
Citation: Coradduzza, D.; Ghironi,

A.; Azara, E.; Culeddu, N.; Cruciani,

S.; Zinellu, A.; Maioli, M.; De Miglio,

M.R.; Medici, S.; Fozza, C.; et al. Role

of Polyamines as Biomarkers in

Lymphoma Patients: A Pilot Study.

Diagnostics 2022, 12, 2151. https://

doi.org/10.3390/diagnostics12092151

Academic Editor: Chung-Che

(Jeff) Chang

Received: 21 May 2022

Accepted: 2 September 2022

Published: 4 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Role of Polyamines as Biomarkers in Lymphoma Patients:
A Pilot Study
Donatella Coradduzza 1 , Adriana Ghironi 2, Emanuela Azara 3 , Nicola Culeddu 3 , Sara Cruciani 1 ,
Angelo Zinellu 1 , Margherita Maioli 1 , Maria Rosaria De Miglio 4 , Serenella Medici 5 , Claudio Fozza 2

and Ciriaco Carru 1,6,*

1 Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
2 Department of Clinical and Experimental Medicine, University of Sassari, 07100 Sassari, Italy
3 Institute of Biomolecular Chemistry, National Research Council, 07040 Sassari, Italy
4 Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
5 Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
6 University Hospital of Sassari (AOU), 07100 Sassari, Italy
* Correspondence: carru@uniss.it

Abstract: Lymphomas represent a heterogeneous and widely diversified group of neoplastic diseases
rising from a variety of lymphoid subsets at heterogeneous differentiation stages. These lympho-
proliferative disorders lead to the clinicopathological complexity of the classification of lymphoid
neoplasms, describing to date more than 40 categories of non-Hodgkin’s lymphoma (NHL) and
5 categories of Hodgkin’s lymphoma (HL). Inflammation has been shown to play a key role in
the evolution of cancer diseases, and it might be interesting to understand their role also in the
context of lymphoid neoplasms. Among circulating biomarkers, the role of polyamines belonging
to the arginine and lysine metabolism is relevant. Through modern analytical methods, such as
mass spectrometry (MS), we are enabled to increase knowledge and improve our understanding of
cancer metabolism. In this study, high-resolution mass spectrometry was used in combination with
high-performance liquid chromatography (LC-HRMS) to measure serum levels of polyamines and
identify possible diagnostic circulating biomarkers, potentially allowing a more accurate assessment
of the diagnostic stratification of lymphoma patients and robust comparisons between different
patient groups.

Keywords: biomarkers; polyamines; lymphoma

1. Introduction
1.1. Lymphoma: Symptoms and Causes

Lymphomas represent a heterogeneous and diverse group of neoplastic diseases of
the lymphocytes from which they derive [1]. They are classified according to the cell of ori-
gin [2]. The diversity of lymphoma subtypes reflects the intricate network of physiological
processes that give rise to numerous lymphoid subsets differing in differentiation lines (B, T,
and NK) and degree of functional maturation [3]. These lymphoproliferative disorders lead
to clinicopathological complexities [4,5]. The current World Health Organization (WHO)
classification of lymphoid neoplasms describes more than 40 categories of non-Hodgkin’s
lymphoma (NHL) and 5 categories of Hodgkin’s lymphoma (HL) [6]. As of 2016, the
classification incorporates information from clinical, morphological, immunophenotypic,
molecular, and genetic findings but remains too heterogeneous on disease biology [7].
Non-Hodgkin’s lymphomas are first identified based on the cell of origin (B, T, or NK
lymphocytes) and then on morphological, immunophenotypic, genetic, and molecular cri-
teria integrated with clinical features [8]. HL is characterized by the presence of neoplastic
cells within a large polymorphic reactive microenvironment (composed of eosinophils,
lymphocytes, plasma cells, fibroblasts, and collagen fibers), of which neoplastic cells often
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represent only a fraction (approximately 1%) [7]. In all cases, the diagnosis of lymphoma
should be based on a histological examination of appropriate biopsy material [9]. An
incisional or excisional biopsy is always recommended [10]. An integrated diagnostic ap-
proach is one that allows a diagnosis, including a morphological examination of peripheral
blood smear and bone marrow aspirate, immunophenotypic characterization of circulating
lymphocytes by cytofluorimetry, histological and immunohistological evaluation of bone
marrow biopsy, by experienced hematopathologists [11]. Among clinical prognostic factors,
IPI, International Prognostic Index for Diffuse Large B-cell Lymphoma, remains a useful
and reliable clinical tool for measuring the extent and aggressiveness of the disease in lym-
phoma patients [12]. High IPI scores are associated with a worse prognosis, but this index
is not useful in identifying the individual high-risk patient [13]. There is a need to further
explore additional factors, including tumor biology and/or the metabolic environment of
the host [14].

