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Abstract

The progression of viral infections is notoriously difficult to follow in whole organisms. The small, transparent zebrafish larva
constitutes a valuable system to study how pathogens spread. We describe here the course of infection of zebrafish early
larvae with a heat-adapted variant of the Infectious Hematopoietic Necrosis Virus (IHNV), a rhabdovirus that represents an
important threat to the salmonid culture industry. When incubated at 24uC, a permissive temperature for virus replication,
larvae infected by intravenous injection died within three to four days. Macroscopic signs of infection followed a highly
predictable course, with a slowdown then arrest of blood flow despite continuing heartbeat, followed by a loss of reactivity
to touch and ultimately by death. Using whole-mount in situ hybridization, patterns of infection were imaged in whole
larvae. The first infected cells were detectable as early as 6 hours post infection, and a steady increase in infected cell
number and staining intensity occurred with time. Venous endothelium appeared as a primary target of infection, as could
be confirmed in fli1:GFP transgenic larvae by live imaging and immunohistochemistry. Disruption of the first vessels took
place before arrest of blood circulation, and hemorrhages could be observed in various places. Our data suggest that
infection spread from the damaged vessels to underlying tissue. By shifting infected fish to a temperature of 28uC that is
non-permissive for viral propagation, it was possible to establish when virus-generated damage became irreversible. This
stage was reached many hours before any detectable induction of the host response. Zebrafish larvae infected with IHNV
constitute a vertebrate model of an hemorrhagic viral disease. This tractable system will allow the in vivo dissection of host-
virus interactions at the whole organism scale, a feature unrivalled by other vertebrate models.
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Introduction

It is often quite difficult to locate viral infections, as viruses are

invisible to the light microscope and are generally noticed by the

relatively non-specific symptoms they cause. Specific tools such as

monoclonal antibodies allow their detection with techniques that

cannot be carried out at the whole-body scale using classical

virology models such as rodents. Therefore, important reservoir

organs may pass unnoticed and the mechanisms of viral

dissemination are hard to establish. The development of systems

that allow the detection of viruses in entire animals would help

understanding how antiviral treatments or host resistance factors

contribute to curb viral infections. They would be especially

valuable to assess differential tissue-specific impacts of antiviral

responses and treatments.

The zebrafish Danio rerio (Hamilton), a well-known model of

developmental biologists, is now also turning into a prominent

model for the study of host-pathogen interactions [1]. Zebrafish

larvae provide a remarkable compromise between ease of imaging,

genetic tractability, and homology with human genes and cell

types. Their transparency and small size offer a unique possibility

to image a whole vertebrate, at medium resolution such that

individual cells can be distinguished, or to focus on organ-sized

regions where subcellular details can be resolved, using both

fluorescence and differential interference contrast (DIC) micros-

copy. Larvae are easy to anesthetize and can be kept under the

microscope for hours or even days. They still lack an adaptative

immune response – acquired only at the juvenile stage, by 4–6

weeks of age [2] - but already harbor a powerful innate immune

system, with macrophages [3] and neutrophils [4] being the major

effector cells. In addition, the zebrafish genome is almost fully

known, and overexpression or knockdown of targeted genes in

early larvae can readily be achieved in vivo by injection at the one-

cell stage of synthetic mRNA or antisense morpholino oligonu-
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cleotides, respectively. Innate antiviral defenses of teleost fish share

many similarities with those of mammals, including the role of

interferons as the main orchestrating cytokines [5].

Although no natural virus of the zebrafish is known so far,

several viruses from other fish species have been used to

experimentally infect zebrafish, including Spring Viraemia of

Carp Virus (SVCV) [6,7,8], Snakehead Rhabdovirus (SHRV) [9],

Infectious Hematopoietic Necrosis Virus (IHNV) [10,11], Infec-

tious Pancreatic Necrosis Virus (IPNV) [10], Viral Hemorrhagic

Septicemia Virus (VHSV) [12], Nervous Necrosis Virus (NNV)

[13] and Infectious Spleen and Kidney Virus (ISKNV) [14]. To

fully exploit the genetic and optical assets of zebrafish, we are

mostly interested in viruses that can infect early larvae within their

normal temperature range (22–32uC) and yield highly reproduc-

ible clinical signs within a convenient time frame. Zebrafish larvae

challenged with SHRV by bath [9] or injected with SVCV [6] or

with NNV [13] succumbed readily, within less than 36 hours,

making it very difficult to identify conditions that could accelerate

the course of infection. Bath challenge with SVCV results in

slower kinetics [7] but with high inter-individual variation for

onset time of infection signs (JPL, unpublished observations), with

only a fraction of fish being infected (as for SHRV), complicating

comparisons between treatment groups. In contrast, we found that

inoculation of zebrafish with a heat-adapted IHNV resulted in

highly reproducible infection courses with convenient kinetics

[11], making it the most tractable system to identify the virus

target tissues and compare infection spreading in various

conditions. We therefore selected it for further analysis.

