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Abstract: The quality of foods has led researchers to use various analytical methods to determine
the amounts of principal food constituents; some of them are the NMR techniques with a multi-
variate statistical analysis (NMR-MSA). The present work introduces a set of NMR-MSA novelties.
First, the use of a double pulsed-field-gradient echo (DPFGE) experiment with a refocusing band-
selective uniform response pure-phase selective pulse for the selective excitation of a 5–10-ppm range
of wine samples reveals novel broad 1H resonances. Second, an NMR-MSA foodomics approach
to discriminate between wine samples produced from the same Cabernet Sauvignon variety fer-
mented with different yeast strains proposed for large-scale alcohol reductions. Third a comparative
study between a nonsupervised Principal Component Analysis (PCA), supervised standard partial
(PLS-DA), and sparse (sPLS-DA) least squares discriminant analysis, as well as orthogonal projections
to a latent structures discriminant analysis (OPLS-DA), for obtaining holistic fingerprints. The MSA
discriminated between different Cabernet Sauvignon fermentation schemes and juice varieties (apple,
apricot, and orange) or juice authentications (puree, nectar, concentrated, and commercial juice fruit
drinks). The new pulse sequence DPFGE demonstrated an enhanced sensitivity in the aromatic zone
of wine samples, allowing a better application of different unsupervised and supervised multivariate
statistical analysis approaches.

Keywords: 1H-NMR; multivariate statistical analysis; wine; juices; NMR pulse sequence;
Cabernet Sauvignon; Candida zemplinina; Saccharomyces Bayanus ex uvarum

1. Introduction

Analytical tools to follow the composition, origin, and traceability of beverages have
become a common practice to evaluate the quality and characteristics of foods as robust
alternatives of handheld equipment for food safety inspectors or in-line equipment for
food authentication analyses, currently carried out as rapid outside laboratory methods [1].
Nuclear Magnetic Resonance (NMR) spectroscopy technology evaluates juices, extracts,
infusions, and alcoholic, and nonalcoholic beverages. It has identified possible coun-
terfeit products by monitoring the presence of specific metabolites within a sample [2].
This technique has also identified possible adulterations in coffee [3,4], tea bags for herbal
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infusions [5–8], vodka [9,10], milk and dairy products [11–13], honey [9,14,15], beer [9,16],
oil [7,17,18], wine [2,19–22], juice [2,23,24]; vinegar [2,9,25], tequila [9,25,26], rum [9],
and whiskey [9], amongst others. Spectroscopic and spectrometric techniques combined,
in some cases, with chromatographic methods are useful to assure the food quality to
avoid adulterations and fraud and determine the geographical origin of the constituent
ingredients, because consumers consider this data as one of the principal quality indi-
cators [27]. Hyphenated analytical methods have evaluated the influence of the harvest
season on the characteristics of wine [28], with NMR and LC-MS analyses tracking varia-
tions in the concentrations of wine compounds. The authors found thirty-one metabolites
by UPLC-MS (20 phenolic compounds, 8 hydroxy acids, and 3 apocarotenoids). They also
recognized the differences in the compositions of those compounds in wines produced
during two different seasons (July and December) by proton Nuclear Magnetic Resonance
Spectroscopy (1H-NMR). The results evaluated from Syrah and Chenin Blanc wines from
Brazil evidenced the variability in primary and secondary metabolites due to seasonality,
training systems, and types of rootstocks.

Despite the restricted Limits of Quantification (LOQ) and Detection (LOD), 1H-NMR
has been a useful method for the geographical origin authentication of several food ma-
trices, with clear advantages of being nondestructive, fast, reproducible, and reliable,
compared to chromatography coupled with MS techniques [19,20,29–31]. The combination
of high-reproducible, noninvasive, rapid, and simple-use proton Nuclear Magnetic Reso-
nance Spectroscopy (1H-NMR) with Multivariate Statistical Analysis (MSA) for foodstuff
metabolomics has emerged over the last decades for the implementation of models to trace
the food quality, origin, manufacture, or authenticity [32].

NMR foodomics has proved its importance in evaluating possible adulteration in
commercial juice blends [23]. The use of NMR and MSA analyses has established the
concentration of different compounds to guarantee the origin of pure juices. The finger-
prints generated by the metabolites present in juices reveal proton NMR signals in three
well-defined regions: the region from 0.5 to 3.0 ppm, corresponding to protons of organic
acids and amino acids; from 3.0 to 6.0 ppm, corresponding to the presence of carbohydrates;
and from 6.0 to 8.5 ppm, corresponding to protons of phenolic and aromatic compounds.
The use of NMR coupled to chemometrics generates valuable information capable of
detecting corrupted samples of blended juices.

NMR analyses have also been useful for the identification of several wine products.
Recently, the analysis and identification of the products formed during winemaking by
using different yeasts within the fermentation process has been assayed. Surprisingly, there
were significant differences between the metabolites of the wines produced by the different
yeasts [33]. In this regard, 1H-NMR spectra evidenced the presence of different concentra-
tions of the evaluated molecules, such as glycerol, 2,3-butanediol, lactic acid, malic acid,
tartaric acid, succinic acid, gallic acid, proline, alanine, valine, choline, and ethyl acetate,
related to the yeast and used to carry out winemaking. Nevertheless, the compositions of
valine, alanine lactic acid, and gallic acid were the most important differences. The latter
could be detrimental to the quality of the wine, because the high content of organic acids
can cause sour mouthfeels. The method’s sensitivity revealed the importance of the use of
different yeast strains for producing specific properties in wines by detecting differences of
compounds’ concentrations in the order of hundredths of grams per liter.

NMR spectroscopy has been successful in characterizing key molecules from wine and
grapes that positively affect human health. A recent study evaluated Aglianico grape and
red wines produced from said raw grapes [34]. They reported several bioactive compounds
through a combination of HR-ESI-MS and 1H-NMR, such as catechin, epicatechin, gallic
acid, 2-phenylethanol, syringic acid, tryptophol, tyrosol, xanthurenic acid, and oleanolic
acid. HR-ESI-MS sensitivity combined with unique proton NMR chemical shifts and scalar
J coupling fingerprints have allowed the identification of the latter two compounds in
relatively high concentrations for the first time. Xanthurenic acid has protective effects on
key brain functions by interactions with brain receptors and as a regulatory molecule of
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redox maintenance [35]. Its presence in wines strengthens a moderate consumption of wine
as a health-promoting practice. For the case of oleanolic acid (oleanic acid), a correlation
between its consumption and improvements in bone properties has been demonstrated,
such as an enhancement in the calcium balance shown in rat models [36]. Additionally,
its potential therapeutic effects in preventing and managing chronic diseases such as
cancer, diabetes, hepatic illnesses, hypertension, and inflammatory processes has been
demonstrated [37].