1.2. Diagnosis: Inflammation Biomarkers

New cellular and molecular biomarkers that can be used in clinical decision-making
are becoming increasingly important [5,15]. The discovery of biologically relevant biomark-
ers and therapeutic targets is a fundamental objective of precision medicine [16]. Inflam-
mation has been shown to play a key role in the evolution of cancer diseases, and some
authors have studied the role of several biomarkers of inflammation [17], such as neu-
trophil/lymphocyte ratio (NLR), derived NLR [dNLR = neutrophils/(white blood cells
− neutrophils)], platelet/lymphocyte ratio (PLR), monocyte/lymphocyte ratio (MLR),
(neutrophil × monocyte)/lymphocyte ratio (SIRI) and (neutrophil × monocyte × platelet)/
lymphocyte ratio (AISI). An increasing number of studies have found that a high absolute
monocyte count (AMC), decreased absolute lymphocyte count (ALC), absolute lymphocyte
to absolute monocyte count (AML), neutrophil to lymphocyte ratio (NLR), platelet to
lymphocyte ratio (PLR) and other combined ratios may be predictive and/or prognostic
in various solid tumors [18–22]. The AISI value was found to be a predictor of patient
outcome compared to other inflammatory indices [21]. Similar results have been demon-
strated in diffuse large B-cell lymphoma (DLBCL) [22] and classical Hodgkin’s lymphoma
(cHL) [23]. Despite the presence of many hematological prognostic indices, the clinical
course and overall survival are often highly variable, even within the same subgroup of
patients [24]. Recent studies suggest that simple, low-cost, low-risk tests such as neutrophil-
to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR) can be used to assess
prognosis [25]. A combined analysis with metabolites allows fingerprints of biochemical
activity in tissues and organs, which correlate directly with cellular phenotypes [26].

1.3. Polyamines

In recent years, many authors have focused on the study of metabolic processes in
cancer cells. Among the circulating biomarkers, the role of polyamines belonging to the argi-
nine and lysine metabolism is relevant [27–29]. Polyamines are essential for normal cell pro-
liferation, gene expression, membrane stabilization, apoptosis, and organogenesis [30–32].
Malignant transformation of normal cells requires an increase in cell proliferation; thus,
polyamine concentration increases during malignant transformation [33–37]. Modern an-
alytical methods, such as mass spectrometry (MS), have enabled researchers to increase
their knowledge and improve their understanding of cancer metabolism [1,2]. In this study,
high-resolution mass spectrometry was used in combination with high-performance liquid
chromatography (LC-HRMS) to measure serum levels of polyamines [3]. The study aims to
identify possible diagnostic circulating biomarkers, allowing a more accurate assessment
of the diagnostic stratification of lymphoma patients and robust comparisons between dif-
ferent patient groups to develop an integrated clinical-biological index to ideally improve
patient therapeutic management [3].
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2. Materials and Methods
2.1. Clinical Characteristics of Patients

This study examined 10 patients with Hodgkin’s lymphoma and 63 with non-Hodgkin’s
lymphoma from the hematology department of the Department of Hematology, University
Hospital of Sassari, versus 73 samples of healthy volunteers from the transfusion center
of the Health Protection Agency of Sassari. Human serum samples were collected and
frozen at −80 ◦C until use. After incubation of the blood sample at 37 ◦C for 60 min, the
serum was separated by centrifugation at 2000 RPM for 10 min and then stored at −80 ◦C.
Patients enrolled in our study were only diagnosed with de novo forms, excluding those
forms developed in immunosuppressed patients (HIV positive or transplanted).

