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Combatting type 2 diabetes by turning up the heat
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Abstract In our westernised society, the level of physical
activity is low. Interventions that increase energy expenditure
are generally associated with an improvement in metabolic
health. Exercise and exercise training increase energy metab-
olism and are considered to be among the best strategies for
prevention of type 2 diabetes mellitus. More recently, cold
exposure has been suggested to have a therapeutic value in
type 2 diabetes. At a cellular level, there is evidence that in-
creasing the turnover of cellular substrates such as fatty acids
is associated with preventive effects against lipid-induced in-
sulin resistance. Cellular energy sensors may underlie the ef-
fects linking energy turnover with metabolic health effects.
Here we review data supporting the hypothesis that increasing
energy and substrate turnover has beneficial effects on insulin
sensitivity and should be considered a target for the prevention
and treatment of type 2 diabetes.
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Abbreviations
ANT1 Adenine nucleotide translocase 1
BAT Brown adipose tissue

BMR Basal metabolic rate
DIT Diet-induced thermogenesis
DNP 2,4-Dinitrophenol
NEN Niclosamide ethanolamine salt
NST Non-shivering thermogenesis
PLIN Perilipin
PGC1 Peroxisome proliferator-activated receptor

γ coactivator 1
RMR Resting metabolic rate
SIRT1 Sirtuin 1

Introduction

Obesity is the major risk factor for the development of type 2
diabetes mellitus. It is not only characterised by an increased
storage of fat in subcutaneous white adipose tissue but is also
associated with increased storage of fat in non-adipose tissues,
such as muscle and liver. This so-called ectopic fat accumula-
tion is thought to lead to the development of insulin resistance,
an early hallmark in the development of diabetes [1, 2].
Therefore, weight loss is the first-choice preventive and ther-
apeutic intervention for type 2 diabetes; indeed, a reduction in
body weight leads to improvement in insulin sensitivity and
weight reduction is a good strategy for preventing the devel-
opment of diabetes. However, long-term maintenance of a
healthy weight is difficult.

Although whole-body energy balance is determined by
both energy intake and energy expenditure, the window of
opportunity for achieving a negative energy balance (and thus
weight loss) is much larger when energy intake is challenged.
A diet very low in energy reduces energy intake by up to 70–
80%, whereas a similar percentage increase in energy expen-
diture would require a very substantial amount of physical
activity, such as that achieved by participating in competitive
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sports. Indeed, exercise training programmes do not lead to
major weight loss; for example, it has been shown that jogging
the equivalent of 20 miles per week or walking 12 miles per
week only resulted in a weight loss of 3.5 kg and 1.1 kg,
respectively, after an 8 month training period [3].
Consequently, over recent decades most of the research in
the obesity field has focused on reducing energy intake to
combat obesity and type 2 diabetes, and the role of energy
expenditure in metabolic health has been underappreciated
and understudied. However, it is becoming increasingly evi-
dent that enhancing energy metabolism per se can counterbal-
ance the metabolic consequences of obesity and that increas-
ing energy turnover is an important target in the prevention of
obesity-related metabolic disturbances, such as insulin resis-
tance. For example, even though exercise has only minor ef-
fect on body weight, it is known to have a beneficial effect on
many metabolism-related diseases such as type 2 diabetes [4],
cardiovascular disease [5], the metabolic syndrome [6] and
even cancer [7]. This notion is underscored further by the
recent evidence that breaking sedentary time can have major
effects on insulin sensitivity and metabolic profile [8–12],
suggesting that even small increases in physical activity levels
can have a major impact on health. Similarly, other environ-
mental factors such as cold exposure can have substantial
boosting effects on energymetabolism and are associated with
metabolic health effects (see below). Here we review the ev-
idence, focusing on human intervention studies, suggesting
that increasing energy turnover by exercise and/or cold expo-
sure can offset obesity-related insulin resistance and be a pre-
ventive strategy for type 2 diabetes mellitus.