To study nonprofessionalized traditional spirits such as Mexican mezcal, we have
recently implemented NMR foodomics to profile the metabolite composition of both
ancestral and artisanal products [32]. This work has been possible to discriminate the
geographical origin of mezcals from the Oaxaca, Puebla, and San Luis Potosí Mexican
regions, from the spectral fingerprint generated by NMR data matrices that reflect the
presence of eleven discriminant metabolites in different concentrations. The proton NMR
exhibited the presence of acetaldehyde (δ = 9.55 ppm, J = 2.82 Hz, quartet), 5-substituted
furanaldehyde (δ = 9.37 ppm, singlet; δ = 9.19 ppm, singlet), 2-furfural (δ = 7.97 ppm,
multiplet; δ = 7.34 ppm, multiplet), unsubstituted furfural, 2-furoic acid (δ = 6.54 ppm,
J = 3.6 Hz/1.57 Hz, doublet of doublets), (furan-2-yl)-methanol (δ = 6.24 ppm,
J = 3.3 doublet), phenethyl alcohol (δ = 7.17 ppm, J = 7.47 Hz multiplet), phenethyl acetate
(δ = 7.09 ppm, J = 7.48 Hz multiplet), ethyl acetate (δ = 3.99 ppm, J = 7.2 Hz, quartet),
1-butanol (δ = 1.54 ppm, J = 6.67 multiplet), 2-butanol (δ = 1.49 ppm, J = 6.67 multiplet),
and 2-methylpropan-1-ol (δ = 1.38 ppm, J = 7.1 Hz, multiplet). By the identification of these
metabolites at different compositions in the mezcal samples analyzed, it is possible to assign
a spectral trace because of the species of agave used for the beverage elaboration—that is
to say, the use of Agave potatorum, A. angustifolia, A. cupreata, or A. salmiana ssp. crassispina.

Several reports have emerged over the last years in terms of both NMR acquisi-
tions and MSA combined methodologies for developing different foodomics approaches.
The first report applied water-to-ethanol NMR multi-presaturation schemes during mix-
ing times and recovery delays within 1D-NOESY experiments in a set of approximately
600 German wine samples. This data matrix allowed classifying grape varieties, geo-
graphical origins, and aging of five wine-growing areas of Southern Germany (Rheinpfalz,
Rheinhessen, Mosel, Baden, and Württemberg), with a principal component analysis (PCA),
linear discrimination analysis (LDA), and multivariate analysis of variance (MANOVA) [38].
An independent component Analysis (ICA) combined with LDA achieved noticeable im-
provements to generate discriminative features within the NMR data matrix of German
wine samples [39]. To discriminate between Italian “Fiano di Avellino” wines produced
with the same grape variety but fermented with commercial or autochthonous yeast starters,
the authors used a T1-relaxation filter as a strategy for ethanol suppression, instead of
water-to-ethanol multi-suppression, proton NMR profiling in combination with PCA, LDA,
and a hierarchical cluster analysis (HCA) [40]. Recently, 1H-NMR targeted metabolomics
has discriminated between Chinese wine regions [41] and grape varieties such as Caber-
net Sauvignon, Merlot, and Cabernet Gernischt dry red wines [42], as well as different
Chardonnay dry white wines treated with different inactive yeasts before aging [34]. Dis-
criminative features came, respectively, from ethyl acetate, lactic acid, alanine, succinic
acid, proline, malic acid, and gallic acid (red wines) and 2,3-butanediol, ethyl acetate, malic
acid, valine, succinic acid, lactic acid, tartaric acid, glycerol, gallic acid, choline, proline,
and alanine (white wines) spin systems. Furthermore, specific oenological improvements,
such as the use of Hanseniaspora vineae yeast strains with respect to standard fermentation
to enhance aromatic profiles in Spanish Albillo white wines, were evaluated with both
1H-NMR and GC-FID-targeted metabolomics [43].

Considering the above-mentioned NMR-MSA state-of-the-art foodomics advances,
the present work introduces a set of NMR-MSA novelties. First, the use of a double pulsed-
field-gradient echo (DPFGE) experiment [44], with a refocusing band-selective uniform
response pure-phase selective pulse [45], for selective excitation of the 5–10-ppm chemical
shift range of wine samples, revealed novel broad 1H resonances. Second, an NMR-MSA



Molecules 2021, 26, 4146 4 of 23

foodomics approach to discriminate between wine samples produced from the same
Cabernet Sauvignon variety but fermented with different yeast strains was proposed
for large-scale alcohol reductions [46]. The NMR data matrix obtained from DPFGE
schemes produces accurate discriminant features for disentangling between standard and
(co)inoculation fermentations that afford approximately 1% of alcohol reduction with
a diverse Partial Least Squares-Discriminant Analysis (PLS-DA) of DPFGE NMR out-
liers. Third, different MSA methods afforded a comparative study, such as nonsupervised
Principal Component Analysis (PCA), the supervised standard partial (PLS-DA), sparse
(sPLS-DA) least squares-discriminant analysis, and orthogonal projections to latent struc-
tures discriminant analysis (OPLS-DA). The results have been useful for obtaining holistic
fingerprints to discriminate between different Cabernet Sauvignon fermentation schemes
and juice varieties (apple, apricot, and orange) or juice products authentications (puree,
nectar, concentrated, and commercial juice fruit drinks). NMR data matrices were, re-
spectively, obtained with DPFGE and automatized 1D single-pulse NOESY presaturation
NMR schemes.

2. Results
2.1. Wines’ NMR Outliers with Double Pulsed-Field-Gradient Echo

A habitual prerequisite for successfully implementing 1H-NMR selective excitation
schemes comprises a previous acquisition of a broad-band standard 1H direct polar-
ization experiment that can also be afforded in a quantitative way (q-1H NMR) [47].
In such conditions that imply previous calibrations of optimal recovery delays and ef-
fective hard π/2 pulses, q-1H NMR spectroscopy can be used to quantify the %alcohol
content in hydroalcoholic solutions [46]. Figure 1B presents q-1H NMR spectra of Caber-
net Sauvignon wine samples fermented with Saccharomyces cerevisiae, Candida zemplinina,
and Saccharomyces Bayanus ex uvarum yeast strains (see Materials and Methods) used as the
starting point for optimizing a Double Pulsed-Field-Gradient Echo 1H NMR scheme (vide
infra), as well as for quantifying their alcohol content (Figure 1A, left), and the %alcohol
reduction obtained with Candida zemplinina and Saccharomyces Bayanus ex uvarum large-
scale fermentation schemes (Figure 1A, right). The orthogonality of the %alcohol content
and %alcohol reduction measurements with q-1H NMR spectroscopy (2020 harvest) was
compared with conventional densitometry methods, whereas the alcohol content of the full
Cabernet Sauvignon wine sets (Figure 1C, left), as well as alcohol reductions, reached with
Candida zemplinina and Saccharomyces Bayanus ex uvarum (Figure 1C, right) fermentations
from the 2018–2020 harvests found accurate agreements with the q-1H NMR data.

Figure 2 shows the clear advantages of applying a Double Pulsed-Field-Gradient Echo
(DPFGE) pulse sequence in wine samples. Instead of eliminating the intense signals from
the hydroalcoholic solution (i.e., H2O singlet at 4.7 ppm with a bandwidth at half-height
of c.a. 20 Hz, CH2 ethanol quartet at 3.47 ppm, and CH3 ethanol triplet at 1.005 ppm; see
Figure 1B), a selective π refocusing band-selective uniform response pure-phase (REBURP)
pulse [45], flanked by two gradient pulses during an echo period [44], allowed to exclu-
sively refocus the selected chemical shift range comprising the wine aromatic 1H spin
systems (5.5–11 ppm, 3360 Hz), whilst the rest of the spectrum—including the intense
water-to-ethanol hydroalcoholic resonances—are efficiently defocused. The DPFGE NMR
scheme (pulse sequence shown within Figure 2, I) used for producing selectively irradiated
wine 1H NMR spectra (Figure 2, index II, D) is compared with the standard q-1H NMR
(Figure 2, index II, A) and with two different versions of the {1Hwater_presat NMR }-1D
single-pulse NOESY experiment, with an off-resonance shaped-pulse for water and ethanol
signal suppression during both the relaxation delay and mixing times (Figure 2, indexes II B
and C) [33]. The acquisitions were at equivalent conditions in terms of the number of scans,
acquisition times, recovery delays between scans, spectral width, and carrier frequencies to
define the offset (see Materials and Methods). The obtained gain in sensitivity with DPFGE
spectroscopy was evaluated for the first time as an NMR data matrix (Figure S1) in differ-
ent unsupervised and supervised multivariate statistical analysis approaches. The MSA
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approaches afforded the capacity to produce holistic fingerprints that can unambiguously
recognize discriminant factors of wines from the same variety but fermented at different
conditions (Figure 3)