2.2. Serum Samples Preparation

The studies were conducted in accordance with the Declaration of Helsinki. Written
informed consent was obtained from each subject before the study. Table 1 shows detailed
information on demographics and a clinical-pathological patient list of the clinical patient’s
characteristics. All serum samples were stored at −80 ◦C from the collection until mea-
surement. An aliquot of 250 µL of serum was transferred into an Eppendorf microtube
and mixed with 150 µL of methanol (containing 0.05% HFBA) and 100 µL of water for
50 s. After precipitation, samples were centrifuged for 9 min at 15,000 rpm and frozen
overnight at −20 ◦C. The supernatant was evaporated to dryness at 36 ◦C under a stream
of nitrogen. The residue was reconstituted into 500 µL of mobile phases and 50 µL of IS
(internal standard, deuterated histamine). An aliquot of 5µL of the solution was injected
into the LC-HMRS system for analysis. Serum sample preparation was performed in the
same manner as the quality control (QC) samples. The supernatants obtained from these
solutions were also used as the QC samples. The QC sample is a mixture of all samples,
containing all information in the serum samples, and it was used to optimize and supervise
the injection process. QC samples were injected occasionally to test the stability of both the
samples and the system during acquisition. Prior to sample analysis, the QC samples were
injected six times to monitor the stability of the instrument. The six QC samples were then
processed in parallel and injected to assess the repeatability of the method.

Table 1. Clinical parameters between the three groups under observation (NHL, HL and Sani).
Kruskal–Wallis test, p < 0.05 as statistically significant, indicated by *.

NHL HL HEALTHY SIGNIFICANCE

NUM 63 10 73
SEX 31 F/32 M 4 F/6 M 27 F/46 M p-value = 0.35
AGE 61.71 ± 11.98 42.2 ± 18.85 53.65 ± 8.16 p-value = 1.91
WBC 10.03 ± 10.39 9.37 ± 6.52 5.99 ± 1.48 * p-value = 0.002
HGB 12.39 ± 1.86 12.87 ± 1.91 14.43 ± 1.01 p-value = 5.41
RDW 14.75 ± 2.62 13.92 ± 1.67 15.06 ± 0.76 * p-value = 0.008
PLT 235.62 ± 108.29 295.60± 114.16 217.72 ± 46.62 * p-value = 0.043

NEUT 5.66 ± 4.52 5.72 ± 5.06 3.51 ± 1.08 * p-value = 0.005
LYMPH 3.45 ± 9.03 2.61 ± 1.26 2.09 ± 0.80 * p-value = 0.0005
MONO 0.69 ± 0.86 0.55 ± 0.42 0.37 ± 0.13 * p-value = 0.005

LMR 9.42 ± 22.91 6.6 ± 6.05 5.78 ± 3.09 * p-value = 0.0004
NLR 4.52 ± 5.68 2.51 ± 1.84 1.80 ± 0.66 * p-value = 0.00002
PLR 169.34 ± 132.96 154.8 ± 120.97 112.10 ± 36.28 * p-value = 0.019
SIRI 3.77 ± 8.76 1.46 ± 1.67 0.69 ± 0.40 * p-value = 0.00007
AISI 1152.83 ± 3581.13 455.63 ± 498.18 151.20 ± 93.77 * p-value = 0.001

2.3. Statistical Analysis

Results are expressed as an average value (mean ± DS). The distribution of variables
was evaluated using the Kruskal–Wallis rank and applied in order to compare the groups.
Kruskal–Wallis rank-sum was employed to evaluate the distributions of each variance in
the three groups under observation, assuming the value p < 0.05 as statistically significant.
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Statistical comparisons among the groups of parametric variables were evaluated using
the unpaired Student t-test. The non-parametric continuous variables were compared
with the case of normally distributed samples and with the median ± median absolute
deviation (MAD) in the case of non-normal sample distribution. Correlations among
variables were estimated using a Pearson correlation. A supervised analysis was carried
out by applying the orthogonal partial discriminant analysis of the minimum square (OPLS-
DA), representing a rotation of the corresponding PLS-DA models and simplifying the
information into only one predictive component, while maintaining the same predictive
capacity [4]. To avoid model overfitting, the corresponding PLS-DA models were validated
by 300 permutation tests [5]. The prediction strength of the model was evaluated by the
“Leave out” analysis [6]. Variable importance parameter (VIP) values were used to assess
the overall contribution of each X variable to the model, summed over all components and
weighted according to the Y variation, accounted for by each component [7]. The number
of terms in the sum depends on the number of PLS-DA components found to be significant
in distinguishing the classes. The Y axis indicates the VIP scores corresponding to each
variable on the X axis [7]. Bars indicate the factors with the highest VIP scores and thus are
the most contributory variables in class discrimination in the PLS-DA model. The statistical
analysis was carried out using Stagraphics Centurion XVII (v.17.2) and SIMCA-P version
14.0 (Umetrics AB, Umea, Sweden).