Defining components of human energy metabolism

Heat production

In the (human) body, almost all energy is ultimately converted
into heat [13], and heat production is the gold standard for the
measurement of energy expenditure under resting conditions.
Apart from the performance of external work, energy in the
body is used in the form of ATP for all metabolic processes that
have heat production as a final end-product. The resting met-
abolic rate (RMR) is largely determined by the sum and the
efficiency of these processes; for example, the continuous cy-
cle of protein synthesis and breakdown is an energy-requiring
process, and an increase in protein turnover results in the extra
production of heat and thus elevated energy expenditure. The
basal metabolic rate (BMR) is defined as the fasting resting
energy expenditure in the morning in thermoneutral condi-
tions; under less strict conditions this is the RMR [14]. The
metabolic rate during sleep is slightly lower than the BMR, as
being awake requires energy. As well as the BMR there is diet-
induced thermogenesis (DIT), also known as thermogenic

effect of food, which is the amount of extra heat related to
the digestion, absorption and intermediary processing of food.
DIT is in the order of magnitude of 5–10% of the total energy
intake under energy balance conditions. Physical activity
(exercise) also increases heat production, due to the increased
energy demand necessary to perform the external work, partic-
ularly since only 20–25% of the produced energy can be used
for external work (i.e. low mechanical energy efficiency with
75–80% of produced energy lost as heat) [15]. Although phys-
ical activity energy expenditure can be large—up to 4–5 times
the BMR—it is highly variable both within and between indi-
viduals. Only low levels of physical activity can be sustained
for long periods and in the general population intensive exer-
cise only tends to consist of short bouts. As a result, physical
activity energy expenditure typically forms about 30% of the
24 h energy expenditure in free-living individuals [16].

Heat regulation

Heat produced by the above processes is lost via respiration
(evaporation) and via the skin (conduction, convection, radia-
tion and evaporation). Under resting, thermoneutral conditions
there is heat balance at a core body temperature of around
37°C, so no extra heat production is needed. However, if
the environmental temperature is above or below the
thermoneutral zone heat production increases [17]. This in-
creased production of heat can be achieved by increased turn-
over of metabolic processes and induction of futile cycles, by
muscle contraction (shivering) and also by so-called mitochon-
drial uncoupling. Thus in the cell and mitochondria, energy
substrates are broken down in processes such as β-oxidation,
glycolysis and the tricarboxylic acid cycle, ultimately leading
to the build-up of a proton gradient over the inner mitochon-
drial membrane and ATP generation [18]. Mitochondrial
uncoupling lowers the proton gradient without ATP formation,
thereby reducing energy efficiency and indirectly stimulating
heat production. Shivering can increase energy expenditure to
up to four times the BMR [19], but cannot be maintained for
prolonged periods as it is uncomfortable, decreases coordina-
tion and results in muscle fatigue. Non-shivering thermogene-
sis (NST), on the other hand, among other processes occurring
via regulated mitochondrial uncoupling, can be sustained, is
not uncomfortable (it is insensible) and does not affect coordi-
nation. The maximal reported NST is 40% of the RMR [20]
but varies between individuals; in healthy lean individuals it
ranges from 0% to 30% of the RMR [21–23].

Unless physical activity levels are raised to those seen in
competitive sports, whole-body 24 h energy expenditure can
typically only be sustainably elevated by ∼10–20% in
humans. Nevertheless, many of the interventions that increase
energy expenditure have marked metabolic health effects.
Given the relatively minor effects on whole-body 24 h energy
expenditure, which is often also compensated for by increased
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energy intake, the beneficial effects of interventions such as
exercise and cold exposure cannot be attributed to weight loss.
It is worth noting that this does not imply that energy
expenditure has no role in body-weight regulation since a
small increase or decrease in the BMR of 5% could theoreti-
cally lead to a reduction in body weight of ∼5–10 kg in a year,
if not compensated by other means [24]. Indeed, a low RMR
has been shown to be a risk factor for the development of
obesity [25]. Nevertheless, most intervention studies in which
energy expenditure is elevated do show beneficial metabolic
health effects without changes in body weight.