Figure 1. (A) The %Alcohol content of Cabernet Sauvignon wine samples, all fermented at a large-scale regime (1950 L
produced from c.a. 3000-Kg raw grapes) from the latest 2020 harvest with a standard Saccharomyces cerevisiae, co-inoculation
with Candida zemplinina, and inoculation with Saccharomyces Bayanus ex uvarum yeast strains (left). The alcohol reduction
with respect to Saccharomyces cerevisiae (right), measured with quantitative proton NMR spectroscopy (B), in comparison
with the quantified %alcohol content (C, left) and %alcohol reduction (C, right) of the same large-scale fermentation
wine samples produced from 2018 (dotted histograms), 2019 (horizontally lined histograms), and 2020 (45◦ tilted-lined
histograms) harvests, all obtained with the standard densitometry technique.
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Figure 2. Sensitivity enhancement was obtained in wine samples with a double pulsed-field-gradient echo (DPFGE)
proton NMR experiment ((I) and spectrum (II, D) with respect to a standard q-1H- NMR direct polarization experiment
(II, A). A {1Hwater_presat NMR}-1D single-pulse NOESY spectrum with an off-resonance shaped-pulse for water and ethanol
multi-presaturation during both the relaxation delay and mixing times (II, B) [33] and a {1Hwater_presat NMR} spectrum
with identical conditions as in (II, B) but with an additional continuous-wave decoupling module to eliminate the intense
13C satellites of the ethanol signals (II, C).
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Figure 3. Unsupervised principal component (A) and supervised standard partial (PLS-DA) (B), sparse (sPLS-DA)
(C) least square, and orthogonal projections to latent structures discriminant analysis (OPLS-DA) (D) score plots of
Cabernet Sauvignon wines fermented with Saccharomyces cerevisiae (blue), Candida zemplinina (red), and Saccharomyces
bayanus ex uvarum (green) yeast strains, modeled from the DPFGE NMR data matrix (Figure S1). T2 Hotelling’s ellipses
have a 95% confidence level in all cases. For PCA, PLS-, and sPLS-DA holistic fingerprints, the explained variances
are highlighted in parentheses along the axis. (E) For OPLS-DA, the permutation analysis between one predictive (p1)
and three orthogonal (o1, o2, and o3) components produced the observed and cross-validated R2X, R2Y, and Q2 coefficients.
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2.2. Juice NMR Outliers with Automatized {1Hwater_presat NMR} -1D Single-Pulse NOESY

Automatized foodomics workflows such as commercial NMR foodscreeners pos-
sess considerable advantages from sample to NMR data matrix preparations to carry out
multivariate statistical analysis in a precise way, avoiding human inadequacies from multi-
sampling manipulations to spectra acquisition and preprocessing, mostly for nonexpert
users. Some possible disadvantages of automatized workflows might be the lack of a wide
plethora of methods for obtaining NMR outliers, like, for instance, acquisitions with novel
and robust pulse sequences such as DPFGE and spectral preprocessing such as selecting
between least squares or parametric time warping NMR alignments and/or free choice
for using the most adequate resonances’ bucketing strategy. Another disadvantage of au-
tomatized foodomics processes relies on their reduced options for developing multivariate
statistical analysis, mostly for third-party alien users out of the context of a foodscreener
business model.

Figure S2 shows series of {1Hwater_presat NMR} spectra of 100% apple, orange, and apri-
cot juices, nectars, and purees (see Material and Methods), obtained from a foodscreener’s
automatized and standardized NMR procedure [48]. Targeted NMR analysis of said autom-
atized food screenings, allows to quantify 39 metabolites and physicochemical parameters
of commercial fruit juices, (Table 1), typically used as compliance parameters defined at
the AIJN Code of Practices of the European Fruit Juice Association, whereas said targeted
metabolomics approach is obtained with the use of private consortium databanks [49].
To the best of our knowledge, most of the MSA approaches for obtaining discriminant
features from NMR data matrices that are acquired and processed with Standard Opera-
tion Procedures in automatized foodscreeners, uses the unsupervised Principal Compo-
nent Analysis approach. For that, the produced juice {1Hwater_presat NMR} data matrix
(Figure 4) related to “type of fruit” and “type of juice” discriminant factors is submitted to
different unsupervised (PCA) and supervised (PLS-, sPLS-, and OPLS-DA) multivariate
statistical analyses for evaluating the advantages of extending discriminant capacity of
automatized NMR outliers, with more robust supervised approaches towards more reliable
holistic fingerprints.

2.3. Multivariate Statistical Analysis

Both wine DPFGE and juice automatized {1Hwater_presat NMR} data matrices produce
specific NMR bins that, respectively, generate 75 and 435 processed data features after data
filtering of non-relevant variables (Materials and Methods). Wine and juice postprocessed
and normalized NMR outliers are submitted to several multivariate analysis methods.
First, the Principal Component Analysis (PCA) explains in an unsupervised way the vari-
ance of each dataset when increasing the number of principal components without referring
to any class label. The Partial Least Squares–Discriminant Analysis (PLS-DA) extracts the
information that can predict all possible class memberships from linear combinations
of original NMR bins with the use of multivariate regression techniques, whereas class
discriminations are assessed by a permutation test between the original data and the per-
muted class labels via cross-validations [50]. The Sparse Partial Least Squares–Discriminant
Analysis (sPLS-DA) is a special case of PLS-DA for data selection and classification in a
one-step procedure, whereas the algorithm is used to effectively reduce an important
number of NMR bins, within the original high-dimensional data, for producing robust
and easy-to-interpret discriminant models [51]. The Orthogonal Projections to Latent
Structures-Discriminant Analysis (OPLS-DA) permits obtaining optimal information from
the dataset by identifying a more refined multivariate subspace for maximum group sepa-
rations by applying Monte-Carlo Cross Validations with a set of partitions per number of
permutations [32]. Due to the capacities for distinguishing between subtle variations in
NMR datasets that are relevant for keen identifications of spectral features to drive group
separations further, OPLS-DA tends to produce less complex discriminant models, with
more accurate dimension reductions and more reliable than PLS-DA models [52].



Molecules 2021, 26, 4146 9 of 23

Table 1. Apple, orange, and apricot juice targeted analyses, comprising the quantification of 39 metabolites and physic-
ochemical parameters (titratable acidity) used as compliance parameters defined at the AIJN Code of Practices of the
European Fruit Juice Association [49].