IHNV is a rhabdovirus first isolated from Pacific salmons in the

west coast of North America in the 1950’s and later also found in

Europe and Asia [15]. It can infect various species of salmonids in

the wild, and outbreaks in fish farms represent a significant threat

to the salmonid culture industry. In susceptible salmonids, most

organs appear to be potential targets of the virus, although

according to initial histological examinations, hematopoietic

tissues were recognized to be more specifically damaged than

others, hence the designation of the virus [16]. Whereas

histochemical studies have suggested that leukocytes and endo-

thelium are primary sites of infection [17], the use of a

recombinant virus expressing luciferase has revealed the base of

the fins to be the entry site of the virus in waterborne-challenged

juvenile rainbow trouts [18]. In early experiments performed with

adult zebrafish at an unreported temperature, no infection with

IHNV could be observed upon bath infection, but intraperitoneal

injections resulted in transient viremia and depletion of erythro-

cyte precursors [10]. However, as IHNV is a cold water virus that

normally hardly replicates above 18uC, the tropical zebrafish is not

naturally susceptible to the virus; although adult zebrafish may

tolerate water temperature below 20uC, larvae do not. We have

avoided this problem by using a variant of IHNV that has been

adapted to growth at higher temperatures, upon serial in vitro

passaging on EPC cells at progressively increasing temperatures

[11]. The strain used, IHNV25.70 (hereby referred to as IHNV25)

can replicate at up to 25uC.

We describe here the outcome of the infection of zebrafish

larvae with IHNV25 at 24uC. Prominent clinical signs include

slowdown and stop of blood flow, loss of reactivity, hemorrhages

and edemas, with death occurring within three to four days. This is

accompanied by a continuous rise in virus titer. Patterns of

infection in entire larvae could be established using whole-mount

in situ hybridization (WISH) and whole-mount immunohistochem-

istry (WIHC). Early virus staining coincided with the major blood

vessels. Using transgenic reporter zebrafish, infection and loss of

endothelial cells were demonstrated, which may explain much of

the observed pathogenesis. By shifting the larvae to a temperature

of 28uC, non-permissive for viral replication, we found that a

critical threshold resulting in irreversible damage was reached in

less than a day, before the first visible clinical signs appeared. This

was also found to occur before the onset of a detectable host

response in terms of gene expression.

Results

Signs of zebrafish larvae infection with IHNV25
We previously reported that zebrafish larvae were susceptible to

intravenous (iv) infection with the IHNV25 strain when incubated

at 24uC [11]. We studied the clinical signs of infection in more

detail. Zebrafish larvae aged ,72 hours post fertilization (hpf)

were injected iv with 60 to 120 plaque forming units (pfu) of

IHNV25 in the enlarged venous plexus located posteriorly to the

urogenital opening (Figure 1A). They were then incubated

individually in 24-well plates at 24uC and monitored at regular

intervals under the dissecting scope. During the first 30 hours post

infection (hpi), larvae appeared to be clinically healthy. Then the

blood flow started to slow down, until it stopped completely, often

first in the tail, then in the entire body, by approximately 48 hpi

(Figure 1B). This qualitative observation could be confirmed by

quantitative assessment of blood speed (Figure S1 in Text S1). This

was not due to an arrest of the heart, which continued to beat,

although more weakly. Larvae then gradually lost reactivity, with

progressively weaker reaction upon gentle pricking, until they

became completely inert. Death - defined by complete absence of

movement, including any residual heartbeat, and readily followed

by decomposition - occurred for all the fish, generally between 65

and 96 hpi.

For subsequent experiments, and to facilitate future studies that

will assay in vivo susceptibility to IHNV, we defined a simple

clinical score from 0 to 3, based on these signs of infection that can

be easily scored without anesthesia of larvae: loss of blood flow in

the tail, loss of reactivity to touch, and death (see material and

methods). As illustrated on Figure 1B, these criteria define three

progressive steps of pathogenesis which were translated into scores

providing richer information than endpoint mortality.

Inoculations of varying doses of virus yielded a clear dose-

dependent response (Figure 1C); however, even if kinetics were

slowed down at lower doses, signs occurred in a similar order. The

Author summary

The zebrafish larva is uniquely amenable to imaging
among vertebrate models because of its small size,
transparency, and ease of anesthesia, making it a useful
model to understand host-pathogen interactions. We have
performed the first detailed analysis of a viral infection in
zebrafish. Infection of zebrafish larvae with a salmonid
rhabdovirus adapted to growth at the appropriate
temperatures resulted in a predictable succession of
pathological signs before death. Detection of infected
cells in whole larvae revealed that blood vessels were a
major target of the virus, providing an explanation to
hemorrhages and subsequent loss of blood flow observed
in infected larvae. Destruction of vascular cells caused by
the viral infection was readily observed in transgenic larvae
with fluorescent endothelium. We could identify the
critical moments of the infection with simple temperature
shift experiments. This work provides a basis to dissect the
role of host factors in controlling the propagation of viral
infections.

Imaging Viral Infection in Whole Zebrafish Larvae
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50% lethal dose over 7 days was quite low, inferior to 10 pfu. The

dose of 100 pfu, however, was kept as the standard inoculum for

further experiments, because it yields less inter-individual

variation.

