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Background: A diabetic foot ulcer (DFU) is a serious, long-term condition associated with a significant risk of disability and 
mortality. However, research on its biomarkers is still limited. This study utilizes bioinformatics and machine learning methods to 
identify immune-related biomarkers for DFU and validates them through external datasets and animal experiments.
Methods: This study used bioinformatics and machine learning to analyze microarray data from the Gene Expression Omnibus 
(GEO) database to identify key genes associated with DFU. Animal experiments were conducted to validate these findings. This 
research employs the datasets GSE68183 and GSE80178 retrieved from the GEO database as the training dataset for building a gene 
machine learning model, and after conducting differential analysis on the data, this study used package glmnet and package e1071 to 
construct LASSO and SVM-RFE machine learning models, respectively. Subsequently, we validated the model using the training set 
and validation set (GSE134431). We conducted enrichment analysis, including GSEA and GSVA, on the model genes. We also 
performed immune functional analysis and immune-related analysis on the model genes. Finally, we conducted immunohistochemistry 
(IHC) validation on the model genes.
Results: This study identifies GSTM5 as a potential immune-related key target in DFU using machine learning and bioinformatics 
methods. Subsequent validation through external datasets and IHC experiments also confirms GSTM5 as a critical biomarker for DFU. 
The gene may be associated with T cells regulatory (Tregs) and T cells follicular helper, and it influences the NF-κB, GnRH, and 
MAPK signaling pathway.
Conclusion: This study identified and validated GSTM5 as a biomarker for DFU. This finding may potentially provide a target for 
immune therapy for DFU.
Keywords: bioinformatics, machine learning, diabetic foot ulcer, LASSO, SVM-RFE, GSTM5

Introduction
Patients with newly diagnosed diabetes or a history of diabetes who develop peripheral arterial disease, peripheral 
neuropathy, infection, ulcers, neuro-osteoarthropathy, gangrene, or amputation of any kind in the foot are considered to 
have diabetes-related foot diseases. Diabetic foot ulcer (DFU) is one of the most serious complications. Patients with 
diabetic foot ulcers usually have one or more risk factors, among which diabetic peripheral neuropathy and peripheral 
arterial disease play important roles.1 DFU represents one of the most catastrophic outcomes of diabetes and stands as 
a considerable healthcare challenge. It imposes serious economic, physical, and psychological burdens on patients.2 

Extensive alterations related to diabetes, such as neuropathy and vascular conditions, frequently worsen the advancement 
of DFU.3 The lifetime occurrence of DFU among individuals with diabetes varies between 15% and 25%. Furthermore, 
in cases where there is a prior history of foot injuries or infections, the occurrence of DFU in diabetic patients rises to 
a range of 19% to 34%, with approximately 17% of these cases ultimately necessitating amputation.4 In the year 2019, 
worldwide direct healthcare costs associated with diabetes amounted to around $700 billion. Projections suggest that by 
2030, these expenses are anticipated to rise to $825 billion, with the medical costs linked to DFU constituting a third of 
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the overall expenditure for managing diabetes.5 The development of DFU involves a notably intricate process, frequently 
triggered by distal neuropathy and peripheral vascular disorders in the lower limbs. In over half of DFU instances, 
infections are also present, adding complexity and difficulty to the treatment process.6 Therefore, it is crucial to study 
new biomarkers of DFU and inhibit the development of chronic wounds in order to improve treatment efficiency and 
prognosis for DFU patients.7

The slow onset and delayed resolution of inflammatory response are among the major factors contributing to the 
difficulties in wound healing.8 Immune cell infiltration is also a pivotal factor in the onset and progression of DFU. When 
viewed from a molecular standpoint, the process of wound healing takes place following a disruption in the skin’s 
protective barrier. This process is typically facilitated by growth factors and cytokines released by specialized cells that 
become activated as part of the immune response.9 Sawaya et al observed that in cases of DFU, the transcription factors 
FOMI1 and STAT3, which support the survival of immune cells, are suppressed. This ultimately hinders the process of 
wound healing in diabetic patients.10 Through this study, our objective is to clarify the potential of immune-related 
biomarkers in enhancing the effectiveness of DFU treatment.