Compound
Commercial Apple Juice
(Not from Concentrate)

Apple Juice Made
from Concentrate

Orange Juice Made
from Concentrate

Apricot Juice Made
from Concentrate

Conc. Unit Conc. Unit Conc. Unit Conc. Unit

Ethanol 195 mg/L <10 mg/L <10 mg/L 11 mg/Kg
Lactic acid 66 mg/L <10 mg/L 77 mg/L <20 mg/Kg

5-Hydroxymethylfurfural 6 mg/L <5 mg/L <5 mg/L <5 mg/Kg
Citric acid <0.5 g/L <0.5 g/L 6.7 g/L 7.2 g/Kg
Malic acid 4.3 g/L 1.6 g/L ↓ 1.5 g/L 4.9 g/Kg ↓

Glucose 21.5 g/L 8.6 g/L ↓ 18.6 g/L ↓ 32.2 g/Kg
Fructose 62.9 g/L 21.8 g/L ↓ 20.9 g/L 19.5 g/Kg

Glucose/fructose ratio 0.34 0.39 0.89 1.65
Sucrose 14.1 g/L 7 g/L 50.1 g/L ↑ 16 g/Kg

% Sucrose 14 % 19 % 56 % ↑ 24 %
Total sugar 98.6 g/L 37.3 g/L 89.6 g/L 67.7 g/Kg

Alanine 20 mg/L <5 mg/L ↓ 39 mg/L ↓ 28 mg/Kg ↓
Acetaldehyde <5 mg/L <5 mg/L <5 mg/L <5 mg/Kg
Benzoic acid <10 mg/L <10 mg/L <10 mg/L <10 mg/Kg
Formic acid <5 mg/L <5 mg/L <5 mg/L 5 mg/Kg
Methanol 44 mg/L <10 mg/L <10 mg/L 40 mg/Kg

Sorbic acid <10 mg/L <10 mg/L <10 mg/L <10 mg/Kg
Succinic acid 16 mg/L <10 mg/L 17 mg/L 32 mg/Kg

Benzaldehyde <5 mg/L <5 mg/L <5 mg/L ND
Proline <50 mg/L <50 mg/L 366 mg/L ↓ ND

Galacturonic acid 648 mg/L <100 mg/L <150 mg/L ND
Acetone <10 mg/L <10 mg/L ND ND
Arbutin <10 mg/L <10 mg/L ND ND

Chlorogenic acid 28 mg/L 53 mg/L ND ND
Citramalic acid 33 mg/L <10 mg/L ND ND

Malic/Quinic ratio 17.4 mg/L 20.5 mg/L ND ND
Fumaric acid <5 mg/L <5 mg/L ND ND
Pyruvic acid <10 mg/L <10 mg/L ND ND
Quinic acid 247 mg/L 76 mg/L ND ND

Xylose 529 mg/L <300 mg/L ND ND
Potassium * 1016 mg/L ND ND ND

Magnesium * 39 mg/L ↓ ND ND ND
Titratable Acidity pH 7 * 51 meq/L ND ND ND

Titratable Acidity pH 8.1 * 52 meq/L ND ND ND
Titratable Acidity (pH 7, tartaric acid) * 3.8 g/L ND ND ND
Titratable Acidity (pH 7, malic acid) * 3.3 g/L ND ND ND

Titratable Acidity (pH 8.1, citric acid) * 3.3 g/L ND ND ND
4-Aminobutanoic acid ND ND 163 mg/L ↓ ND

Arginine ND ND 622 mg/L ND
Phlorin ND ND <10 mg/L ND

* Determined by regression analysis. ↓ Out of AIJN range due to defect. ↑ Out of AIJN range due to excess.

Present work shows strengths and limitations of each above-mentioned MSA ap-
proach, by evaluating their discriminant capacity of two different sets of NMR outliers.
On the one hand, the DPFGE matrix (Figure S1) discriminates between Cabernet Sauvi-
gnon wines fermented at different conditions (Saccharomyces cerevisiae co-inoculation with
Candida zemplinina and inoculation with Saccharomyces bayanus ex uvarum) as part of an
optimization procedure comprising novel industrial-scale wine alcohol reduction schemes.
On the other hand, the automatized {1Hwater_presat NMR} matrix (Figure S2) discriminates
“type of fruit” and “type of juice”, i.e., 100% apple, orange, and apricot fruit beverages, in
different presentations: (a) made from concentrate, (b) commercial, not from concentrate,
(c) nectars, and (d) purees. A targeted analysis of the wine DPFGE matrix will be elsewhere
described, as it is currently under development as multidimensional DFPGE NMR schemes
for signal assignments. In contrast, Table 1 shows the targeted analysis of commercial
apple juices, apple juices made from concentrate, orange juices made from concentrate, and
apricot juices made from concentrate using a Bruker Juice ProfilingTM remote analysis [53].
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Figure 4. The figure presents the score plots of the unsupervised principal component (A) and supervised standard partial
(PLS-DA) (B), sparse (sPLS-DA) (C) least square, and orthogonal projections to latent structures discriminant analysis
(OPLS-DA) (D). It shows 100% apple juice (red), orange (blue), and apricot (green) reconstituted concentrates (100% juices
in different presentations: (a) made from concentrate, (b) commercial, not from concentrate, (c) nectars, and (d) purees,
modeled from the automatized {1Hwater_presat NMR} data matrix (Figure S2) as a “type of fruit” holistic fingerprint. T2
Hotelling’s ellipses have a 95% confidence level in all cases. For PCA, PLS-, and sPLS-DA holistic fingerprints, the explained
variances are highlighted in parentheses along the axis. (E) For OPLS-DA, the permutation analysis between one predictive
(p1) and two orthogonal (o1, o2) components produced the observed and cross-validated R2X, R2Y, and Q2 coefficients.
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3. Discussion
3.1. Discriminant Analysis of Non-Saccharomyces Large-Scale Alcohol Reductions with Double
Pulsed-Field-Gradient Echo NMR Metabolomics

Modern oenological practices have focused on searching strategies for reducing alco-
hol content in wines, as climate change has induced a significant increase of sugar amount
in musts. With conventional anaerobic conditions carried out with Saccharomyces yeast
strains, fermentation of grapes that have over amounts of sugar content will produce wines
with an increased %alcohol content (Figure 1) that, in turn, are translated into products
with penalized mouthfeel, taints, and/or flavors, as well as a reduced market consump-
tion and severe tax policies [54]. Among the broad spectrum of viticultural, physical,
and microbiological processes recently reported for alcohol reductions, the concatenated
use of non-Saccharomyces yeast strains to, first, aerobically sequester the excess of sugar
content by respiration by the use of anaerobic Saccharomyces strains for final fermenta-
tion has gained importance [55,56]. The methods comprising the use of several non-
Saccharomyces yeast strains for assimilating musts’ sugars to produce wines with reduced
alcohol content and appropriate sensorial feelings have been extensively reported at lab,
medium, and pilot scales [57–59] but scarcely developed at the industrial scale [60].