Other signs of infection were frequently observed, although not as

consistently as the previous ones. When blood started slowing down,

accumulation of erythrocytes could often be observed in various

places, such as around an eye (Figure 1D), in the duct of Cuvier just

upstream of the heart, on the top of the head, or in the caudal

venous plexus (not shown). Although it was difficult to discern

whether this resulted from vessel leakage or from accumulation

inside a vessel, some cases clearly resulted from hemorrhage, as

when erythrocytes were observed inside the pericardial cavity

(Figure 1E). Skin damage was also frequently seen, especially along

Figure 1. Macroscopic signs of IHNV infection. A. drawing of a 72 hpf larva (length, ,3 mm) showing the site of inoculation (arrow). B: Onset of
disease signs in IHNV-infected larvae. 12 larvae were inoculated at 72 hpf by iv microinjection of ,100 pfu IHNV25 and incubated individually at
24uC. At regular intervals, they were scored under the dissecting scope for possession or loss of three properties, each shown on a separate curve:
active blood flow (circles), reactivity to touch (squares), or survival (triangles). All control uninfected larvae (n = 6) remained reactive with strong blood
flow during the whole time interval. Experiment repeated three times with comparable results. C. Effect of the dose of injected virus on disease
course, using a clinical scoring method. Larvae (77 hpf) were injected with varying doses of IHNV25, incubated individually at 24uC, and regularly
checked for survival, blood flow in the tail, and reactivity to touch, to attribute a clinical score to each individual (criteria illustrated on panel B; see
Methods for details). Graph displays mean clinical score for each group; error bars correspond to standard error of the mean (s.e.m). Experiment
repeated twice with similar outcome. D and E: Accumulation of erythrocytes in larvae 40 hours after injection of IHNV25. Lateral views, anterior to the
left, dorsal to the top; live DIC imaging. Top panel: IHNV-infected larva; bottom panel, uninfected control. C (10x objective) head with erythrocytes
accumulated around the eye (arrows). D (20x objective) pericardial cavity. Arrows, erythrocytes. Arrowheads, heart (left arrowhead: ventricle, right
arrowhead, atrium. Because different focal planes have been selected to provide the best view of the pericardial cavity, the ventricle is out of focus for
the infected larva). Scale bars, 50 mm.
doi:10.1371/journal.ppat.1001269.g001

Imaging Viral Infection in Whole Zebrafish Larvae
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the lateral midline of the trunk and on the ventral side of the yolk

ball. Edemas were also commonly observed, affecting mostly the

pericardial cavity and the head. At late stages, necrotic foci were

often visible in the brain (not shown).

Course of infection in the whole fish
In order to better understand the course of IHNV infection in

this system, we assessed the spread of the virus over time by

different quantitative methods.

Firstly, the numbers of infectious virions were measured by

plaque assays on monolayers of EPC cells. A few dozens particles

were detectable by 6 hpi; then, near-exponential growth was found

(Figure 2A), providing definitive evidence for functional viral

replication in zebrafish. At 48 hpi, up to one million pfu per larva

were found. Since a 5dpf zebrafish larva weighs about a 0.5 mg

[19], this translates to viral concentrations in the order of 109 pfu/g.

Secondly, we measured the expression of a viral mRNA transcript

by qRT-PCR on whole larvae, choosing the N gene as the most

highly expressed viral gene [20]. Increases of N-IHNV gene

expression paralleled the rise of viral titers (Figure 2B). Thirdly,

we quantified viral negative and positive genomic strands (genome

plus antigenome) by qRT-PCR; predictably, levels were lower than

for the N transcript but progression was comparable (Figure 2B).

Finally, the spatial distribution of infected cells was determined by

WISH with a probe complementary to the N gene. Stained cells

could be detected in infected larvae at least as early as 6 hpi

(Figure 2C), and their number increased then steadily over time, in

accordance with our previous quantifications. The distribution of

infected cells was variable from larva to larva, but some common

patterns were observed. Early infection was almost systematically

detected at the location of the main veins at this developmental stage

[21]: in the tail, the cardinal vein; in the head, the dorsal

longitudinal vein, posterior cerebral vein, primary head sinus, and

inner optic circle; in the anterior ventral region, the duct of Cuvier.

A few infected cells were also systematically detected in the heart.

Observation of larvae fixed at 12–24 hpi points revealed a more

intense staining in all these areas; examination of stained larvae at

higher magnification suggested a spread from endothelium to

adjacent cell layers (Figure 2D). At 48 hpi the strongest staining was

systematically observed in the branchial arches (Figure 2C).

Vascular endothelium is a primary target of IHNV
WISH patterns suggested that the vascular endothelium was a

primary target of IHNV. To ascertain this we infected fli1:GFP

transgenic larvae, which express GFP in all endothelial cells [22].