The high-throughput transcriptome sequencing data and clinical annotations provided by the DFU Initiative enable us to 
investigate the changes in transcriptional patterns and associated molecular pathways relevant to DFU in biological research.11 

Several research investigations have made use of gene expression data extracted from the Gene Expression Omnibus (GEO) to 
explore the molecular markers associated with the progression of DFU.7,12 Due to the progress in high-throughput sequencing 
technologies and the integration of machine learning in the medical field, novel methodologies have surfaced for examining 
molecular targets in diverse diseases.11,13 Through the application of bioinformatics techniques, we acquired a gene expres-
sion dataset for DFU from the GEO database. In order to pinpoint biomarkers linked to DFU, we employed two machine 
learning algorithms: LASSO and SVM-RFE. Following that, candidate genes strongly associated with immune infiltration 
were validated using a separate, independent validation dataset. The glutathione S-transferase (GST) gene family is one of the 
major xenobiotic detoxification enzymes that can protect cells from the harmful effects of toxic drugs and environmental 
electrophilic agents. GSTM5 has been found to be dysregulated in various tumors.14 However, there is no relevant research 
indicating its role in DFU. Therefore, in this study, we constructed a mouse model of DFU and validated the GSTM5 gene. The 
flowchart of this study is shown in Figure 1.

Materials and Methods
Raw Data
Retrieval of microarray data on mRNA expression profiles related to DFU from the GEO database. This study utilized 
the GEO datasets GSE68183, GSE80178, and GSE134431, with their respective platform files GPL16686 and 
GPL18573. GSE68183 and GSE80178 are used as training datasets, while GSE134431 is used as a validation set. 
Detailed information about the aforementioned datasets can be found in Table 1.

Data Filtering and Processing
Transform the downloaded probe matrix into a gene expression matrix by referencing the probe annotation file. In cases where 
a gene corresponds to multiple probes, calculate the mean value of those probes to represent the ultimate expression level of 
the gene.15 After standardizing datasets GSE68183 and GSE80178, the SVA package is used to address batch effects between 
GSE68183 and GSE80178. Principal component analysis (PCA) is employed to evaluate the removal of batch effects. 
Subsequently, the limma package is utilized to analyze the differential expression matrix comparing the control group and 
DFU. To identify genes related to immune infiltration in DFU patients, we employ the criteria of |log FC| > 1 and an adjusted 
p-value < 0.0516 as thresholds for detecting differentially expressed genes (DEGs).

Machine Learning
The LASSO method is used to identify essential features from large-scale data and screen gene models. The “glmnet” 
R package is utilized to implement this method in the process.17 SVM-RFE is implemented through the “e1071”18 

R package and has been widely used as an effective feature selection algorithm for the selection of central diagnostic 
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genes.19 The genes derived from the aforementioned two machine learning models can be mapped and employed for 
subsequent analysis. The Receiver Operating Characteristic (ROC) curve evaluates the diagnostic utility of these 
biomarkers.

Pathway and Functional Enrichment Analysis
Apply Kyoto Encyclopedia of Genes and Genomes (KEGG)20 and Gene Ontology (GO)21 enrichment analysis using the 
R package clusterProfiler.22 Additionally, we performed Gene Set Enrichment Analysis (GSEA) to identify potential 

Figure 1 Research framework.

Table 1 Dataset Information

Dataset Platform Count DFU Control

GSE68183 GPL16686 6 3 3
GSE80178 GPL16686 12 9 3

GSE134431 GPL18573 21 13 8
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pathways.23 Gene Set Variation Analysis (GSVA) is an unsupervised, non-parametric analytical technique primarily 
employed to evaluate the enrichment of gene sets in sequencing data. GSVA enables the assessment of potential 
alterations in pathway activity within each individual sample.24

Immunocyte Infiltration Analysis
The relative abundance of 22 lymphocyte subtypes in each DFU and normal sample was calculated based on the 
CIBERSORT algorithm and the immune cell LM22 gene set.25 The Wilcoxon test was used to compare the differences in 
22 immune cell types between DFU and normal samples.

Correlation Analysis Between Diagnostic Biomarkers and Immune Cells
Performing Spearman correlation analysis to evaluate the correlation between diagnostic biomarkers and infiltrating 
immune cells.26