Herein, we show a set of novel NMR applications to evaluate different fermentation
schemes related to alcohol reductions in a large-scale regime. First, q-1H NMR [46] evalu-
ates alcohol reductions reached with a large-scale co-inoculation with Candida zemplinina,
with further anaerobic fermentation with Saccharomyces cerevisiae, as well as a large-scale
fermentation with a mixed strain containing Saccharomyces uvarum and Saccharomyces
cerevisiae ex ph. r. bayanus (from now on called Saccharomyces Bayanus ex uvarum yeast;
see Materials and Methods), with respect to a standard fermentation carried out with
Saccharomyces cerevisiae at the same large-scale conditions. Expected alcohol reductions
within a range of 1% were obtained for wines fermented with Candida zemplinina and
Saccharomyces Bayanus ex uvarum from Cabernet Sauvignon grapes obtained from a 2020
harvest. %Alcohol content and %alcohol reduction measured with q-1H NMR (Figure 1A)
were in agreement with the data measured with the standard densitometry method
(45◦ tilted-lined histograms; Figure 1C) that was, in turn, used to measure the large-scale al-
cohol reduction efficiency from 2018 (dotted histograms; Figure 1C) and 2019 (horizontally
lined histograms; Figure 1C) essays.

q-1H NMR serves, in turn, as the starting point to implement the Double Pulsed-
Field-Gradient Echo experiment (Figure 2, top). Taking the same spectral width (13 ppm),
transmitter frequency offset (4.5 ppm), and π/2 nutation frequency optimized values for
broadband hard pulses (10.55 µs @ 24 watts; see Figure S3) as for q-1H NMR allows im-
plementing the optimized conditions of the REBURP selective π refocusing band-selective
uniform response pure-phase pulse. Selective excitation of the chemical shift range com-
prising wine aromatic 1H spin systems (5.5–11 ppm) with the REBURP-refocusing pulse
during the echo period includes optimal REBURP pulse lengths (1900 ms), power levels
(0.223 watts), and irradiation bandwidths (3360 Hz) values. The latter is defined in terms of
a frequency offset of the shaped pulse, defined at +2300 Hz with respect to the carrier fre-
quency at 4.5 ppm (i.e., at 8.35 ppm (see Materials and Methods and the REBURP excitation
profile obtained with NMR simulations; Figure S4). 1H-DPFGE spectra (Figure 2D) notably
increases the signal-to-noise ratio of aromatic spin systems (S/N = 68.72 obtained with an
optimized receiver gain of 203; see also Figure S5) with respect to the standard q-1H direct
polarization NMR spectrum (S/N = 33.59 obtained with an optimized receiver gain of 1;
Figure 2A and Figure S5), a {1Hwater_presat NMR}-1D single-pulse NOESY spectrum with
an off-resonance shaped-pulse for water and ethanol multi-presaturation during both the
relaxation delay and mixing times (S/N = 10.3 obtained with an optimized receiver gain of
40.3; Figure 2B and Figure S5), and a {1Hwater_presat NMR} spectrum with identical condi-
tions as in the former case but with an additional continuous-wave decoupling module to
eliminate intense 13C satellites of ethanol signals (S/N = 15.23 obtained with an optimized
receiver gain of 25.4; Figure 2C and Figure S5). A clear advantage of the DPFGE experiment
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in oenological NMR spectroscopy is that the selective refocusing of the aromatic chemical
shift range (5.5–11 ppm, 3360 Hz) with an efficient defocusing of the water-to-ethanol
hydroalcoholic resonances permits the use of maximal receiver gain values that produces a
signal-to-noise ratio that reveals novel broad 1H aromatic resonances strongly related to
complex polyphenols. However, their targeted analysis will be elsewhere published by
reporting the advantages of implementing DPFGE multidimensional NMR spectroscopy.
Currently, the discriminant capacity of the novel DPFGE NMR data matrix (Figure S1) was
presented to discriminate between Cabernet Sauvignon wines fermented at specific large-
scale conditions (See Results and Materials and Methods), whereas the data dimensionality
of said DPFGE NMR outliers was obtained with an Intelligent Binning Method [61], in turn
stressed with gray boxes in Figure S1.

Both unsupervised (Figure 3A) and supervised (Figure 3B–D) multivariate statistical
nontargeted analyses of the binned DPFGE NMR data matrix are schemed in Figure 3.
An unsupervised principal component analysis is generally used to organize the NMR
data matrix and determine correlations between selected factors (large-scale fermentation
scheme) and outliers (discriminant DPFGE NMR resonances). First, the most significa-
tive Principal Components (PC1 = 81.6% and PC2 = 9.1%) with a 90.7% variance of the
unsupervised PCA (Figure 3A) does not allow significant discriminations between Caber-
net Sauvignon wines fermented with Saccharomyces cerevisiae (blue T2 Hotelling’s ellipses
with a 95% confidence level), Candida zemplinina (red T2 Hotelling’s ellipses with a 95%
confidence level), and Saccharomyces bayanus ex uvarum (green T2 Hotelling’s ellipses with
a 95% confidence level) yeast strains. Consequently, supervised MSA methods were ap-
plied, looking forward to increasing the discriminant capacity of the DPFGE data matrix.
In contrast to the PCA, supervised PLS-DA (Figure 3B) provides discrimination between
standard Saccharomyces cerevisiae (blue T2 Hotelling’s ellipses with a 95% confidence level) and
non-Saccharomyces yeast strains used for large-scale alcohol reductions (Candida zemplinina,
with red T2 Hotelling’s ellipses defining a 95% confidence level and Saccharomyces bayanus
ex uvarum, with green T2 Hotelling’s ellipses defining a 95% confidence level), with the
most significative score plots (PC1 = 81.5% and PC2 = 6.0%) and an overall 87.5% variance.
Interestingly, the DPFGE NMR data matrix’s discriminant capacity between conventional
and alcohol reduction fermentation schemes is also represented with the sPLS-Discriminant
Analysis (Figure 3C), whereas, with a sparse number of variables of the DPFGE data di-
mensionality that produce a 60% overall variance by considering the most representative
PC1 (37.6%) and PC2 (22.4%) score plot components, discriminations between Cabernet
Sauvignon fermentations with standard Saccharomyces cerevisiae and non-Saccharomyces
yeast strains for alcohol reductions are affordable. Finally, OPLS-DA permits obtaining
optimal information from the dataset by identifying a more refined multivariate subspace
for maximum group separations by applying Monte-Carlo cross-validations with a set
of partitions per number of permutations. OPLS-DA modeling was applied to obtain
improved separations amongst used yeast strains that allowed pairwise comparisons of
discriminative features between fermentation processes. Discriminations between Caber-
net Sauvignon wines fermented with Saccharomyces cerevisiae (blue T2 Hotelling’s ellipses
with a 95% confidence level), Candida zemplinina (red T2 Hotelling’s ellipses with a 95%
confidence level), and Saccharomyces bayanus ex uvarum (green T2 Hotelling’s ellipses with
a 95% confidence level) yeast strains by a supervised OPLS-DA discriminative analysis
are highlighted in Figure 3D, whereas the permutation test with one predictive and three
orthogonal components revealed the high statistical discriminant capacity of the DPFGE
NMR outlier when analyzed with a supervised orthogonal projection to the latent structures
discriminant model: R2X: 0.905, R2Y: 0.9896, and Q2: 0.9844 (Figure 3E).

A particular limitation of the presented DPFGE acquisition approach must be taken
into consideration. Selective excitation of any desired chemical shift range with the RE-
BURP refocusing pulse during an echo period is effective over an irradiation bandwidth
with respect to a selected frequency offset of the shaped pulse, as above stressed. Said
frequency offset of the REBURP selective pulse is, in turn, defined with respect to the
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transmitter frequency offset (4.5 ppm in the present work), whereas, in several reports,
is nevertheless defined at the center of the isotropic chemical shift of the water signal
(4.7 ppm at standard temperature and buffered conditions). Special care must be taken
when known instrumental distortions occur, such as radiation damping effects [62],
that typically shifts water resonances out of the expected chemical shift value, which
can severely affect the efficiency of the REBURP selective irradiation if the frequency offset
of the shaped pulse is defined with respect to the center of the water signal. As known,
radiation damping effects are stronger at 600 MHz or higher magnetic fields and the use
of cryoprobes. In summary, the REBURP selective excitation efficiency during a DPFGE
experiment might be severely hampered by offset inhomogeneities.