Instead of WISH, which destroys GFP fluorescence, the

distribution of virus-infected cells was analyzed by whole-mount

immunohistochemistry (WIHC), using the 4B3 and 19B7

monoclonal antibodies (mAb) directed against the P and G

protein of IHNV, respectively. This technique was found to be less

sensitive than WISH due to a higher background, especially with

4B3 (Figure S2 in Text S1), but the general staining patterns were

similar, supporting the specificity of our labelings.

fli1:GFP larvae were infected with IHNV25, fixed at 24 hpi,

processed for WIHC with the 4B3 mAb, and analyzed by

fluorescence confocal microscopy (Figure 3). Most cells stained

with the antibody (in red) were found at a position close to the

expected location of a vessel. Co-localization with GFP (in green)

was relatively rare, and vessels generally appeared to be disrupted

near places of viral P protein expression (Figure 3B–D).

Nevertheless, in some cells, unambiguous co-localization of GFP

(in both cytoplasm and nucleus) and P-IHNV (in cytoplasm only)

was observed (Figure 3E–H). This suggested that infection of an

endothelial cell with IHNV quickly resulted in the death of the

cell, or at least loss of GFP expression. This was further

strengthened by observations of some infected intersomitic vessels

(Figure 3I–K): the dorsal half of one vessel was found to be virus

free and expressing GFP, while no GFP expression was found on

the ventral-most third, where, in contrast, cells stained for P-

IHNV were found at the expected vessel location. One doubly-

labeled cell is visible just below the midline. Again, frequent

staining of cells just next to the vessel location suggested that the

infection spread from the endothelial cells to underlying tissue.

Observations of P-IHNV expressing cells in the heart were

generally more consistent with infection of isolated myocardial

cells rather than endocardial cells (not shown).

The anti-G mAb allowed us to detect infected cells as early as

10 hpi (but not at 6 hpi), and we used it to conduct a time-course

IHC analysis from 10 to 24 hpi. The number of infected cells was

observed to increase steadily over time, and the majority of

infected cells were found at places where endothelial cells are

expected, often (but not always) expressing GFP (Figure S3 in Text

S1). Some infected cells were located outside of the vessels, but this

was less frequent at early time points.

In conclusion, these observations establish that some vascular

endothelial cells are infected with IHNV prior to the appearance of

clinical signs. They also suggest that this rapidly results in disruption

of blood vessels and dissemination of the virus to neighboring cells.

IHNV affects endothelial cells but not erythrocytes
The overall loss of GFP expression by endothelial cells in fli1:GFP

larvae could be readily observed in live imaged animals; from 48 hpi

the difference between infected and control larvae was striking

(Figure 4A). Erythrocytes (which are nucleated in zebrafish) and

their precursors were also likely targets of the virus; anemia has been

described after IHNV injection to adult zebrafish [10] and these

cells are as exposed as endothelial cells with iv inoculation. To test

this, we infected and live imaged gata1:DsRed reporter larvae, in

which DsRed is expressed in erythrocytes and their precursors [23].

The distribution of DsRed-expressing cells was different between

control and infected animals and consistent with accumulation of

red blood cells in various spots due to loss of blood flow; however,

the overall level of DsRed expression did not appear to be decreased

at 48 hpi (Figure 4B), indicating that in contrast to endothelial cells,

erythrocytes are spared during IHNV infection. This conclusion

was further strenghtened by careful examination of fli1:GFP larvae

stained with the 4B3 or 19B7 mAbs (see above), where no viral P or

G protein expression could be detected in cells inside the lumen of

blood vessels (Figure 3 and not shown).

Temperature shift identifies the irreversible point in
pathology

We took advantage of the fact that the IHNV25 strain does not

grow above 25uC to stop the progression of infection in zebrafish

larvae at any stage, with simple temperature shift experiments.

First, we ensured that either growth or cytopathic effect of

IHNV25 can be observed in vitro at 24uC but not at 28uC (Figure

S4 in Text S1). Larvae were infected iv as previously, incubated at

24uC for a certain time, and then shifted to the non-permissive

temperature of 28uC. During the entire course of the experiment,

individual larvae were regularly observed for occurrence of

symptoms (Figure 5A). If the shift was performed immediately,

no pathology occurred. When the shift was performed at 6 hpi, no

subsequent signs of infection could be detected in almost all larvae.

In contrast, if the shift was performed at 24 hpi or later, irreversible

pathogenesis ensued for all larvae. The critical turning point in the

infection, with approximately 50% of the larvae being rescued

without any of the above-described clinical signs, was 12 to 15 hpi.

Imaging Viral Infection in Whole Zebrafish Larvae
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Figure 2. Progress of IHNV infection. A. Quantification of viremia over time. Larvae were inoculated with IHNV as in Figure 1B. At regular
intervals, pools of five larvae were snap-frozen, and virus titers measured on a layer of EPC cells. Titers were always below the threshold of detection
(5 pfu) in uninfected control larvae. Experiment repeated twice with similar results. B. Assessment of viremia in whole larvae using qRT-PCR.
Quantification of N-IHNV transcripts (circles) or viral genomes (diamonds) over housekeeping gene EF1a transcripts. For N-IHNV transcripts, data
pooled from five experiments; dashed line join mean values. Viral RNAs were undetectable in control larvae. C. Detection of infected cells using WISH
with a N-IHNV-specific probe. Representative images of PTU-treated larvae inoculated as in Figure 1B (or injected iv with PBS for bottom image) and
fixed at the indicated times post-infection (24 hpi for PBS control). Magnification: 3.2x. D. details of ISH images at higher (10x) magnification. Scale
bars, 200 mm.
doi:10.1371/journal.ppat.1001269.g002
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Before dying from the infection, temperature-shifted larvae

displayed the same signs as described previously for unshifted

larvae, in the same order, but delayed (Figure 5B); in addition,

they exhibited edemas of impressive proportions (Figure 5C).