Establishment and Treatment of DFU Mouse Model
Male C57BL/6 mice of adult age (21–25 g, 8–10 weeks old) were procured from Shanghai Model Organisms Center Inc. 
These mice were accommodated at the Experimental Animal Center of Shanghai University of Traditional Chinese 
Medicine in an environment that met specific pathogen-free standards. They were maintained on a 12-hour light/dark 
cycle and provided unrestricted access to both water and food.27 The mice were allocated randomly into distinct groups 
(n=4), which included the non-diabetic group treated with phosphate-buffered saline (PBS), and the DFU group. For 
a duration of three weeks, the DFU group of mice were fed a high-fat diet constituting 60% of their total calorie intake 
(FB-D12451, obtained from Wuxi Fan Bo Biotechnology Co., Ltd.), and within one week, they were subjected to 
intraperitoneal injections of STZ (40 mg/kg, Cat. No. 2196GR001, BioFRoxx).28 Until the level of fasting blood glucose 
surpassed 16.7 mmol/L, it was classified as type 2 diabetes.29 Following that, a full-thickness skin wound measuring 
1*1cm2 in size, penetrating down to the fascial layer, was generated on the dorsal surface of the mouse by lifting the skin 
with forceps.30 The wound was covered with a 1cm2 gauze saturated with a wound dressing solution and replaced daily. 
To assess the condition of the dorsal wounds in mice, photographs of the wounds were taken on days 0, 7, and11 using 
a digital camera (Nikon, To to).31 Quantification of wound closure rate was performed using ImageJ software (Bethesda, 
MD) and calculated as follows: t-t0/t0 × 100% (t: evaluation of wound healing, t0: initial injury).27

Hematoxylin and Eosin and Masson Staining
The wound tissue was preserved in 4% paraformaldehyde (PFA, catalog number P0099, Beyotime) for 48 hours. 
Following standard paraffin embedding and sectioning procedures, the wound tissue underwent staining with hematox-
ylin and eosin (H&E, catalog number C01105M, Beyotime, China) as well as Masson’s trichrome stain (catalog number 
G1340, Solarbio Life Sciences, China). The stained tissues were subsequently examined utilizing a digital slide scanning 
system (point M8, Precipoint).

Immunohistochemistry Staining
The ulcerated tissues from both groups of mice were gathered and preserved in 4% paraformaldehyde for a duration of 24 
hours. Subsequently, these tissues were encased in paraffin wax and later sliced into sections with a thickness of 5μm. 
Immunohistochemistry (IHC) analyses were conducted on these paraffin-embedded sections. The sections were subjected 
to an overnight incubation at 4°C with GSTM5 antibodies. Afterward, the slides designated for IHC staining underwent 
incubation with the secondary antibody (catalog number GB23303, Servicebio, diluted at 1:200). Visualization was 
achieved using DAB chromogen, followed by counterstaining with hematoxylin. Images were recorded using an optical 
microscope (Olympus BX41, Shanghai, China).

Statistical Analysis
Statistical assessment of disparities in gene expression between the two groups was conducted utilizing the ggpubr 
package within R software. All gene expression data and statistical analyses were executed using R version 4.3.1. If the 
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data conforms to a normal distribution, a two-sample independent t-test is employed to compare the two groups. In cases 
where the data does not conform to a normal distribution, the Wilcoxon test is utilized for between-group comparisons. 
A p-value below 0.05 is regarded as statistically significant.

Ethics Approval and Consent to Participate
All animal experiments were approved by the Review Board of Animal Ethics Committee of Shanghai University of 
Traditional Chinese Medicine (Approval No.: PZSHUTCM220711028). The study is reported in accordance with 
ARRIVE guidelines (https://arriveguidelines.org). The animal experimentation in this study was conducted in full 
compliance with the National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications 
No. 8023, revised 1978).

Results
GEO Data Processing
We have integrated two DFU datasets, GSE68183 and GSE80178, which collectively contain 6 normal skin samples and 
12 DFU samples. As shown in Figure 2, the gene expression levels and PCA of each sample before (Figure 2A) and after 
(Figure 2B) eliminating batch effects.

Identifying DEGs Results in DFU
Differential analysis results indicate that there are a total of 234 DEGs in this study, with 59 upregulated and 175 
downregulated. DEGs can be visualized through heatmaps (Figure 2C) and volcano plots (Figure 2D).

Screening Disease-Specific Genes
In this study, we employed LASSO and SVM-RFE models to identify DFU feature genes. In the LASSO model, the λ 
value of 7 was selected as the optimal variable selection criterion, resulting in the identification of genes LGR5, GSTM5, 
LCE3D, TRMT1L, XDH, and SRY (Figure 3A and B) as the feature genes. Based on the SVM-RFE algorithm, genes 
GSTM5, CBR4, KLHDC1, ZBED8, ENPP5, ZNF248, CCDC15, TRMT1L, MATN2, CSTA, TMEM45B, NRN1, and 
FLRT2 (Figure 3C and D) were identified as the feature genes. Subsequently, the above two gene models were mapped, 
resulting in the final identification of genes GSTM5 and TRMT1L (Figure 3E).

