) and the ligand-bound (RNR2)
systems, yet one can see the shared patterns between these two
groups of scatter plots. We can also observe the features of central-
ity described in the previous subsection, such as CC being a global
geometry measurement and EC being sensitive to structural
changes in the RNR systems. We found that EC is the most sensitive
property to structural rearrangement and the residues with the
highest EC values form spatial regions that have biological signifi-
cance. Since we have two other different ligand-bound forms for



Fig. 4. Network centrality properties of RNR. (a) The 3D representation of RNR shows the structural differences between the ligand-free form (yellow) vs the ligand-bound
form (pink, dTTP at the s-site). The ligand-binding status of the four systems, which we term RNR1-4, are indicated on the right panel. The scatter plots of PSN* comparing
RNR1 vs RNR2 for BC, CC, DC, EC are in (b-e), respectively. The top 15% ranked residues are also displayed. (f) The comparison of the top 15% residues for EC values of RNR1
versus RNR2 (top), RNR3 (middle), or RNR4 (bottom). Here, the yellow-blue-green color scheme for the apo only, the ligand-bound only, and both networks is applied
similarly to Fig. 3.
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RNR, we would like to show how EC describes the changes besides
RNR2. Thus, in the 3D presentation (Fig. 4f), we focus on the EC
comparison for RNR1 versus RNR2, RNR3, and RNR4. Specifically,
we found that the top regions for the unliganded RNR are mostly
near the s-site, including the important loop1, and partially the
s*-site. Upon dTTP binding at the s-site, the top region moves away
from the s-site. In the case of the dATP-bound RNR (at the a-site),
the region of highest EC values shifts towards the region surround-
ing the s*-site (loop2) and near the s-site. This movement indicates
that dATP reduces the flexibility of the s-site and the s*-site bind-
ing pockets and in turn, locks the specificity allosteric effector in
place as suggested from a previous study [63].

To describe the degree of similarity and dissimilarity between
PSNs, we provide a general method using centrality measures
and cross comparing different protein systems. Here, an overlap
function is developed to distinguish between the two conforma-
tional ensembles, which essentially contains the information of a
Venn diagram with a running cutoff. To compare the similarity
between two networks, we first obtained two sets of ordered resi-
dues ranked by their PSN* centrality measurement. We then define
a cutoff value, above which we consider the residues in the subset
to be of high centrality value. We further evaluate the number of
residues in both subsets, i.e., the number of residues that overlap
3605
between the two networks. The overlap function yðxÞ is defined
with the following criteria. At a given cutoff ratio (x-axis, bound
between 0 and 1), two groups of residues are selected for their high
centrality values (top x� 100%-ranked residues), i.e., x ¼ Nh=Nt

where Nh is the number of residues that is considered to be in
the subset of residues with high centrality values and Nt is the total
number of residues of the protein system. The overlap ratio (y-axis,
bound between 0 and 1) is defined as the number of overlapping
residues (residues that both networks consider to be in the high
value set), No, normalized by Nt , i.e., y ¼ No=Nt . In terms of set the-
ory, the overlap function describes the probability of observing an
intersecting subset of elements given the selection of an equal
number of elements from two identical sets. As shown in Fig. 5,
each overlap function plot always passes through (0,0) and (1,1).
On the one hand, when the overlap function passes through (0,0),
this indicates that when no residues are selected, there is no over-
lap. On the other hand, when the function passes through (1,1), this
indicates that all residues are selected and the two sets are identi-
cal. There are three ideal, or limiting, scenarios for the overlap
function: (i) the upper bound of similarity, where the ranking
between two conformations is identical. (ii) the independent case,
where there is no correlation between the rankings, and (iii) the
lower bound, where the residues are selected to minimize the