Quantification of IHNV titers or N-IHNV transcripts in Tu-
shifted larvae revealed, as expected, that infection was reduced as

compared to non-shifted larvae (Figure 5D). However, high

amounts of virus were still detectable, indicating that Tu shift to

28uC did not destroy the virus and suggesting it did not rescue

already infected cells. The Tu shift probably prevented infection of

new cells, interfering with either viral entry, replication or assembly.

Host response arises too late during infection
We have previously shown [11] that larvae can be partially

protected from IHNV infection by injection of recombinant

interferon (IFN) a few hours before viral challenge and that

expression of both ifnQ1 and ifnQ3 is induced at 48hpi by IHNV

infection. Both interferons induce the expression of many genes

Figure 3. IHNV infects and disrupts blood vessels. A: scheme of the imaged regions (corresponding panel indicated with red letters), overlaid
on a composite transmission (grayscale) and GFP fluorescence (green) picture from a 4dpf fli1:GFP larva viewed laterally (images taken with a
stereomicroscope; to get a more readable GFP signal, short exposure of the head has been combined with longer exposure of the rest of the body).
B–K, confocal images (maximal projections from multiple Z-stacks) of WIHC stainings of fli1:GFP larvae fixed 24 hpi after IHNV inoculation at 72 hpf
(except C, uninfected control larva); latero-dorsal views, anterior to right, dorsal to top. Colours in B–F and I: Red: IHNV P protein; green: GFP; blue:
nuclei. B: eye, showing disruption of the inner optic circle, with infected cells located close to the damaged site (arrow; compare with C). D and E:
brain region of two infected larvae, showing variable pattern. Notice in D the infection and loss of GFP expression of dorsal longitudinal vein (arrow).
E shows infection of a cell of the posterior cerebral vein; to demonstrate colocalization of GFP and viral protein, single Z-plane images (cropped to the
boxed area in E) are shown in F–H with overlaid signals in F, GFP signal in G, and P-IHNV staining in H. I: view of intersomitic vessels, showing infection
and loss of GFP of ventral part of these vessels (arrows indicate where endothelial cells are expected to be found) while the dorsal part appears intact.
Partial colocalization of GFP and P-IHNV in the ventral half of one vessel is shown in J and K (GFP and P-IHNV signal channels, respectively). B–H, 40x
objective; scale bar, 50 mm. I–K 63x objective; scale bar, 25 mm. hb: hindbrain; l: lens; mb: midbrain; n: neuropile; r: retina.
doi:10.1371/journal.ppat.1001269.g003
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including viperin (also known as vig1 or rsad2) and MXA. To analyse

the kinetics of expression of host antiviral genes during the course

of the infection, we measured by qRT-PCR the expression of

ifnQ1, ifnQ3, and viperin at 6, 8, 12, 24, 30 and 48 hpi (Figure 6).

Potent induction of all these genes could only be detected at 30 or

48 hpi. Stastically significant, but very weak (less than 4-fold)

induction of viperin or MXA was detectable at 24 hpi. Levels of

IFNQ3 were sometimes slightly elevated (about 2-fold) early after

infection. As Tu-shift experiments have shown that IHNV

infection causes irreversible damage before 24 hpi, this result

strongly suggests that the endogenous host response comes too late

to exert any significant control over the viral infection.

IFN signalling does not cause disease signs
Even if overdue, the host IFN response may be responsible for

some of the disease signs, which are also observed after the point of

no return. To test this, we injected 72 hpf fli1:GFP larvae with

recombinant IFN, and carefully monitored them afterwards. We

tested both groups of fish IFNs by using either 100 pg of IFNQ1 or

1 ng of IFNQ2, doses that result in strong viperin induction 6 hours

post-injection, and to significant resistance to a challenge with

IHNV25 when compared with BSA-injected controls ([11] and

data not shown). We observed the larvae injected with IFN, but

not challenged with virus, for any sign linked to the disease, such as

mortality, loss of reactivity, decrease of blood flow, haemorrhages,

or edemas, and found no difference with control larvae. We also

imaged them by fluorescence microscopy at 6, 24 and 48 hours

post-injection of the cytokine, and did not observe any dampening

of the GFP signal in endothelium (data not shown). These negative

results were obtained in two independent experiments. We

conclude that disease signs are unlikely to be caused by the host

IFN response, but probably reflect virus-caused damage.