Analysis Disease-Specific Genes
In the training set, the violin plot reflects the expression levels of genes GSTM5 and TRMT1L in the DFU group and the 
control group. As shown in the figure, both genes GSTM5 (Figure 4A) and TRMT1L (Figure 4B) are down-regulated in 
the DFU group. The line graph illustrates the expression profiles of genes GSTM5 and TRMT1L across various samples 
(Figure 4C). Furthermore, the ROC curve demonstrates that both genes GSTM5 (Figure 4D) and TRMT1L (Figure 4E) 
have good diagnostic performance.

In the validation group, only GSTM5 (Figure 5A) showed significant down-regulation in the DFU group. However, 
there were no differences observed between the two groups in terms of the TRMT1L gene (Figure 5B). Furthermore, the 
ROC curve also indicates that the diagnostic performance of GSTM5 (Figure 5C) is superior to TRMT1L (Figure 5D).

Analysis of Gene Differential Expression and Enrichment Analysis in the Model
Based on the high and low expression of GSTM5, we conducted differential analysis of the genes in the training set. The 
results of the differential analysis were visualized as a heatmap (Figure 6A) and correlation heatmap (Figure 6B). 
Enrichment analysis indicates that the genetic biological processes of differentially expressed genes are concentrated in 
cell-substrate adhesion (GO:0031589), epithelial cell proliferation (GO:0050673), and negative regulation of leukocyte 
apoptotic process (GO:2000107) (Figure 6C). KEGG enrichment analysis indicates that the differentially expressed genes 
are primarily involved in NF-κB signaling pathway (hsa04064), Nitrogen metabolism (hsa00910), and GnRH signaling 
pathway (hsa04912) (Figure 6D). These results indicate that GSTM5 is closely associated with inflammation. GSEA 
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analysis indicates that in the high-expression group of GSTM5, butanoate metabolism, complement and coagulation 
cascades, and drug metabolism cytochrome p450 are active (Figure 6E). In the low-expression group of GSTM5, insulin 
signaling pathway, MAPK signaling pathway, and neurotrophin signaling pathway are active (Figure 6F). GSVA analysis 
also indicates a close association between GSTM5 and terpenoid backbone biosynthesis and complement and coagulation 
cascades (Figure 6G).

Analysis of Immune Function and Immune Cell Infiltration
The immune function analysis suggests that GSTM5 may have a certain relationship with B cells and Cytolytic activity 
(Figure 7A). In DFU samples, B cells naive and Dendritic cells activated are higher compared to the control group, while 
T cells CD4 memory resting, T cells regulatory (Tregs), T cells follicular helper, Macrophages M1, and Mast cells resting are 
lower compared to the control group (Figure 7B). The distribution of immune cells and the PCA analysis are shown in the 
Figure 7C. The distribution of immune cells is shown in Figure 7D. Further investigation of the relationship between 22 
immune cells in all samples revealed that Macrophages M1 and T cells CD4 memory resting show a strong positive 
correlation, while B cells naive and Macrophages M2 exhibit a strong negative correlation (Figure 7E). The correlation 
analysis between gene A and immune cells is shown in Figure 8A. We found that GSTM5 is significantly positively correlated 
with T cells regulatory (Tregs) (r  = 0.66, p=0.019) (Figure 8B) and T cells follicular helper (r  = 0.59, p=0.041) (Figure 8C).
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Figure 2 Dataset preprocessing and difference analysis. (A) Principal component analysis (PCA) analysis before batch effect removal; (B) PCA analysis after batch effect 
removal; (C) Heatmap of differential analysis between diabetic foot ulcer (DFU) group and control group; (D) Volcano plot of differential analysis between DFU group and 
control group.
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Gene Expression in DFU
The results revealed that in the control group, the scabs on the wound fell off, the wound size decreased, and there was 
redness. In the DFU group, the wound surface appeared yellow-brown scabs with a small amount of thin purulent discharge 
(Figure 9A), and the line graph of wound size measurement is found in Supplementary Material 1. Histological staining with 

Figure 3 Construction of machine learning models. (A) Construction of Lasso model; (B) Variation of hub gene coefficients with different logarithmic λ values; (C) and (D) 
Construction of model SVM-RFE; (E) Mapping between Lasso and SVM-RFE models.
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HE (Hematoxylin and Eosin) and Masson’s trichrome revealed that in the control group, there was epidermal regeneration 
with a small amount of fibroblasts and collagen, and a large number of capillaries in the dermis. In the DFU group, the skin 
appeared thinner with disordered and reduced epidermal cell arrangement, scattered fibroblasts, fewer newly formed blood 
vessels, reduced lumens, and extensive infiltration of inflammatory cells (Figure 9B). In conclusion, these results indicate the 
successful establishment of the DFU model. The IHC results demonstrated that the control group exhibited positive 
expression of GSTM5, while the DFU group showed significant inhibition (Figure 9C).