Evidence that enhancing energy turnover improves
insulin sensitivity: mitochondrial uncoupling

If enhancing energy turnover does not lead to major weight
loss, the question arises as to what mechanism can explain the
beneficial health effects of enhanced energy turnover (Fig. 1).
A variety of mechanisms, such as muscle remodelling, sym-
pathetic nervous system activation, hormonal changes and
mitochondrial biogenesis, have been suggested to underlie
the metabolic health effects of specific interventions like ex-
ercise and exposure to cold, and it is difficult to prove that
these effects are direct. Nevertheless, there is clear evidence
that boosting energy turnover may have a direct beneficial
health effect as it is underscored by studies in which energy
turnover is increased by inducing mitochondrial uncoupling.

Overexpression of the mitochondrial uncoupling proteins
UCP1 or UCP3 in skeletal muscle increases energy expendi-
ture and improves insulin sensitivity [26–28]. Mitochondrial
uncoupling can, apart from exercise training or cold exposure,
also be increased by chemical agents such as 2,4-dinitrophe-
nol (DNP), although the use of DNP in humans was banned in
the 1930s after several cases of lethal hyperthermia. Recently,
however, it was shown that targeting DNP towards the liver
reduced hypertriacylglycerolaemia, fatty liver and whole-
body insulin resistance in high-fat-fed rats and decreased
hyperglycaemia in a rat model of type 2 diabetes [29].
Similarly, it was recently shown that niclosamide ethanol-
amine salt (NEN) induced mitochondrial uncoupling in mice,
increased energy expenditure and lipid metabolism and was
efficacious in preventing and treating hepatic steatosis and
insulin resistance induced by a high-fat diet [30]. Moreover,
NEN improved glycaemic control and delayed disease pro-
gression in db/db mice [30]. So far, drugs that induce mito-
chondrial uncoupling specifically in certain tissues are not
available for use in humans. Nevertheless, it has been shown
that insulin-sensitive endurance-trained athletes display ele-
vated mitochondrial uncoupling and enhanced substrate turn-
over [31]. Recently, we showed that endurance-trained ath-
letes have an increased sensitivity to fatty acid-induced
uncoupling, together with elevated levels of the mitochondrial
protein adenine nucleotide translocase 1 (ANT1), which is
thought to be involved in facilitating fatty acid-induced
uncoupling [32, 33]. Interestingly, the level of fatty acid-
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Fig. 1 Schematic overview of how interventions that target energy turn-
over, such as exercise and cold exposure, may affect metabolic health.
Although the exact mechanisms are unknown, cold exposure and exercise
have been shown to increase or improve the following factors (indicated
by green arrows): turnover of fat in ectopic sites (liver, skeletal muscle);

mitochondrial function and mitochondrial uncoupling (in liver, BAT and
skeletal muscle); energy expenditure (in all tissues); and fatty acid turn-
over (in liver and skeletal muscle). These effects may lead to alterations in
energy balance and body weight but may also lead to improvement in
insulin sensitivity independent of change in body weight
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induced uncoupling was related to the level of insulin sensi-
tivity and reducing ANT1 levels in C2C12 muscle cells re-
duced fatty acid-induced uncoupling and insulin-stimulated
glucose uptake [34]. In addition, thyroid hormone has been
shown to induce mitochondrial uncoupling in skeletal muscle
and to increase thermogenesis and RMR in humans [35].
Together, these results suggest that mitochondrial uncoupling,
likely to lead to enhanced energy turnover, improves glucose
homeostasis in rodents and humans.