Figure 4. IHNV infection destroys vascular endothelium but not erythrocytes. A. Confocal images of representative fli1:GFP fish at 49 hours
post inoculation; maximal projection from Z-stacks and mosaic reconstruction. Because of individual variation in GFP expression among fli1:GFP
larvae, fluorescence levels have been globally adjusted (here, increased in the IHNV-infected fish) to match in the non-endothelial cells of the pectoral
fin that also express GFP. B. Fluorescence (left) and transmission (right) images of gata1:DsRed larvae at 48 hpi, taken with a fluorescence
stereomicroscope; exposure settings kept identical for all animals. The two bottom animals have been selected to illustrate the variable distribution
of red blood cells immobilized in infected larvae.
doi:10.1371/journal.ppat.1001269.g004
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Discussion

We describe in this paper the spread of a viral infection

throughout an entire organism, something that, to our knowledge,

has not been done before in a vertebrate. Taking advantage of the

small size and optical accessibility of zebrafish larvae, it is possible

to identify infected cells anywhere in the body. This provides us

with a very useful model to study the effects of antiviral drugs or of

the various elements of the host response. A particular advantage

of this system over other approaches resides with the possibility to

directly compare organ specificity. Many viruses are known to take

up residence in reservoir organs where they are harder to detect

and are less exposed to drugs and/or immune responses, such as

the central nervous system [24,25].

Although the approaches we developed here could be readily

applied to other viruses using the adequate probes or antibodies,

the heat-adapted IHNV virus has specific advantages. First, gross

clinical signs of infection are easy to follow, reproducible, and

occur in a highly synchronous fashion in groups of infected larvae

(Figure 1), making it simple to compare experimental situations.

The kinetics of the infection is convenient: death does not occur in

the precipitous ways seen with other viruses such as SVCV [6] -

making it possible to identify factors that would accelerate

infection- yet signs occur early enough to allow the use of

synthetic mRNA and morpholino-based gene gain- and loss-of-

function approaches available in zebrafish larvae. Moreover, using

very simple temperature shift experiments, it is possible to

manipulate the replication of the virus in this poikilothermic

animal (Figure 5). Finally, this virus is amenable to reverse

genetics.

This system also has some significant drawbacks. IHNV is not a

natural pathogen of zebrafish - however none has been

characterized so far. The virus has to be microinjected to establish

infection, precluding the study of events involved in virus entry.

Nevertheless, it affords a reliable system to study the subsequent

systemic spread of the virus. Although some other viruses can enter

zebrafish larvae by more natural routes, they do not result in the

highly predictable infection course obtained with this IHNV

strain, and are therefore less amenable to experimental manipu-

lation.

Our observations highlight vascular endothelial cells as the

primary targets in the pathology of this experimental infection.

The first cells expressing viral genes are found where major veins

are localized (Figure 2); infected endothelial cells could be

Figure 5. Controlling the progression of IHNV infection by temperature shift. A. Early temperature shifts impairs development of signs of
infection in zebrafish larvae inoculated with IHNV25. Larvae (65 to 75 hpf) were infected with 65 to 100 pfu of IHNV25, transferred in individual wells,
incubated at 24uC, then shifted to 28uC at the indicated time. They were checked regularly for signs of infection (loss of blood flow or reactivity, gross
edemas, death). Larvae that did not develop any sign up to 7 days post-infection were scored as « no sign » (open bars). Results pooled from 8
separate experiments. B. Representative time-course of onset of disease signs in temperature-shifted larvae, in one of the experiments included in A.
Clinical scores measured as for Figure 1C; error bars represent s.e.m. C. Photograph of an infected larvae shifted to 28uC at 24 hpi, taken at 72 hpi,
showing typical generalized edema. D. Comparison of infectious viral titers in IHNV-infected larvae kept at 24uC (black full line) or shifted to 28uC at
24 hpi (dashed red line). Experiment repeated twice with similar results.
doi:10.1371/journal.ppat.1001269.g005
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observed (Figure 3). As the infection progresses, the vessels become

disrupted and other cells are found infected next to the former

location of the missing endothelial cells, suggesting that the virus

spreads to the neighboring tissues mostly by cell-to-cell contact,

even though direct translocation of bloodborne virus to these

tissues through fenestrated endothelium cannot be ruled out.

Disruption of vessel integrity can explain much of the observable

signs of disease, such as slowing down and arrest of blood flow

despite continuing heartbeat, hemorrhages, and edemas. There is

probably a threshold level of damage to the endothelia, below

which the larvae can still maintain or regenerate vessel integrity, as

suggested by temperature shift experiments: many larvae could

fully recover when shifted to the non-permissive temperature

before 18 hpi, despite the fact that infected vessels were revealed

by WISH in all animals at 6 hpi.

There seems to be a preferential infection of veins over arteries,

at least in the earlier phases of the infection; this may be explained

by the higher endocytic capacity of zebrafish venous endothelial

cells (PH, unpublished data) reflecting a general property of

certain subsets of endothelial cells in all vertebrates [26].