3. Results
3.1. Patients and Data

The mean age of patients was 59.04 years (±14.61); 38 (52%) were male, and 35 (47%)
were female. In total, 63 patients (86.3%) had a diagnosis of non-Hodgkin’s lymphoma,
and 10 patients (13.7%) had a diagnosis of Hodgkin’s lymphoma. Among NHL subjects,
30 patients (41.2%) had diffuse large B-cell lymphoma (DLBCL), 17 patients (23.3%) had
follicular lymphoma (FL), 5 patients (6.8%) had small lymphocyte lymphoma (SLL), 5 pa-
tients had mantle cell lymphoma (MCL), 4 patients had marginal zone lymphoma (MZL),
2 patients (2.7%) had T-cell non-Hodgkin’s lymphoma. Among Hodgkin’s lymphomas,
9 patients (12.3%) represented the classic variant (CHL), and only 1 patient presented with
the nodular lymphocyte-predominant variant (NLPHL) (Figure 1).
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Figure 1. Clinical case study. NHL (non-Hodgkin’s lymphoma); subtypes: DLBCL (diffuse large
B cell lymphoma), FL (follicular lymphoma), SLL (small lymphocytic lymphoma), MCL (mantle
cell lymphoma), MZL (marginal zone lymphoma), LNH T (non-Hodgkin T cell lymphoma). HL
(Hodgkin lymphoma); subtypes: CHL (classical Hodgkin lymphoma), NLPHL (nodular lymphocyte
predominant Hodgkin lymphoma).
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The patients, according to Ann Arbor staging, were divided into 9.58% (7 pcs) stage
I; 19.17% (14 pcs) stage II; 23.28% (17 pcs) stage III; 47.94% (35 pcs) stage IV. In addition,
patients were stratified according to their prognostic risk using the IPI (International
Prognostic Index) score for non-Hodgkin’s lymphoma and the IPS-Hasen clever index score
for Hodgkin’s lymphoma. For non-Hodgkin’s lymphomas, the breakdown was as follows:
16 patients (21.9%) had an IPS 1, 25 patients (34.3%) had an IPS 2, 17 patients (23.3%) had
an IPS 3, 4 patients (5.5%) had an IPS 4. Among Hodgkin’s lymphomas, 2 patients (2.7%)
had an IPS 1-2 score, 3 patients (4.1%) had an IPS ≥ 3. Six HL patients were excluded from
the prognostic classification because they had stages of non-advanced disease (Figure 2).
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3.2. Biochemical Parameters

Table 1 shows the clinical, functional and biochemical parameters: age, sex, blood
cell count (WBC, RBC, HGB, PLT), white blood cell count (lymphocytes, neutrophils,
monocytes), plasma inflammatory indexes (LMR, NLR, PLR) and combined plasma in-
flammatory indices (SIRI, AISI). We found a significant difference between patients of
the three groups (LNH, HL and controls) for all values of the hemochrome-cytometric
examination (WBC, RDW, PLT absolute count of neutrophils, lymphocytes, and monocytes)
except hemoglobin and for all parameters of inflammation (MRL, NLR, PLR, SIRI, AISI)
(Table 1 and Supplementary Figure S1). The value of WBC, neutrophil platelets, monocytes,
lymphocytes was increased in lymphoma patients (LNH and HL) compared to healthy
patients. Among the parameters of inflammation, LMR, NLR, PLR, SIRI, and AISI were
increased in lymphoma patients (LNH and HL) compared to healthy patients, where the
combined plasma inflammatory indices (SIRI, AISI) were particularly high. The AISI value
in lymphoma patients reached values > 3000. Table 2 shows the clinical parameters of
lymphoma patients (LNH and HL), according to Ann Arbor classification, presence of B
symptoms, bone marrow infiltration, HBV and HCV infection. No parameter showed a
statistically significant difference between the two groups, thus confirming a high degree
of homogeneity between patients with NHL and HL.
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Table 2. Clinical parameters between the two groups of lymphoma patients (NHL and HL). Student’s
t-test was applied unpaired between NHL vs. HL, p < 0.05 statistically significant.