Discussion
DFU is one of the most common complications of diabetes, causing not only burdens for patients but also posing 
challenges for overall health, nursing practices, and the social environment.32 Patients with diabetes often experience 
weakened immune systems, and when coupled with the vulnerability of the feet as one of the body’s vital organs, 
infections can exacerbate inflammation and ultimately play a role in the onset of DFU.33 This study, from an 
immunological perspective, identified GSTM5 as a potential key target for DFU using machine learning and 
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Figure 6 Differential analysis and enrichment analysis of genes related to GSTM5. (A) Differential analysis heatmap; (B) Correlation analysis heatmap; (C) Differential gene 
GO analysis; (D) Differential gene KEGG analysis; (E) GSEA analysis of downregulated genes; (F) GSEA analysis of upregulated genes; (G) GSTM5-related GSVA analysis.
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bioinformatics methods. The low expression of GSTM5 in both the validation set and animal experiments among the 
DFU group suggests the reliability of the findings in this study.

Based on the conclusions of this study, GSTM5 is significantly underexpressed in DFU tissues, suggesting that it may 
be a potential protective factor in DFU patients. GSTM5 is a member of the Mu class within the glutathione S-transferase 
(GST) family, and these family members are distributed across a 97 kb region on chromosome 1p13.34 The GST gene 
family is one of the major xenobiotic detoxification enzymes, protecting cells from the harmful effects of toxic drugs and 
environmental electrophiles.35,36 Being a member of the glutathione S-transferase family, GSTM5 is linked to multiple 
types of cancers, such as breast cancer, prostate cancer, ovarian cancer, and colorectal cancer.37 Earlier research has 
suggested that GSTM5 expression is reduced in bladder cancer tissues when compared to normal tissues. Furthermore, it 
has been demonstrated that elevated GSTM5 levels can lead to a reduction in the proliferation, migration, and colony- 
forming capacity of bladder cancer cells. These findings imply that GSTM5 may effectively serve as a tumor suppressor 
in bladder cancer, offering a substantial protective effect.38 Furthermore, studies have also indicated that GSTM5 has low 
expression levels in breast cancer,38 prostate cancer,39 and Barrett’s adenocarcinoma.40 GSTM5 encodes a protein 
belonging to the glutathione S-transferase family, and these proteins are involved in limiting oxidative damage to 
tissues.41 Oxidative damage is a key driving factor in the development of DFU.42 In the current study, GSTM5 has 
shown a significant protective effect in most diseases, and our IHC testing also indicates its low expression in DFU 
tissues.

The inflammatory response, encompassing early reactions following an injury,43 holds a pivotal role in facilitating the 
healing process. The recruitment of immune cells to the injury site aids in orchestrating multifaceted healing responses 
among cells and serves to thwart infections.44,45 The process of acute wound healing comprises several sequential and 
overlapping stages, including hemostasis, inflammation, proliferation, and remodeling.43 The inflammatory response is 
often regarded as the “driving force” that initiates the repair process, and because of its capacity for potential harm, it is 
closely controlled and regulated. The results of immune infiltration indicate that in the DFU group, B cells naive and 
dendritic cells are highly expressed, while in the control group, T cells CD4 memory resting, T cells regulatory (Tregs), 

Figure 7 Immune analysis. (A) Immune functional analysis of the GSTM5 gene; (B) DFU immune infiltration analysis; (C) PCA analysis of immune infiltration results; (D) 
Immune cell distribution; (E) Immune cell correlation analysis. 
Notes: *p<0.05.
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T cells follicular helper, Macrophages M1, and Mast cells resting are highly expressed. The ssGSEA results also suggest 
that GSTM5 regulates immune functions related to B cells and cytolytic activity, and the immune cells T cells regulatory 
(Tregs) and T cells follicular helper were found to be positively correlated with GSTM5 in this study. Studies suggest that 
the timing and effectiveness of wound healing can be deliberately manipulated through the direct application of mature, 
unactivated B cells. This strategy can successfully modify the equilibrium of mature immune cell populations within the 
wound microenvironment, thereby expediting the healing process.46 Tregs, a distinctive and vital subset of T cells, are 
identified by their expression of Foxp3 and are classified as CD4+CD25+ cells. They play a unique and essential role in 
immune surveillance.47,48 Studies have indicated that T cells migrate to the site of injury during the proliferative phase.49 