Link between energy turnover, ectopic fat
and insulin sensitivity

Athlete’s paradox

As outlined above, one of the major determinants of obesity-
associated metabolic complications is the location of the stor-
age of excess fat, with fat accumulation inmetabolically active
tissues such as muscle and liver leading to insulin resistance of
these tissues [1, 2]. One could thus speculate that enhancing
mitochondrial uncoupling, thereby increasing cellular energy
expenditure, would lead to the burning-off of intracellular fat
and reduction of ectopic fat stores. Although this may be true
for the studies mentioned above, improvement in metabolic
health via energy metabolism-enhancing interventions do not
necessarily require a reduction in ectopic fat. The best known
example of this is the so-called athletes paradox—even
though accumulation of fat in skeletal muscle is associated
with insulin resistance, highly insulin-sensitive endurance-
trained athletes also have very high levels of intramyocellular
lipid [36]. This discrepancy has often been explained by the
notion that it is fatty acid intermediates (such as ceramides and
diacylglycerol) and not intramyocellular triacylglycerol (the
major form in which fat is accumulated in lipid droplets) that
lead to insulin resistance, and that these intermediates accu-
mulate when the mitochondrial oxidative capacity of the mus-
cle is low [37, 38]. However, endurance-trained athletes also
have elevated levels of diacylglycerol [39], and muscle-
specific overexpression of diacylglycerol acyltransferase (the
enzyme converting diacylglycerol into triacylglycerol) leads
to improved insulin sensitivity despite elevated diacylglycerol
levels [40]. Furthermore, the concept that simply having more
mitochondria could counterbalance lipid-induced skeletal
muscle insulin resistance is not entirely correct, as it has been
shown that overexpression of peroxisome proliferator-
activated receptor γ coactivator 1 (PGC1) in mice leads to
an improved mitochondrial function, yet such mice are not
protected from high-fat-diet-induced insulin resistance [41].
However, when these mice are stimulated to become physi-
cally active, and thereby use their capacity for elevated energy
and substrate turnover, they are protected from insulin resis-
tance [42]. Interestingly in that context, PGC1 not only

regulates mitochondrial function but is also involved in the
transcriptional regulation of lipid droplet coating proteins,
which contribute to the regulation of fatty acid delivery to
the mitochondria [43]. This suggests that intracellular tran-
scriptional programs exist that not only regulate cellular oxi-
dative capacity but are also tightly involved in the regulation
of substrate release and delivery, thereby laying the basis for
efficient energy and substrate turnover. In accordance, over-
expression of the lipid droplet coating proteins perilipin
(PLIN) 2 or PLIN5, which are involved in the fine-tuning of
fatty acid release for mitochondrial use, in skeletal muscle or
liver also prevents lipid-induced insulin resistance, despite
increased fat accumulation [44–46].

Energy turnover

Human studies also show that it is not the level of lipid or inter-
mediates per se that leads to insulin resistance, but that it is the
turnover of these substrates that determines whether fat accumu-
lation leads to insulin resistance (Fig. 1). Thus, we have previ-
ously shown that in individuals with type 2 diabetes the capacity
to convert fatty acids into inert triacylglycerols is reduced when
compared with obese controls, suggesting that triacylglycerol
turnover is reduced. In accordance, Listenberger et al [47]
showed that the capacity for triacylglycerol accumulation is an
important determinant of fatty-acid-induced insulin resistance in
skeletal muscle cells and that impairing triacylglycerol synthesis
induced lipotoxicity. These in vitro and ex vivo findings are in
accordance with those of Perreault et al [48] who elegantly de-
termined fractional synthesis rate and intramyocellular lipid con-
centration in obese volunteers with impaired glucose tolerance vs
BMI-matched normoglycaemic controls. Interestingly, it was
found that intramyocellular lipid concentration was higher but
fractional synthesis rate was lower in the glucose-intolerant indi-
viduals. These findings were confirmed in a later report by the
same authors, although the finding could only be verified in men
and not in women [49]. Also in liver, hepatic fat is not detrimen-
tal per se as it is known that fat in the liver has the important
physiological function of temporarily buffering circulating fatty
acids and triacylglycerols. However, chronic oversupply of fat to
the liver, such as in obesity, leads to hepatic steatosis, increased
VLDL-triacylglycerol production, hepatic insulin resistance and
ultimately hepatic failure [50, 51]. Taken together, these findings
suggest that the link between cellular fat accumulation and insu-
lin sensitivity is not straightforward, but depends on the tight
balance between cellular fat storage capacity and mitochondrial
oxidative capacity, and specifically the fine-tuned regulation of
the turnover of fatty acids. It may be hypothesised that increasing
energy turnover—by exercise, cold exposure, thyroid hormone,
uncoupling or other interventions—may improve insulin sensi-
tivity by enhancing the turnover of fat in ectopic fat stores, and
thereby preventing deleterious effects of excessive ectopic fat
storage (Fig. 1). However, this concept would need to be tested.
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Cellular mechanisms linking energy turnover
to metabolic adaptations