NHL HL SIGNIFICANCE

NUM 63 10

STAGE I 0.09 ± 0.29 0.1 ± 0.31 p-value = 0.96

STAGE II 0.15 ± 0.36 0.4 ± 0.51 p-value = 0.07

STAGE III 0.25 ± 0.43 0.1 ± 0.31 p-value = 0.29

STAGE IV 0.49 ± 0.50 0.4 ± 0.51 p-value = 0.59

CNS involvement 0.26 ± 0.44 0.2 ± 0.42 p-value = 0.64

HBV 0.20 ± 0.40 0.1 ± 0.31 p-value = 0.43

HCV 0.063 ± 0.24 0 p-value = 0.41

SYMPTOMS B 0.34 ± 0.48 0.5 ± 0.52 p-value = 0.36

3.3. Serum Levels of Polyamines, Related Amino Acids and Metabolites

Table 3 shows the levels of plasma polyamines, related amino acids (arginine, lysine)
and metabolites (GABA) in the three groups (NHL, HL and HEALTHY). There are sig-
nificant differences between the three groups for the following parameters: putrescine,
spermidine, acetyl-putrescine, acetyl-spermidine, acetyl-spermine, ornithine, s-adenosyl-
methionine, and GABA.

Table 3. Analysis of polyamine levels in the three groups (LNH, LH and HEALTHY). Kruskal–Wallis
test significant for p < 0.05 indicated with *. ** indicates the p-value obtained with Student’s t-test
unpaired between LNH vs. LH, p < 0.05 statistically significant.

NHL HL HEALTHY SIGNIFICANCE

POLYAMINES 63 10 73

PUTRESCINE 13.90 ± 1.27 13.24 ± 1.31 6.69 ± 1.39 * p-value < 0.05
** p-value = 0.13

SPERMIDINE 9.18 ± 1.83 5.83 ± 0.88 1.03 ± 0.26 * p-value < 0.05
** p-value = 5.95

SPERMINE 6.04 ± 1.40 6.09 ± 1.37 6.48 ± 2.15 p-value = 0.55

ACETYL-
PUTRESCINE 1.94 ± 0.48 1.85 ± 0.34 0.14 ± 0.05 * p-value < 0.05

** p-value = 0.59

ACETYL-
SPERMIDINE 2.97 ± 0.45 3.06 ± 0.36 0.16 ± 0.12 * p-value < 0.05

** p-value = 0.55

ACETYL-
SPERMINE 1.72 ± 0.38 1.38 ± 0.31 2.56 ± 0.59 * p-value < 0.05

** p-value = 0.008

AGMATINE 58.98 ± 7.39 57.68 ± 4.25 70.51 ± 14.17 p-value = 3.26

CADAVERINE 2.35 ± 0.43 2.13 ± 0.52 2.29 ± 0.66 p-value = 0.26

ORNITHINE 1.93 ± 0.48 1.89 ± 0.42 0.76 ± 0.13 * p-value < 0.05
** p-value = 0.79

LYSINE 6.11 ± 0.77 6.22 ± 0.84 7.03 ± 0.63 p-value = 1.30

ARGININE 7.26 ± 0.47 7.26 ± 0.44 6.41 ± 0.98 p-value = 1.32

S-ADENOSYL
METHIONINE 213.27 ± 35.42 210.26 ± 36.29 339.35 ± 95.88 * p-value < 0.05

** p-value = 0.8

GABA 39.89 ± 13.43 46.19 ± 13.05 30.69 ± 2.23 * p-value < 0.05
** p-value = 0.17
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Putrescine, spermidine, acetyl-putrescine, acetyl-spermidine, ornithine, and GABA
were found to be increased in lymphoma patients (NHL and HL) compared to healthy pa-
tients, whereas acetyl-spermidine and s-adenosyl-methionine were found to be increased in
healthy patients compared to lymphoma patients, NHL, and HL (Supplementary Figure S2).
We evaluated statistically significant polyamines between the three observation groups
when comparing NHL and HL using Student’s unpaired t-test and found a significant dif-
ference for acetyl-spermine (p-value 0.008), which was increased in NHL patients compared
to HL patients. The box plots of comparison, shown in Supplementary Figure S3, between
NHL and HL are reported for the polyamines found to be statistically significant using
the Kruskal–Wallis test: acetyl-putrescine, acetyl spermidine, acetyl-spermine, putrescine,
spermidine, ornithine, S-adenosyl methionine and GABA.