According to studies, dendritic epidermal T cells have been demonstrated to enhance impaired wound healing in diabetic 
mice. They achieve this by promoting the migration and proliferation of keratinocytes while reducing keratinocyte 
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with T cells regulatory (Tregs).

https://doi.org/10.2147/JIR.S442388                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2023:16 6252

Shi et al                                                                                                                                                                Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


apoptosis in an environment resembling diabetes.50 Additionally, studies have indicated that factors secreted by T cells 
may help drive macrophage polarization during the wound healing process.51

The enrichment analysis suggests that GSTM5 may be correlated with NF-κB, GnRH, and MAPK signaling pathway. 
Elevated expression of NF-κB genes or proteins can result in increased oxidative stress, potentially impacting the wound 
healing process in diabetic patients.8,52 Current understanding suggests that in diabetic wounds, the persistent elevation of 
TNF-α triggers NF-κB activation, which in turn causes the release of numerous inflammatory cytokines, thereby sustaining an 
ongoing inflammatory response. Consequently, various chemotactic factors and cytokines essential for wound healing lose 
their effectiveness, resulting in prolonged healing durations.53 As per available information, the use of GnRH agonists is 
linked to an increased risk of diabetes.54 Research suggests that in diabetic models, mice treated with GnRH agonists exhibit 
more delayed wound healing compared to untreated control mice, and treatment with GnRH antagonists inhibits the damage 
caused by GnRH agonist treatment.55 The activation of the MAPK signaling pathway acts as a critical junction for numerous 
trauma-induced signaling pathways, facilitating wound healing. Nevertheless, during the wound healing process in diabetes, 
the local hyperglycemic condition can disrupt normal repair mechanisms. Adequate keratinocyte migration is essential for 
wound healing, yet high glucose levels hinder keratinocyte migration by suppressing the p38 MAPK/autophagy pathway. This 
interference results in challenges in wound healing.56 Studies have indicated that the hyperglycemic condition in individuals 
with diabetes activates the MAPK pathway through both protein kinase and non-protein kinase pathways. An upregulation of 
MAPK is associated with the progression of DFU. Inhibiting the MAPK pathway can offer therapeutic benefits.57

Indeed, there is still a relative lack of research on biomarkers in the context of DFU. Recently, the combination of 
bioinformatics and machine learning analysis has emerged as a valuable tool for discovering novel biomarkers in DFU.58 

A previous study suggested that MAPK3 may be a biomarker associated with iron death in DFU.7 It is worth noting that 
there is currently a lack of research in the literature concerning the immune system and its relevance to DFU. This study 
combines machine learning and immune infiltration methods to re-identify GSTM5 while also providing insights into its 
related functions and mechanisms. Additionally, the low expression of GSTM5 in both the validation set and animal 
experiments among the DFU group suggests the reliability of the findings in this study. While encouraging results have 

Figure 9 Animal experimental validation. (A) Optical pictures of the wound closure rate in the Control group and DFU group at days 0, 7, and 11 after the skin operation; 
(B) H&E and Masson staining images of wound tissues in the Control group and DFU group at day 7; (C) Representative images of immunohistochemical staining of GSTM5. 
Note: ***P<0.001.
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been found, it is important to acknowledge the limitations of this study. To begin with, the clinical data utilized in this 
study were sourced from public databases, and the available clinical information for the samples was incomplete. This 
included limitations such as the unavailability of clinical pathological characteristics for the GSE series. Secondly, the 
data employed in this study relied on RNA sequencing. While animal experiments corroborated the findings of the 
bioinformatics analysis, it is imperative to validate the reproducibility and generalizability of these results in future 
investigations using clinical samples. However, this was not feasible within the constraints of the limited timeframe, as 
clinical samples were not readily accessible. Lastly, even if diabetic rats were created, the wound model created in these 
rats is an acute wound model, not a chronic wound.

Conclusion
In conclusion, this study identifies GSTM5 as a potential immune-related key target in DFU using machine learning and 
bioinformatics methods. Subsequent validation through external datasets and animal experiments also confirms GSTM5 
as a critical biomarker for DFU.
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