At the cellular level, turnover of energy and substrates is driv-
en by energy demand, either because ATP is needed for cel-
lular processes or because the efficiency of ATP formation is
reduced by mitochondrial uncoupling (Fig. 2). In the cell, an
increase in energy use can lead to alterations in the AMP/ATP
and NAD+/NADH ratios resulting in the activation of among
others AMPK (Fig. 2) [52–54] and sirtuin 1 (SIRT1) [55].
These energy sensors are strongly involved in the regulation
of cellular energy metabolism, and activation of these factors
is associated with metabolic health effects, as has been
reviewed extensively elsewhere [54, 56–58]. Thus, these en-
ergy sensors provide a molecular explanation for how
boosting energy turnover could be beneficial for the preven-
tion and treatment of type 2 diabetes mellitus. They are also
direct targets for pharmacological and nutritional approaches
for treating/preventing diabetes. In fact, the most widely pre-
scribed glucose-lowering drug, metformin, has been sug-
gested to work via the induction of energy stress in the cell

and thereby activation of AMPK [59], although the exact
working mechanism is still the subject of debate [60, 61].

Human interventions that increase energy turnover

Exercise

Adding exercise to daily activities enhances whole-body energy
expenditure and during exercise energy expenditure can be ele-
vated several fold. It is also known that exercise training is one of
the best strategies for the prevention or treatment of type 2
diabetes.

Acute exercise

Acute exercise increases glucose homeostasis through the ac-
tivation of AMPK—the energy sensor of the cell—leading to
the translocation of GLUT4 to the cell membrane, an alterna-
tive to insulin-induced GLUT4 translocation (Fig. 2) [62].
Furthermore, and in line with the previous outlined
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Fig. 2 Schematic representation of cellular mechanisms linking energy-
boosting interventions and metabolic health effects. Fatty acids and glu-
cose are taken up into muscle via their respective transporters (CD36
[yellow transporter] and GLUT4 [red transporter]), which translocate
from intracellular stores upon AMPK activation. Fatty acids and glucose
can be used as substrates inside mitochondria for ATP generation, or be
stored as glycogen and triacylglycerol. In the process of lipid storage,
lipotoxic fatty acid intermediates can be formed that inhibit GLUT4 trans-
location. Mitochondrial uncoupling, via uncoupling proteins (UCP1),

affects the efficiency by which ATP is formed. When ATP demand ex-
ceeds ATP formation, ADP levels increase and AMP may be formed,
leading to activation of AMPK. Exercise, cold exposure and dietary res-
veratrol (found in red wine, among other things) may affect molecular
pathways that activate AMPK and SIRT1, which in turn leads to the
activation of PGC1, a transcription factor involved in the regulation of
mitochondrial metabolism. As a result, mitochondrial uncoupling or en-
hanced fatty acid turnover may occur, thereby preventing the negative
effects of cellular substrate overload
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hypothesis, it was demonstrated by Schenk and Horowitz [63]
that one bout of acute exercise could reverse lipid-induced
insulin resistance in humans, and that this was accompanied
by an increased partitioning of excess fatty acids towards tri-
acylglycerol synthesis in muscle. Therefore, by increasing en-
ergy turnover and AMPK activation inside muscle, acute ex-
ercise can acutely and beneficially affect ‘insulin sensitivity’,
at least in skeletal muscle.