3.4. Multivariate Analysis

In order to better understand the role of polyamines in lymphoma patients, we per-
formed a multivariate analysis by analyzing the data obtained from the patient’s serum
integrated with the patient’s clinical data. In Figure 3A, the multivariate analysis method,
using the OPLS-DA (Orthogonal partial least squares discriminant analysis), shows good
discrimination between the two groups: non-Hodgkin’s lymphoma samples and healthy
subjects; it shows how the two groups naturally form two clusters. The supervised anal-
ysis was performed by applying orthogonal least square partial discriminant analysis
(OPLS-DA), which implies a rotation of the corresponding PLS-DA models and simpli-
fies the information into a predictive component, while maintaining the same predictive
capacity. Variable Importance in Projection (VIP), obtained from the OPLS-DA model,
highlights the contribution of the analytes, Figure 3C, in discriminating groups in the
OPLS-DA model. The Y-axis shows the VIP scores corresponding to each variable on the
X-axis, using VIP > 1 as the selected parameters. Among the polyamines, acetyl-spermidine,
spermidine, acetyl-putrescine, putrescine, and ornithine are the variables that discriminate
these two groups the most. The analysis is in agreement with the results obtained with the
Kruskal–Wallis test for acetyl spermidine, spermidine, acetyl-putrescine, putrescine and
ornithine (p < 0.05). To avoid model overfitting, the OPLS-DA models were validated with
a 300-fold permutation, Figure 4B. The resulting regression lines showed an R2 intercept at
0.0763 and a Q2 intercept at −0.291, indicating a valid model.
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Figure 4. (A) OPLS-DA, NHL patients (green), LH patients (blue) and healthy patients (red). (B) Vari-
able importance in projection (VIP) plot: important features identified by OPLS-DA in descending
order of importance. The graph represents the relative contribution of parameters to the variance
between individuals. High value of VIP score indicates great contribution to the group separation
(LNH+LH vs. healthy). (C) Permutation (LNH+LH vs. healthy).

The analysis was also extended to patients with Hodgkin’s lymphoma. The group
of lymphoma patients (LNH and LH) was compared with the group of healthy patients
(Figure 4). The model shows a natural separation between healthy subjects and subjects
with lymphomas (LNH + LH). The VIP scoring variables are shown in Figure 4C. Acetyl-
spermidine, acetyl-putrescine, putrescine, spermidine, and ornithine are the discriminating
variables for the groups (LNH+LH vs. Healthy). A permutation testing is shown in
Figure 4B to validate the classification model. The resulting regression lines showed an R2
intercept at 0.0371 and a Q2 intercept at −0.141.

Outliers can be seen in the above projections (Figures 3 and 4). We analyzed the clinical
characteristics of outlier LNH 34, a patient with a particularly aggressive LNH subtype
(DLBCL anaplastic variant CD30+) associated with a particularly high AISI (3450.20) and
an NLR of 9.27. The patient also had a previous HCV infection. Similarly, outlier LNH 35
and LNH 21 had the same subtype as LNH 34 (DLBCL) with particularly high AISI (2105.79
and 1694.81 respectively), NLR of 4.31 and 9.84, respectively, and previous HCV infection.
LNH 17 and LNH 47 were diagnosed with SLL and MCL, respectively, stage IV disease
onset and bone marrow infiltration. LNH 17 presented with AISI 1074.34 and an NLR of
7.79. LNH 47 presented at diagnosis with lymphoid hyperleukocytosis (WBC 42.500/mmc,
L 33.400/mmc) and extremely low AISI and NLR of 39.23 and 0.07, respectively. The LH
2 outlier is a patient with a classic variant of Hodgkin’s lymphoma, clinically aggressive
(stage IV, symptoms B, IPS 4) neutrophil hyperleukocytosis (WBC 26.770/mmc, Neutrophils
19,110/mmc), increased monocyte count (1300/mmc), associated with a fairly high AISI
value (1612).