3.2. Discriminant Analysis between “Type of Fruit” and “Type of Juice” in Different 100% Apple,
Orange, and Apricot Beverages with Automatized {1Hwater_presat NMR} Metabolomics

As with the DPFGE NMR data matrix (Figure S1), the data dimensionality of au-
tomatized {1Hwater_presat NMR} juice outliers are obtained with an Intelligent Binning
Method [61], which was applied to the full chemical shift range of juice NMR spectra
(see gray buckets for the aromatic moiety in Figure S2).

Unsupervised (Figures 4A and 5A) and supervised (Figure 4B–D and Figure 5B–D)
multivariate statistical nontargeted analyses of the binned {1Hwater_presat NMR} data matrix
were applied for determining correlations between selected factors (type of fruit and type
of juice in apple, apricot, and orange beverages) and outliers (discriminant {1Hwater_presat
NMR} shifts). The unsupervised PCA (Figure 4A) for fruit beverages gives the most sig-
nificant Principal Components (PC1 = 78.2% and PC2 = 15.7%) with a 93.79% variance.
It enables to make significant discriminations between orange (blue T2 Hotelling’s ellipses
with a 95% confidence level), apple (red T2 Hotelling’s ellipses with a 95% confidence
level), and apricot (green T2 Hotelling’s ellipses with a 95% confidence level) juice bev-
erages. Supervised MSA methods are applied in an attempt to perform the discriminant
capacity of {1Hwater_presat NMR} data matrix. Supervised PLS-DA (Figure 4B) provides
comparable discriminations to PCA amongst apple, apricot, and orange beverages by
analyzing the score plots (PC1 = 65.2% and PC2 = 28.3%) and its overall 93.5% variance.
Furthermore, the {1Hwater_presat NMR} data matrix’s discriminant capacity between the
type of fruit in juice analyses is also represented with the sPLS-Discriminant Analysis
(Figure 4C). Discriminations between apple, apricot, and orange fruit beverages are as
well-affordable with a sparse number of variables of the {1Hwater_presat NMR} data dimen-
sionality that produce a 58.5% overall variance by considering the most representative PC1
(37.3%) and PC2 (21.2%) score plot components. Finally, OPLS-DA modeling is applied for
obtaining discriminations between the type of fruit within analyzed beverages (Figure 4D).
The permutation test with one predictive and two orthogonal components reveals high
statistical discriminant capacity of the {1Hwater_presat NMR} outlier when analyzed with a
supervised orthogonal projection to latent structures discriminant model: R2X: 0.752, R2Y:
0.9931, and Q2: 0.9928 (Figure 4E).
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Figure 5. Score plots of the unsupervised principal component (A) and supervised standard partial (PLS-DA) (B), sparse
(sPLS-DA) (C) least square, and orthogonal projections to latent structures discriminant analysis (OPLS-DA) (D). It shows
commercial nonconcentrated juice (red); concentrated juice (green); nectar (blue); and puree (cyan) fruit drinks (apple,
apricot, and orange), modeled from the automatized {1Hwater_presat NMR} data matrix (Figure S2) as the “type of juice”
holistic fingerprint. T2 Hotelling’s ellipses have a 95% confidence level in all cases. For PCA, PLS-, and sPLS-DA holistic
fingerprints, the explained variances are highlighted in parentheses along the axis. (E) For OPLS-DA, a permutation
analysis between one predictive (p1) and five orthogonal (o1, o2, o3, o4, and o5) components produced the observed and
cross-validated R2X, R2Y, and Q2 coefficients.
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Figure 5 comprises MSA of commercial nonconcentrated juice (red score plots), con-
centrated juice (green score plots), nectar (blue score plots), and puree (cyan score plots and
T2 Hotelling’s ellipse with a 95% confidence level) fruit drinks. An unsupervised analysis
shows that the most significant Principal Components (PC1 = 78.2% and PC2 = 15.7%)
do not produce significant discriminations with a 93.79% PCA variance (Figure 5A).
The supervised MSA methods are applied for performing the discriminant capacity of
{1Hwater_presat NMR} data matrix towards the “type of juice” discriminant factor. Super-
vised PLS-DA (Figure 5B) provide as well limited discriminations amongst juices in differ-
ent presentations: (a) made from concentrate, (b) not from concentrate (commercial; see
Table 1), (c) nectars, and (d) purees, with the most significant score plots (PC1 = 51% and
PC2 = 42.4%) and an overall 93.4% variance. In clear contrast, the {1Hwater_presat NMR}
data matrix’s discriminant capacity between type of juice analysis is notably enhanced
with the sPLS-Discriminant Analysis (Figure 5C). The sPLS-Discriminant Analysis with a
sparse number of variables of the {1Hwater_presat NMR} data dimensionality produced 33.1%
overall variance by considering the most representative PC1 (24.1%) and PC2 (9.0%) score
plot components, enabling clear discriminations between juices made from concentrate,
commercial not from concentrate, nectars, and purees. Finally, OPLS-DA modeling was
applied for obtaining discriminations between the type of juice in apple, apricot, and or-
ange beverages (Figure 5D). The permutation test with one predictive and five orthogonal
components revealed an acceptable statistical discriminant capacity of the {1Hwater_presat
NMR} outlier when analyzed with a supervised orthogonal projection to latent structures
discriminant model: R2X: 0.9441, R2Y: 0.9923, and Q2: 0.9901 (Figure 5E).

The juice automatized {1Hwater_presat NMR} data matrix possesses a fair set of dis-
criminant features (vide infra) for clearly distinguish between orange, apple, and apri-
cot “type of fruit” analyzed beverages with all herein used MSA approaches, whereas
even the unsupervised PCA produces a discriminant holistic fingerprint amongst batches
(PC1 = 78.2% and PC2 = 15.7% with a 93.79% variance). Said discriminant capacity of the
automatized {1Hwater_presat NMR} data matrix is confirmed in the rest of supervised MSA
approaches and, particularly, with OPLS-DA, whereas a minimal permutation test with one
predictive and two orthogonal components produces a “type of fruit” discriminant holistic
fingerprint between analyzed juice batches, with an acceptability of Q2 = 0.9928. In clear
contrast, the same automatized {1Hwater_presat NMR} data matrix is limited to discriminate
between “type of juices” with unsupervised PCA and supervised PLS-DA (vide supra).
As observed in Figure 5D, OPLS-DA offers an option to discriminate between “type of
juices.” However, the OPLS-DA permutation test with the extensive use of five orthogonal
components per permutation for providing acceptability of Q2 = 0.9901 indicates the forced
way to provide a discriminant model amongst “type of juices” with the use of said impor-
tant number of orthogonal components. Finally, the striking differences between overall
variances obtained with sPLS-DA models for both juice discriminant factors, respectively,
58.5% (“type of fruit”) and 33.1% (“type of juices”), clearly demonstrate the accuracy of
the {1Hwater_presat NMR} data matrix to discriminate between fruits and the limitations to
discriminate between type of juices.