Chronic exercise

Chronic exercise most likely leads to skeletal muscle adapta-
tion via chronic activation of AMPK, although many other
mechanisms have been suggested to explain why exercise-
trained skeletal muscle has an improved insulin sensitivity.
We will not review these mechanisms here, as they have been
reviewed extensively elsewhere [64–67]. However, one of the
best-described adaptations to chronic exercise training is an
improvement in muscle oxidative capacity and mitochondrial
function. Indeed, we [68, 69] and others [70–73] have shown
that in type 2 diabetes patients an exercise-induced improve-
ment in insulin sensitivity is associated with an improvement
in mitochondrial function. In line with the hypothesis that
elevated substrate turnover associates with insulin sensitivity,
exercise training for weeks to months results in an improve-
ment in insulin sensitivity not only in healthy individuals but
also in individuals who are obese and have type 2 diabetes,
even though levels of intramyocellular lipid are not lowered.
In fact, intramyocellular lipid is often further increased [43].
Interestingly, endurance-trained athletes have higher levels of
PLINs [43], suggesting improved regulation of substrate turn-
over with exercise training. Indeed, Bergman et al [74]
showed that the fractional synthesis rate of intramyocellular
triacyglycerol was significantly increased in endurance-
trained male cyclists when compared with age- and BMI-
matched sedentary men.

More recently, attention has also shifted towards determin-
ing whether, and if so how, exercise can also be beneficial for
other metabolic tissues. For example, it has been shown that
exercise training can have beneficial effects on hepatic metab-
olism [75–77]. This may partly explain the beneficial effects
of training on circulating triacylglycerol and cholesterol levels
and on postprandial lipid metabolism, important factors in the
development of obesity-related metabolic complications [78].
Interestingly, also in the liver a reduced energy metabolism
has been linked to hepatic steatosis and hepatic insulin resis-
tance, and it is tempting to speculate that exercise training
beneficially affects these variables too [79]. Importantly, the
field of exercise physiology has been boosted in recent years
by the identification of the exercising muscle as an important
endocrine organ that secretes so-called myokines, which are
involved in inter-organ communication. Recent discoveries
include the hormones irisin (although controversial),

meteorin-like, Angptl4 and β-aminoisobutyric acid [80–82].
In accordance, these myokines have been suggested to affect
whole-body energy metabolism, including activation of
brown or beige adipocytes, reduce inflammation and improve
hepatic fat oxidation. For example, Angptl4 was identified as
a novel myokine that regulates excessive fat storage in
non-exercising muscle and the heart [83], suggesting that
increasing energy turnover in the active muscle may also
affect substrate turnover in non-exercising muscles. Clearly,
more studies are needed in humans to unravel how exercise-
induced increases in energy turnover may affect metabolism
in tissues and organs other than skeletal muscle. This may
open an entirely new outlook on understanding how exercise
may be able to improve health in general.

Exercise mimetics

The beneficial effects of exercise on metabolic health have
stimulated the search for drugs or nutritional compounds that
can mimic the effects of exercise. Although no pill could be
expected to induce all health effects of exercise, opportunities
lie in the molecular pathways that are central to much of the
exercise-induced improvements in metabolic health.
Resveratrol is one such nutritional compound, found in red
wine, among other things, which has been extensively studied
in pre-clinical experiments and has also been tested in
humans. Resveratrol can activate the SIRT1–AMPK–PGC1
axis, and could thereby be described as an exercise-mimetic
(Fig. 2). Although results are not wholly consistent, clinical
trials in type 2 diabetes patients imply that resveratrol has a
glucose-lowering effect (for review see [84]). Unfortunately,
the number of human interventions with molecular details is
so far limited. We have previously shown that resveratrol can
indeed activate AMPK and increase SIRT1 and PGC1 levels
in human skeletal muscle and results in elevated mitochondri-
al function and reduced hepatic fat content [40]. Interestingly
and consistent with the outline above, resveratrol intake also
resulted in increased intramyocellular lipid content and PLIN
expression [85], suggesting that not only oxidative capacity
but also the capacity for energy turnover is boosted and linked
to improved metabolic health, as is the case with exercise
training. However, resveratrol also reduces the RMR and the
long-term consequences of this would need to be established.
So far, the number of clinical trials using resveratrol or other
AMPK/SIRT1 targets is still very small but this is expected to
change rapidly in the coming years.