Are there other cells types infected by IHNV, and what is their

contribution to the pathology? Our observations of gata1:DsRed

transgenic larvae indicate that erythrocytes and their precursors

are not early targets of the virus (Figure 4). Our preliminary,

unpublished observations also suggest that neither neutrophils nor

thrombocytes are targeted by the virus. The apparent tropism of

the virus for endothelium among blood-exposed cells clearly

deserves more investigation. Fibronectin has been shown to act as

a primary receptor for IHNV in trout cells [27], and further

experiments performed in vitro with zebrafish cells have pointed out

that IHNV entry is mediated by a minor truncated isoform of

fibronectin (FN2) located at cell surfaces [28]. It would be

interesting to check whether this isoform is specifically expressed

by vascular endothelial cells. Unfortunately, almost all of the

sequence of the FN2-encoding transcript is also included in the

transcript encoding the main fibronectin isoform, precluding

WISH analysis. We also plan to study in more detail the infection

of non-hematopoietic tissues; notably, it will be of particular

interest to establish how the virus propagates in the brain (in which

necrosis is often observed at late stages) from infected brain

vasculature, as it exemplifies one of the strategies that allow

pathogens to cross the blood-brain-barrier.

As shown here, zebrafish larvae are unable to mount a

detectable interferon response before irreversible damage has

been caused by the infection (Figure 6). This is clearly not the

consequence of an immature state of the immune system, as a

response to SVCV could be detected much earlier [6]. We suspect

that, like other rhabodviruses [29], IHNV has the ability to hinder

or delay the induction of the host interferon response. Identifying

the precise molecular mechanisms at play will be an important

goal in the future.

In conclusion, the IHNV/zebrafish model we have established

constitutes the first example of a system where a viral infection can

be imaged in an entire vertebrate host. Our observations suggest

Figure 6. Late induction of host response. qRT-PCR measurement of the expression of IFN genes (top panels; left, splice isoform of ifnQ1
corresponding to the inducible, secreted cytokine; right, ifnQ3) and of IFN-induced genes (bottom panels; left, viperin/rsad2, right, MXA). Assays
performed on RNA extracted from entire larvae, either infected with ,100 pfu of IHNV and incubated at 24uC for the indicated time, or uninfected
controls (five or four samples, displayed before the ‘‘0 hpi’’ mark). Measured values normalized to the mean of the control set. Error bars, SD of
triplicate qPCR measures. Significant difference from control set displayed as ** (p,0.0001) or * (p,0.01); unpaired t-test.
doi:10.1371/journal.ppat.1001269.g006
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the following scenario of viral dissemination: first, via an

hematogenous route, leading to infection of vascular endothelial

cells throughout the body. The ensuing destruction of endothelial

cells disrupts blood flow, causing hemorrhages and edemas. The

infection of a sufficient number of vascular cells is probably

sufficient to yield irreversible damage. However, it also results in a

second mode of infection, affecting underlying tissue via cell-to-cell

or very short distance virus transfer. This sequence of events is

likely to hold true for a number of human viruses causing

hemorrhaging diseases. The validity of this hypothetical scenario is

testable, as it predicts that experimental manipulations that result

in overexpression of genes with antiviral activity (i.e. appropriate

IFN-stimulated genes) specifically in vascular endothelial cells

should result in efficient protection of the host with reduced side

effects compared to ubiquitous overexpression. Thanks to the

already available genetic tools, endothelium-specific inducible

expression would be relatively easy to achieve in zebrafish; the

endocytic properties of veinous vascular cells may also be exploited

to target drugs to these cells, and this could be monitored in real

time. Combined with the assessment of organ-specific distribution

of virus in the organism, such studies have the potential to help

designing more targeted, safer treatment regimens for human viral

diseases.

Material and Methods

Ethic statement
All the animal experiments described in the present study were

conducted at the Institut Pasteur according to the European Union

guidelines for the handling of laboratory animals (http://ec.europa.

eu/environment/chemicals/lab_animals/home_en.htm) and were

approved by the Institut Pasteur animal care and use committee

and by Direction Sanitaire et Vétérinaire de Paris under permit

#A-75-12-22.

Fish
Wild-type AB, initially purchased from the ZIRC (Zebrafish

International Resource Center, Eugene, OR), transgenic fli1:GFP

[22], and transgenic gata1:DsRed [23] were raised in our fish

facility. Eggs were obtained by marble-induced spawning,

bleached according to protocols described in The Zebrafish Book

[30], and then kept in petri dishes containing Volvic source water

supplemented with 0.3 mg/ml of methylene blue. Depending on

the desired speed of development, embryos were raised at 28uC or

24uC before infection; all staging in the text refers to the standard

28,5uC developmental time. A few hours before injection, embryos

were dechorionated manually. Larvae were anesthetized with

200 mg/ml tricaine (Sigma-Aldrich).

Virus
Generation of the IHNV25.70 strain has been described in [11].

The virus was propagated on EPC cells (ATCC# CRL-2872).

Virus-containing cell culture supernatants were aliquoted and

stored at 280uC until use. Just before injection, the virus was

diluted (if necessary) to the appropriate concentration with PBS

containing 0.1% phenol red.

Infection and clinical score
Larvae were infected by iv microinjection in the caudal vein or

aorta as described in [31]. Infected larvae were then distributed in

individual wells of 24-well culture plates, containing 1 ml of Volvic

water each. Larvae were regularly observed with a stereomicro-

scope to check for the appearance of clinical signs of infection.