3.5. Analysis of LNH Patients with HCV+ Infection

Following the identification of LNH outliers (LNH 34, LNH 35, LNH 21), we wanted
to compare HCV+ (positive) and HCV− (negative) non-Hodgkin’s lymphoma patients; the
biochemical parameters are shown in Table 4, and the levels of polyamines, related amino
acids and metabolites are shown in Table 5. The two groups differed in absolute neutrophil
count and MRL value, which were increased in HCV+ patients compared to HCV− patients
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(Table 4). Acetyl-putrescine differed between HCV+ patients compared to HCV− patients
in a statistically significant manner (* p-value = 0.008) (Table 5, Supplementary Figure S4).

Table 4. Clinical parameters comparison of NHL patients (HCV+ and HCV−). Unpaired Student’s
t-test between HCV+ and HCV− was applied, * p-value < 0.05 as statistically significant.

LNH HCV+ LNH HCV− SIGNIFICANCE

NUM 4 59

WBC 13.62 ± 6.23 9.79 ± 10.61 p-value = 0.48

HGB 12.25 ± 2.34 12.40 ± 1.85 p-value = 0.87

RDW 14.45 ± 2.20 14.81 ± 2.65 p-value = 0.78

PLT 311.25 ± 108.923 230.49 ± 107.24 p-value = 0.15

NEUT 10.72 ± 5.15 5.32 ± 4.31 * p-value = 0.01

LYMPH 1.85 ± 0.90 3.56 ± 9.32 p-value = 0.71

MONO 0.91 ± 0.77 0.67 ± 0.87 p-value = 0.59

LMR 38.25 ± 14.60 7.47 ± 74.5 * p-value = 0.008

NLR 6.37 ± 3.79 4.39 ± 5.79 p-value = 0.50

PLR 191.5 ± 93.12 167.84 ± 135.70 p-value = 0.73

SIRI 6.24 ± 4.16 3.60 ± 8.98 p-value = 0.56

AISI 1814.56 ± 1418.94 1107.97 ± 3684.1 p-value = 0.70

Table 5. Levels of polyamines, related amino acids and metabolites in LNH patients (HCV+ and
HCV−). Student’s t-test was applied unpaired between HCV+ and HCV−, * p < 0.05 as statisti-
cally significant.

LNH HCV+ LNH HCV− SIGNIFICANCE

POLIAMMINE 4 59

PUTRESCINE 14.29 ± 1.24 13.88 ± 1.28 p-value = 0.53

SPERMIDINE 9.82 ± 1.93 9.14 ± 1.84 p-value = 0.47

SPERMINE 5.07 ± 1.29 6.11 ± 1.39 p-value = 0.15

ACETYL-
PUTRESCINE 2.42 ± 0.18 1.91 ± 0.48 * p-value = 0.039

ACETYL-
SPERMIDINE 3.11 ± 0.40 2.96 ± 0.46 p-value = 0.53

ACETYL-
SPERMINE 1.40 ± 0.34 1.74 ± 0.38 p-value = 0.08

AGMATINE 58.51 ± 8.50 59.01 ± 7.39 p-value = 0.89

CADAVERINE 2.33 ± 0.64 2.35 ± 0.42 p-value = 0.93

ORNITHINE 2.11 ± 0.42 × 103 1.91 ± 0.49 p-value = 0.43

LISINE 5.99 ± 0.89 × 103 6.12 ± 0.77 p-value = 0.75

ARGININE 7.46 ± 0.19 × 103 7.24 ± 0.48 p-value = 0.38

S-ADENOSYL
METHIONINE 202.15 ± 40.26 214.02 ± 35.33 p-value = 0.52

GABA 43.55 ± 18.42 39.64 ± 13.20 p-value = 0.57
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4. Discussion