The importance of each binned chemical shift from {1Hwater_presat NMR} data matrix
for carrying out “type of fruit” and “type of juice” discriminative analysis with supervised
MSA, is evidenced with PLS-DA loading vectors and OPLS-DA loading p [1] S-plots as a
function of 1H chemical shifts (Figures 6 and 7). In both pairs of loading plots, discriminant
1H shifts (in turn related to specific fruit beverage metabolites) that define the variable
importance in “type of fruit” (Figure 6) and “type of juice (Figure 7) discriminant models
belong to a chemical shift range between 2.63 to 5.59 ppm and 1.02–1.3 ppm (orange regions
in Figures 6 and 7). In agreement with previous reports, said chemical shift regions contain
resonances of juice relevant metabolites, such as anomeric glucose (5.17 and 4.7 ppm)
spin systems, as well from sucrose (c.a. 5.3 ppm and 4.2 ppm), fructose (4.1 ppm), malic
acid (4.45 and 2.75 to 2.85 ppm), succinic acid (2.65 ppm), and ethanol (1.1 ppm) proton
shifts [23,53,63]. Table 1 shows the relevant identified metabolites and their quantification.
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In the case of apple juice, a targeted analysis (Table 1) shows most values at acceptable
ranges [49], except the magnesium content, which is slightly low compared with the AIJN
value. Moreover, the apple concentrated beverage presents values for malic acid, glucose,
fructose, and alanine out of AIJN range by more than 10% due to defect. The orange
concentrates show six parameters out of AIJN range, with a downward deviation minor or
equal to 10% comprising glucose and 4-aminobutanoic acid, and with an upward deviation
minor or equal to 10% are sucrose, alanine, proline, and the sucrose percentages that have
greater deviations. Finally, in the apricot concentrate, malic acid shows a slightly low
value, but alanine concentration has a deviation greater than 10% of the lower limit of the
AIJN range.
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4. Materials and Methods
4.1. Materials
4.1.1. Cabernet Sauvignon Wines Fermented at Different Large-Scale Conditions

Cabernet Sauvignon grape varieties (Vitis vinifera L.) were fermented at the “Casa
Madero” winery in Parras, Coahuila, Mexico at a large-scale regime for obtaining approx-
imately 1950 L of wine, using c.a. 3000 kg of raw grapes, in three consecutive years of
vintage (2018, 2019, and 2020). The yeast strain Saccharomyces cerevisiae used as the control
comprised the branded D254TM industrial wine yeast (Lallemand, Montreal, QC, Canada).

Large-scale alcohol reductions were carried out with two different procedures:
A first-step co-inoculation with Non-Saccharomyces Candida zemplinina (Enantis Ferm)

yeast strain, followed by a later inoculation with a D254TM industrial wine yeast
Saccharomyces cerevisiae (Lallemand, Montreal, QC, Canada).
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Inoculation with a mixed strain containing Saccharomyces uvarum and Saccharomyces
cerevisiae ex ph. r. bayanus (herein mentioned as Saccharomyces Bayanus ex uvarum) yeast
strain (EnartisFerm ES U42).

Microbiological and oenological characteristics of the Non-Saccharomyces Candida
zemplinina (Enantis Ferm) and hybrid Saccharomyces uvarum with Saccharomyces cerevisiae ex
ph. r. bayanus yeast strains are reported in Tables S1 and S2. Brix degrees of raw grape juices,
as well as Cabernet Sauvignon wine pH, total acidity, and free sulfites of each 2018–2020
large-scale fermentation, are reported in Figure S5.

4.1.2. Apple, Orange, and Apricot Juice Rroducts: (a) Made from Concentrate, (b) Not from
Concentrate, (c) Nectars, and (d) Purees

All fruit products herein analyzed comprising 100% apple juice not from concentrate
(del ValleTM), apple nectar (JumexTM), 100% apple puree (JumexTM), 100% apricot puree
(JumexTM), 100% orange juice not from concentrate (JumexTM), orange nectar (JumexTM)
and 100% orange puree (JumexTM) were commercially obtained.

4.2. Methods
4.2.1. NMR Spectroscopy of the Cabernet Sauvignon Wine Samples Fermented with
Saccharomyces Cerevisiae, Candida Zemplinina, and Saccharomyces Bayanus Ex Uvarum
Yeast Strains

For wine batches, 540 µL of wines were dissolved in 60 µL of deuterium oxide solution,
with 99.9% deuteration mixed with 0.05 wt% of 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid
and sodium salt as the internal reference (CAS No. 7789-20-0), and 0.1% of phosphonate
KH2PO4 (CAS No. 7778-70-0) buffer was prepared and pH-adjusted to a value of 3.1.

All wine NMR spectra were recorded at 14.1 Teslas of static magnetic field on a Bruker
600 AVANCE III HD equipped with a 5-mm 1H/D BBO probe head with z-gradient.
The following set of NMR experiments were conducted:

(a) Standard quantitative 1H-one dimensional direct polarization NMR experiments
(q-1H-NMR; Figures 1B and 2A) were carried out for measuring the %alcohol content
and %alcohol reductions reached with Candida zemplinina and Saccharomyces bayanus ex
uvarum yeast strains by previously calibrating the 90◦ hard pulse (10.55 µs @ 23.69 kHz;
see Figure S1) by using 16 transients of 65,536 complex points, having recycling delays of
15 s and with acquisition times of 1723 ms, which produced experimental times of 16 min,
43 s per spectrum. No apodization function was applied during Fourier-Transform.

(b) {1Hwater_presat NMR} (Figure 2B): 1D single-pulse NOESY spectra with an off-
resonance shaped-pulse water-to-ethanol multi-presaturation during the relaxation de-
lay (3 s), mixing times (100 milliseconds), and power level irradiation amplitudes of
1.04 × 10−3 W for solvent multi-suppression. The acquisitions were as follows: 64 tran-
sients were collected into 65,536 complex data points, with acquisition times of 1500 ms
producing an experimental time of 4 min and 30 s.

(c) {1Hwater_presat NMR with continuous wave (CW) decoupling on 13C channel}
(Figure 2C): 1D single-pulse NOESY spectra with an off-resonance shaped-pulse water-
to-ethanol multi-presaturation during both the relaxation delay (3 s) and mixing times
(100 milliseconds). A CW decoupling module to eliminate intense 13C satellites of ethanol
signals and with power level irradiation amplitudes of 2.51 × 10−3 W for solvent multi-
suppression. The acquisitions were as follows: a total of 64 transients were collected into
32,768 complex data points, with acquisition times of 800 ms producing an experimental
time of 4 min and 3 s.

(d) Selective Double Pulsed-Field-Gradient Echo (DPFGE) 1H NMR spectra
(Figures 2D and 3) for the selective excitation of aromatic 1H spin systems (5.5–11 ppm,
3360 Hz). The acquisitions were as follows: from an optimized q-1H NMR with a spectral
width of 13 ppm and a transmitter frequency offset of 4.5 ppm, the pulse sequence schemed
in Figure 2, top was implemented. The REBURP selective π refocusing band-selective
uniform response pure-phase pulse that is flanked by two gradient pulses during an echo
period that allows to exclusively refocus the selected aromatic chemical shift range whilst
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it is simultaneously defocusing the intense water-to-ethanol hydroalcoholic chemical shift
range was calibrated with the aid of the programs Shape tool and NMRSIM (Bruker Biospin;
see Figure S2) in order to selectively excite a frequency range of 3360 Hz from a frequency
offset of the REBURP pulse, defined at +2300 Hz with respect to the carrier frequency at
4.5 ppm that allowed exciting a chemical shift range between 5.5–11 ppm. The pulse
length of the REBURP π pulse was defined at 1900 ms with a power level of 0.223 watts.
The acquisitions were as follows: 64 transients were collected into 262,144 complex data
points, with acquisition times of 3076 ms and recovery delays of 2 s, and produced experi-
mental times per wine batch of 5 min and 24 s.