Fig. 5. The overlap function compares how (dis) similar two structural networks
are. The normalized number of the common residues between the two networks
(y-axis) increases when the selecting criterion (x-axis) is more relaxed, i.e, selecting
residues that are the top ranked residues (using the specified centrality value).
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overlap. For cases with a strong correlation between two PSN*
results, the data trend would be near the diagonal line y ¼ x, which
is the upper bound scenario. For the scenario ii, when two sets of
residues are totally uncorrelated, the overlap function approaches
y ¼ x2. In the worst case scenario (the most negative correlation
possible), when one tries to arrange the rankings in such a way
to avoid overlapping, one finds that the lower bound function is
a piece-wise function of y ¼ 0 for 0 6 x 6 0:5 and y ¼ 2ðx� 0:5Þ
for 0:5 < x 6 1. Practically, all curves are bound between the upper
bound of y ¼ x (the scenario i) and the lower bound (the scenario
iii). Curves that fall in the area bound between the scenarios
i and ii indicate networks that are more similar than the random
networks and centralities that are relatively insensitive to the con-
formational changes between the two systems. Conversely, curves
in the area bound by the scenarios ii and iii indicate less similar
networks and more sensitive centralities.

In Fig. 5, the CAR comparison is between two conformational
ensembles, apo mCAR vs mCAR(TCPOBOP), while the RNR compar-
ison is between RNR1 (apo form) vs RNR2 (dTTP-bound). The
results demonstrated that for the same centrality method, a similar
trend is observed for both CAR and RNR systems. It is important to
discuss whether the similar features of the overlap functions
observed between murine CAR and human RNR systems in Fig. 5
are applicable to other protein systems. We suspect that the fea-
tures of a specific centrality measure are not sensitive to the choice
of the system. We have evidence that it is certainly true for sys-
tems that are fairly close to the examples that we used here, such
as human CAR and the LBDs of other nuclear receptors. Though we
have not applied this analysis to other distinct protein systems, it is
quite likely that the centrality features are generally consistent for
a large number of proteins. The main reason is that the CAR and
RNR systems are drastically different from each other. The central-
ity property features that we identified are not simply binary infor-
mation and it is highly unlikely that the reported features come
from purely random factors. We also provided in SI Figure S5 addi-
tional features of the network centrality measurements for these
two systems to demonstrate the similar trend between different
protein network centrality measurements.

Among the four centrality measures, CC (red solid and dashed
curves) shows the greatest degree of correlation between the two
PSN* results, which indicates that the method was least able to
distinguish between two protein conformations. This is also con-
sistent with the characterization of CC as stated earlier (Fig. 3a
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and 3c). On the other hand, the PSN* results of the two conforma-
tions provided by EC (blue solid and dashed curves that are shown
the lowest in the overlap function) are the most distinct, showing
that EC is the most sensitive method in detecting protein confor-
mational changes. Since there is no overlap between the most
dominant EC residues, the EC curves near (0,0) coalesce with the
lower bound, which corroborates with the EC results in Fig. 3e.
Both the curves for BC and DC fall between the CC and EC curves.

One may wonder the applicable range and limitations of EC in
discerning structural network differences. Clearly, when the struc-
tural differences become so subtle that they are not reflected in the
PSN, EC is unable to discern any changes. However, our protein test
systems indicate that the biologically relevant level of conforma-
tional changes can provide evidence for the changes that are
noticeable enough. On the other hand, if the structural differences
become too drastic (such as the folding and unfolding of a protein),
one may not need the network centrality properties to discern the
changes. It is intriguing to apply this type of analysis to study the
conformations along a conformational transition path to detect the
extent of subtle structural changes can be, and corroborate the
results from other data analysis methods, such as principle compo-
nent analysis and advanced machine learning algorithms [69]. So
far, we have demonstrated the conformational differences by only
using the ligand binding-induced changes, so it would be interest-
ing to expand this analysis to other environment-induced changes.
We suspect that the conclusion can be generalized to other types of
physical and chemical perturbations that result in a biologically
relevant level of conformational changes.
4. Concluding Remarks

In this work, we provide insights on the network analysis of
protein conformational switches using two systems, a relatively
small protein (the ligand-binding domain of a signaling protein
CAR) and a larger protein (an allosteric enzyme RNR). Despite hav-
ing different functions, sizes, and complexity of regulation, these
proteins demonstrate similar patterns for each network centrality
property (BC, CC, DC, and EC) when it comes to discerning protein
conformations. Some centralities such as closeness centrality
describe global geometrical properties and they are less sensitive
to protein conformational changes. On the other hand, some cen-
trality properties can reflect subtle yet biologically significant con-
formational changes of proteins, especially when one compares the
corresponding PSN* (the subnetwork of PSN with static edges
removed) and when one uses eigenvector centrality.
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