Lymphomas represent one of the most heterogeneous groups of all malignant tumors
in medicine. This heterogeneity is currently a double-edged sword. On the one hand,
it has created an evolutionary way of classifying these diseases, and on the other hand,
it has allowed the identification of unique biological features. These features have led
to new targets and generated an exuberance for new drugs. Heterogeneity has created
new subtypes, an ever-increasing number. Each subtype is reclassified and recategorized
on the basis of a set of cellular and molecular descriptors. This paradigm has led to
an increasingly dense search for new, increasingly personalized diagnostic biomarkers.
The study under consideration is based on the search, in amino acid catabolism, for a
peculiar biological signature, a sort of fingerprint of this multifaceted pathology. Various
diseases, particularly oncological ones, have been associated with increased concentrations
of polyamines, with these being considered biomarkers. This study estimated the role of
polyamines in the diagnostic and potentially prognostic assessment of lymphomas. Using
liquid chromatography combined with high-resolution mass spectrometry (LC-HRMS), we
were able to identify some polyamines that appear to differ between lymphoma patients and
healthy controls. The multivariate analysis investigated how these two populations (healthy
and lymphoma) tend to cluster naturally. The results indicate that the profile of analytes in
serum could provide information not only on general metabolic changes but also on clinical
outcomes in lymphoma. Studying the individual analytes in a differential global profile,
we found that the concentrations of both the acetylated polyamines, acetyl-spermidine and
acetyl-putrescine, and the non-acetylated polyamines, spermidine, putrescine and ornithine
were significantly different between healthy and lymphoma patients. Comparing NHL
and LH patients, we found that spermidine differed between the two groups, although
the small number of LH patients resulted in an unbalanced data set. The results show that
inflammation parameters, such as NLR, PLR, LMR, SIRI and AISI, can be independently
considered valid circulating diagnostic markers in lymphoma. They are easily included
in the initial evaluation of the hematological patient. In addition, outlier results suggest
that a certain polyamine pattern may reflect a more aggressive disease and also provide
potential information on various host factors. Our study is not without limitations due to
the fact that the samples were analyzed retrospectively and that the group represented by
Hodgkin’s lymphomas was numerically too small compared to non-Hodgkin’s lymphomas.
Although the results will need to be validated in a larger cohort of patients, the method
seems promising and could become a tool to support diagnostic stratification. Furthermore,
by extending the study, examining serum samples from patients at various stages of
treatment and/or after disease progression or relapse, polyamines could also be useful as
prognostic biomarkers, becoming a tool to support prognostic stratification of lymphoma
patients, predict the clinical course, discriminate very high-risk patients, and select the best
treatment options and personalized therapy. The hope is that behind these outliers, hitherto
considered anecdotal in the context of oncology studies, lies the key to a new avenue in
the search for new biomarkers. The results suggest that a single biomarker probably could
not reflect the heterogeneous picture of lymphomas. A reasonable conclusion could be
to include a broader set of biomarkers to build a predictive model in accordance with
personalized medicine.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/diagnostics12092151/s1, Figure S1: Box plots of clinical data (p < 0.05) in
the three groups (NHL, HL, and HEALTHY), Figure S2: Kruskal-Wallis Box plots of the polyamines
in the three groups HEALTHY, NHL and HL. (* p < 0.05), Figure S3: Polyamines Box plots in the
two groups NHL and HL. The p-value corresponds to the results of the unpaired Student’s t-test
significant difference for acetyl-spermine (* p < 0.008), Figure S4: Box plots of the parameters found
to be statistically significant, * p < 0.05, in HCV+ and HCV−.

https://www.mdpi.com/article/10.3390/diagnostics12092151/s1
https://www.mdpi.com/article/10.3390/diagnostics12092151/s1
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NHL non-Hodgkin’s lymphoma
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T cells T lymphocytes
WHO World Health Organization
NLR neutrophil/lymphocyte ratio ()
dNLR derived NLR [= neutrophils/(white blood cells − neutrophils ratio)]
PLR platelet/lymphocyte ratio
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NLR neutrophil-to-lymphocyte ratio
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AMC absolute monocyte count
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HPLC-HRMS high-performance liquid chromatography/high-resolution mass spectrometry
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MAD median absolute deviation
OPLS-DA orthogonal partial discriminant analysis of the minimum square
PLS-DA partial least squares discriminant analysis
VIP variable importance parameter
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PLT platelet
RDW red cell distribution
NEUT neutrophils
LYMPH lymphocytes
MONO monocytes
HBV Hepatitis B Virus
HCV Hepatitis C Virus
GABA gamma-aminobutyric acid
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