Cold exposure

Environmental temperature can have a major effect on whole-
body and cellular energy expenditure (Fig. 1). When body
heat loss is substantially increased by exposure to the cold,
high rates of lipid and carbohydrate oxidation are essential to
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maintain an increased metabolic rate. Indeed, severe cold ex-
posure in animals has been shown to increase lipolysis, lipid
oxidation and NEFA turnover (among others: [86]), as well as
glucose oxidation and turnover, and thereby improves glucose
tolerance and peripheral glucose uptake (Fig. 2) [87, 88].
These findings indicate that an increase in cold-induced shiv-
ering thermogenesis can have pronounced effects on glucose
homeostasis; however, these studies were conducted under
severe cold exposure, a condition that cannot be sustained
for long periods of time.

Role of NST

In contrast to extreme cold, mild cold exposure is an interven-
tion that is feasible for application in humans for longer pe-
riods of time. When humans and animals are exposed to
milder cold, NST increases to produce heat. Interestingly, this
NST is blunted in obese individuals and is significantly re-
duced when compared with NST in lean counterparts [89].
This relatively low NST may be related to body composition,
as overweight and obese individuals have much more
(subcutaneous) body fat and have more tissue insulation.
Therefore, in daily (indoor) situations obese people experi-
ence much less cold than their lean counterparts, thereby trig-
gering NST to a lesser extent. Indeed, after weight loss, mor-
bidly obese patients show an increased NST capacity [90]. In
older people, NST is reduced and, together with reduced body
temperatures in the cold, their net energy expenditure in the
cold may even be lower than at thermoneutral conditions [17].
The extent to which reduced NST in the elderly is caused by
habituation or biological factors related to ageing is not
known. Older people in western society generally tend to
spend more time indoors in relatively warm and stable envi-
ronments and are less tolerant of lower ambient temperatures.
Therefore they may have lost their NST capacity. Both by
living in such a protective stable environment and by in-
creased body fat, NST and related metabolic processes are
diminished. On the other hand, biological ageing itself may
also affect their metabolic cold responses. Intriguingly, NST is
also blunted in patients with type 2 diabetes [91]. However,
the lower NST in type 2 diabetes may be related to the fact that
most type 2 diabetes patients are older and overweight. It is
currently not known whether a low NST plays a role in the
aetiology of type 2 diabetes.

Role of brown adipose tissue

In rodents the main tissue responsible for NST is brown adi-
pose tissue (BAT) [92]. Although NST in humans had been
reported earlier, its relationship to functional BAT in adult
humans was not revealed until 2009 [93–96]. In contrast to
white adipose tissue, BAT burns triacylglycerol and glucose to
generate heat through mitochondrial uncoupling [92]. Cold is

the main stimulator of sympathetic nervous system-mediated
BAT activation. Human brown fat is mainly studied by
fluorodeoxyglucose–PET/CT imaging, which shows glucose
uptake (rate) in those tissues that use glucose [97]. BAT is not
activated in fasting and thermoneutral conditions [98], while it
is activated by mild cold (i.e. without shivering) [94]. Using
the appropriate individual cooling protocols [99], BAT glu-
cose uptake was found to be significantly related to NST,
indicating a role for BAT in whole-body thermogenesis, as
shown in rodent studies. In parallel with NST, cold-induced
BATactivation is reduced in obese and elderly individuals and
those with type 2 diabetes [91, 100, 101]. Only recently, stud-
ies on the effect of cold acclimation on NST and BAT activity
have been performed. Cold acclimation by intermittent expo-
sure to a cool (14–17°C), or cold (10°C) environment resulted
in significant increases in NST capacity [102]. A 10 day cold
acclimation study with 6 h exposure to 14–15°C per day was
enough to significantly increase NST by 65% on average
[103]. A 6 week mild cold acclimation study (daily 2 h cold
exposure at 17°C) also resulted in an increase in NST together
with a concomitant decrease in body fat mass [104]. The latter
two studies also revealed significant increases in BAT presence
and activation [103, 104]. All in all, cold-induced BATactivity
is significant in adults and parallels NST. The actual quantita-
tive contributions of BAT and of other tissues (e.g. skeletal
muscle) to whole-body NST are, however, not elucidated and
await further studies. Furthermore, more information is needed
on the duration, timing and temperatures to find out which
treatments are most effective with respect to increasing NST.