A clinical score from 0 to 3 was determined without

anesthesizing the larvae by checking for movement of blood cells

in the tail and by gently pricking the side of the head with a soft

paintbrush. Larvae with visible blood flow in the tail - precisely, in

any vessel located posterior to the urogenital opening -, which

were always reactive, were attributed a score of 3. Larvae with

blood arrested in the tail (even if flowing elsewhere) but that still

swam away (at least one body length of distance) when pricked

were given a score of 2. Larvae that did not swim away after three

pricking attempts, but still had any detectable heart beat when

oriented on their side were assigned a score of 1. Larvae with no

movement whatsoever were considered dead with a score of zero.

Scoring has been performed in a blind fashion at least once for

each type of test.

Imaging
Imaging was performed as described in detail in [31]. Briefly,

video-enhanced DIC images of live larvae were taken using a

Nikon Eclipse 90i microscope equipped with a Hitachi HV-C20

camera and movies captured on miniDV tapes; single frames were

later captured using the BTVpro software. Images of larvae

stained by WISH were taken with a Leica MZ16 stereomicroscope

using illumination from above. Images of whole live larvae were

taken with a similar stereomicroscope fitted with a Nikon DS-5Mc

camera, using oblique illumination. Confocal images of live or

fixed larvae were taken with a Leica SPE inverted confocal

microscope. Images were processed with the LAS-AF (Leica),

ImageJ and Adobe Photoshop softwares.

Plaque assay
Titers of infectious virions were measured by plaque assay on

monolayers of EPC cells. Larvae to be assessed were anesthetized

with tricaine, transferred as groups of 5 larvae to a microtitration

tube with no more than 30 ml of water, snap-frozen on a bed of dry

ice and stored at 280uC until processing. Larvae were

homogeneized by grinding them with a pestle fitted to the tubes,

and 100 ml of culture medium supplemented with 2% FCS was

added. Supernatants were cleared by a 5 min centrifugation at

930 g, and serially diluted in duplicates for the plaque assay. The

infection was performed at 24uC under a layer of methylcellulose

(0.75% final concentration) for three days after an adsorption step

at 14uC for one hour in liquid phase. The plaques were then

counted after treatment by formaldehyde (10%) and staining using

crystal violet (1% final dilution).

qRT-PCR
RNA was extracted from snap-frozen larvae using Trizol

(Invitrogen). cDNA was obtained using M-MLV H- reverse-

transcriptase (Promega) with a dT17 primer, except for IHNV

genome quantification where a random N10 primer was used.

Quantitative PCR was then performed on an ABI7300 thermo-

cycler (Applied Biosystems) using SYBR green reaction power mix

(Applied Biosystems). The following pairs of primers were used:

EF1a: GCTGATCGTTGGAGTCAACA and ACAGACTT-

GACCTCAGTGGT

N-IHNV: CACTGGACTCAGAGACATCA and CTGCAAG-

CTTGTTGTTGGGA

IHNV genome: CACTGGGTGGAATTCCCTTT (in G gene)

and CAATACTCGCTGCATCCTCT (in NV gene)

IFNQ1: TGAGAACTCAAATGTGGACCT and GTCCTC-

CACCTTTGACTTGT

IFNQ3: GAGGATCAGGTTACTGGTGT and GTTCAT-

GATGCATGTGCTGTA
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viperin: GCTGAAAGAAGCAGGAATGG and AAACACTG-

GAAGACCTTCCAA

MXA: GACCGTCTCTGATGTGGTTA and GCATGCTT-

TAGACTCTGGCT

Quantifications were performed on triplicate wells, and taking

into account the previously measured yield of the reaction as

described in [32]. To normalize cDNA amounts, we have used the

housekeeping gene EF1a transcripts, chosen for its high and very

stable expression from 12 to 120 hpf [33]; error bars represent

standard deviation of the measured ratios.

In situ hybridization
WISH was performed using standard protocols [30]. To

generate the probe, the full-length coding sequence of N-IHNV

[34] was subcloned in antisense orientation in the pCS2+ vector,

which was then linearized with NotI and transcribed in vitro with

SP6 polymerase (Promega). The signal was very high and revealed

in five to ten minutes.

Immunohistochemistry
WIHC was performed as described [35] using, as a primary

antibody, either the 4B3 mAb antibody specific of IHNV P

(phosphoprotein) or the 19B7 mAb antibody specific of IHNV G

(glycoprotein) [36] diluted 1/500th; and, as a secondary antibody,

Cy3-labelled goat anti-mouse antibody (Jackson Immunoresearch)

diluted 1/300th. Larvae were counterstained for 45 min at room

temperature with 2 mg/ml Hoechst 33342 (Molecular Probes)

before being progressively transferred to 80% glycerol.

Accession numbers of genes studied in this article
zebrafish genes or proteins:

EF1a: NM_131263; IFNQ1: NM_207640; IFNQ2: NP_001104552;

IFNQ3: NM_001111083; viperin: NM_001025556; MXA: NM_182942

IHNV genes or proteins:

Genome: NC_001652; N: NP_042676; P: NP_042677

Supporting Information

Text S1 Supplementary Material and Methods, Supplementary

References, and Supplementary Figures S1-S4.

Found at: doi:10.1371/journal.ppat.1001269.s001 (3.09 MB PDF)
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