4.2.2. NMR Spectroscopy of Apple, Orange, and Apricot 100% Juices Made from
Concentrate, Not from Concentrate, Nectars, and Purees

For juice batches, 900 µL of juice were manually mixed with 100 µL of deuter-
ated buffer food type A (H129666) or type B (H129667), depending on the type of fruit.
Juice NMR spectroscopy was carried out in a Bruker Avance III Foodscreener spectrom-
eter (Bruker, Karlsruhe, Germany), operating at 400.13 MHz proton frequency, equipped
with a SampleXpress 5-mm tube autosampler. Automatized {1Hwater_presat NMR} spectra
(Figure S1) comprised a 1D single-pulse NOESY spectra with an off-resonance shaped-pulse
water presaturation during both the relaxation delay (4 s) and mixing times (60 milliseconds)
and with power level irradiation amplitudes of 3.2 × 10−5 W for the solvent suppression.
The acquisitions were as follows: a total of 16 transients were collected into 131,072 complex
data points, with acquisition times of 3984 ms, produced an experimental time of 2 min
and 7 s.

4.2.3. H-NMR Postprocessing and Multivariate Statistical Analysis (MSA)

NMR postprocessing for producing the MSA input variables was carried out as fol-
lows: ppm calibration and manual phase corrections were conducted using Bruker TopSpin
4.0.8 software. Global and intermediate baseline corrections, least-squares or parametric
time warping NMR alignments, variable size bucketing for untargeted profiling, and data
matrix normalization were carried out with NMRProcFlow software [64]. Scaling and
statistical analysis workflow for obtaining the Principal Component (PCA Figures 3A,
4A and 5A); standard (PLS-DA; Figures 3B, 4B and 5B); and sparse partial least-square
discriminant analysis (sPLS-DA; Figures 3C, 4C and 5C), as well as the Orthogonal Pro-
jections to Latent Structures Discriminant Analysis (OPLS-DA; Figures 3D, 4D and 5D)
from the constant sum normalized DPFGE (Figure 3) and automatized {1Hwater_presat
NMR} (Figure 4) data matrix, was developed with MetaboAnalyst 5.0 software [65].
In all cases, T2 Hotelling’s regions depicted by ellipses in score plots of each model defined
a 95% confidence interval [66]. Supervised OPLS-DA was carried out with Monte-Carlo
cross-validations with 10 test partitions per 100 permutations for testing [67]. The OPLS-
DA, R2X, R2Y, and Q2 statistical parameters that defined the quality of each model were
expressed in Figures 3E, 4E and 5E [61].

5. Conclusions

The present work describes the use of unsupervised and supervised multivariate
statistical analyses applied in two different NMR data outliers. First, the use of a double
pulsed field-gradient-echo (DPFGE) NMR methodology, applied for the first time, as a
selective refocusing method of the aromatic frequency range comprised between 5.5 and
10 ppm of the wine samples fermented at different conditions, revealed novel discriminant
resonances. Supervised standard and sparse PLS-DA multivariate statistical treatments
applied in DPFGE matrices produced holistic fingerprints that disentangled between stan-
dard and novel large-scale fermentation schemes designed for obtaining approximately
1% of alcohol reductions. The more robust supervised OPLS discriminant analysis of the
DPFGE NMR data matrices produced a score plot that clearly discriminated each yeast
strain used for the controls (Saccharomyces cerevisiae) and large-scale alcohol reductions
(Candida zemplinina and Saccharomyces Bayanus ex uvarum). A supervised multivariate
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statistical analysis of DPFGE NMR data showed their potential as a milestone in the future
optimizations of large-scale alcohol reductions for the selection of equivalent and even
better yeast strains that can significantly reduce the alcohol content in wines fermented
from grapes affected by climate change. Furthermore, routine unsupervised and extended
supervised PLS-DA, sPLS-DA, and OPLS-DA multivariate analyses were as well-applied
in automatized {1Hwater_presat NMR} outliers for juice analyses. For the “type of fruit”
discriminant analysis, all MSA approaches can easily discriminate between apple, apricot,
and orange raw materials. In contrast, only supervised sPLS-DA and OPLS-DA approaches
produced significant discriminations between commercial nonconcentrated and concen-
trated juices, as well as between nectars and purees. Although automated methods possess
many advantages, mostly for nonexpert users looking forward to “push one button” so-
lutions, nonautomated/nonstandard methods may have the advantage of using robust
NMR pulse sequences or multivariate statistical analyses to obtain more reliable holistic
fingerprints than automated methods.

Supplementary Materials: The following are available online. Figure S1: 1H NMR nutation spec-
tra for the calibration of the 360◦ pulse length (usec) at an amplitude power level of 23.3 kHz
(24 watts) in order to accurately predict the effective 90◦ pulse length needed for quantitative NMR
measurements of the %alcohol content and %alcohol reduction of Cabernet Sauvignon wines with
different large-scale fermentation schemes. Figure S2: Refocusing Band-Selective Uniform Response
Pure-Phase (REBURP) excitation profile (red) from an 8.35-ppm frequency offset of the shaped pulse
optimized for a selective excitation bandwidth of± 1680 Hz (a total of 3360 Hz irradiation bandwidth
from 5.52 ppm to 11.02 ppm) that promotes a selective refocusing of the aromatic chemical shift range
(5.5–11 ppm, 3360 Hz), with efficient defocusing of the water-to-ethanol hydroalcoholic resonances.
Black: The Fourier-Transform (FT) of the Mz magnetization component excited with the REBURP
optimized profile. Figure S3. Signal-to-noise ratio (S/N) calculations for q-1H-NMR direct polar-
ization experiment (A, S/N = 33.59 obtained with an optimized receiver gain of 1); {1Hwater_presat
NMR}-1D single-pulse NOESY spectrum with an off-resonance shaped-pulse for water and ethanol
multi-presaturation during both relaxation delay and mixing times (B, S/N = 10.3 obtained with
an optimized receiver gain of 40.3); {1Hwater_presat NMR} spectrum with identical conditions as in
B but with an additional continuous-wave decoupling module to eliminate intense 13C satellites of
ethanol signals (C, S/N = 15.23 obtained with an optimized receiver gain of 25.4); and 1H-DPFGE
NMR experiments (D, S/N = 68.72 obtained with an optimized receiver gain of 203) acquired at
equivalent conditions of spectral width (13 ppm), transmitter frequency offset (4.5 ppm), recovery
delays (2 s), and the number of transients (64 scans). Figure S4. Expansion of the aliphatic region of
the juice automatized {1Hwater_presat NMR} data matrix, whereas the intelligent binning algorithm of
1H resonances is highlighted with gray boxes, such as in Figure 4 of the main text, with aromatic 1H
spin systems. Figure S5: Brix degrees of raw grape juices, as well as Cabernet Sauvignon wines, pH,
total acidity (g/L) and free sulfites (mg/L) of large-scale fermentation carried out in 2018 (blue), 2019
(red), and 2020 (green) year of vintages. Table S1. Microbiological and oenological characteristics
of the Non-Saccharomyces Candida zemplinina (Enantis Ferm) yeast strain used for alcohol content
reductions. Table S2. Microbiological and oenological characteristics of a mixed strain contain-
ing the Saccharomyces uvarum and Saccharomyces cerevisiae ex ph. r. bayanus (herein mentioned as
Saccharomyces Bayanus ex uvarum) yeast strains used for alcohol content reductions.
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