Whether activation of BAT (potentially via elevating NST)
affects glucose homeostasis and insulin sensitivity has not
been studied extensively. Thus, glucose is oxidised in high
amounts by BAT when activated, although the direct contri-
bution of glucose oxidation to total thermogenesis in BAT is
believed to be relatively small compared with that of fat oxi-
dation, somewhere in the range of 10–16% [92, 105, 106]. It is
likely that the glucose that is taken up is mainly used for the
synthesis of glycerol-3-phosphate and triacylglycerols and al-
so for the supply of extramitochondrial ATP through glycoly-
sis to support fatty acid esterification to triacylglycerol and
other cellular functions [107]. A study on noradrenaline
(norepinephrine) stimulation of rat brown adipocytes revealed
that glucose uptake and oxygen consumption were related. It
has also been shown that increasing BAT by transplantation in
mice has advantageous effects on body composition, insulin
sensitivity and glucose metabolism [108].

In humans, retrospective patient studies show inverse rela-
tionships between BAT activity and diabetes and glycaemia
[96, 109]. Prospective cold exposure studies show, as men-
tioned above, that glucose uptake in BAT is positively related
to NST [103, 110]. These observations show that cold-
induced thermogenesis goes hand in hand with increased glu-
cose metabolism. The acute cold glucose uptake rate per unit
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of tissue mass as determined by dynamic PET/CTwas higher
in BAT than in skeletal muscle [110, 111]. Interestingly,
insulin-stimulated glucose uptake in BAT in humans was pos-
itively related to theM value (ameasure of whole-body insulin
sensitivity derived from hyperinsulinaemic–euglycaemic
clamps) [112].

Whether the increased uptake of glucose by BAT signifi-
cantly contributes to whole-body glucose metabolism in type
2 diabetes has not yet been substantiated, although it was
recently shown that individuals with active BAT, when com-
pared with individuals without BAT, showed significantly in-
creased resting energy expenditure, whole-body glucose dis-
posal, plasma glucose oxidation and insulin sensitivity [113].
In another study, Lee et al [114] showed that staying overnight
in cold chambers (19°C) for 1 month increased BAT activity
together with improved postprandial insulin sensitivity. In a
recent study in individuals with type 2 diabetes we studied the
effect of cold acclimation on BAT activity and insulin sensi-
tivity using hyperinsulinaemic–euglycaemic clamp. The cold
acclimation protocol was identical to that used by van der
Lans et al [103], where we found significant increases in
BAT and NST. In type 2 diabetes patients the amount of
BAT at baseline was significantly lower than that in healthy
lean individuals [91]. Acclimation increased BAT activity
significantly but levels were still very low [91]. Very interest-
ingly, insulin sensitivity increased after cold acclimation by
43% on average [91]. It is very unlikely that the small increase
in BAT activity could be responsible for this improved insulin
sensitivity. In fact, the study showed that the improved insulin
sensitivity could be explained by enhanced GLUT4 transloca-
tion in skeletal muscle in the basal state, an effect that had
been previously observed in cold-acclimated rats [115] and
has been confirmed in obese humans [116]. Although the
mechanisms responsible for GLUT4 translocation upon cold
stimulation remain to be elucidated, these findings clearly
demonstrate that the significant improvement in insulin
sensitivity can be attributed to skeletal muscle tissue, rather
than to BAT, and may involve increased energy turnover.
However, since BAT increased in all participants after cold
acclimation, an indirect role for BAT (e.g. by secreting
BATokines) cannot be fully excluded.

Conclusions

In conclusion, energy metabolism in humans can be affected
by exercise and cold-exposure interventions. Such interven-
tions are associated with metabolic health effects that cannot
be explained by effects on body-weight regulation. Rather,
increasing energy turnover activates cellular energy sensors,
such as AMPK, which trigger beneficial adaptive responses.
Although the exact underlying mechanisms are still not fully
understood in humans, exercise and mild cold exposure

provide strong intervention strategies for the prevention and
treatment of type 2 diabetes mellitus.
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