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Abstract: Stropharia rugosoannulata uses straw as a growth substrate during artificial cultivation
and has been widely promoted in China. However, its fruiting body formation and development
processes have not been elucidated. In this study, the developmental transcriptomes were analyzed
at three stages: the mycelium (G-S), primordium (P-S) and fruiting body (M-F) stages. A total of
9690 differentially expressed genes (DEGs) were identified in the different developmental stages.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses
showed that these DEGs were involved mainly in hydrolase activity, structural molecule activity and
oxidoreductase activity as well as xenobiotic biodegradation and metabolism and energy metabolism
pathways. We further found that the higher expression of most carbohydrate enzyme (i.e., GH, CE,
CBM, AA and PL) genes in the hyphal (i.e., G-S) stage was related mainly to substrate degradation,
while the upregulation of glycosyltransferase (GT) gene expression in the P-S and M-F stages may
be related to cell wall synthesis. In addition, we found that CO2-sensing-related genes (i.e., CA-2,
CA-3, PKA-1 and PKA-2) were upregulated in the P-S and M-F stages, heat shock protein genes
(HSP60 and HSP90) were significantly downregulated in the P-S stage and upregulated in the M-
F stage and the transcription factors (i.e., steA, MYB, nosA, HAP1, and GATA-4/5/6) involved in
growth and development were significantly upregulated in the P-S stage. These results suggest
that environmental factors (i.e., CO2 and temperature) and transcription factors may play a key role
in primordium formation. In short, this study provides new insights into the study of stimulating
primordia formation affecting the development of fruiting bodies of S. rugosoannulata.

Keywords: Stropharia rugosoannulata; differentially expressed genes; carbohydrate enzyme genes;
environmental factors; transcription factors; fruiting body development

1. Introduction

S. rugosoannulata Farl. ex Murrill, commonly known as the wine-cap Stropharia mush-
room or king Stropharia, is a nutritional mushroom that is widely distributed in northern
temperate zones [1,2]. S. rugosoannulata is recommended by the Food and Agriculture and
Organization (FAO) for cultivation in developing countries [3]. S. rugosoannulata can be
grown on various raw materials, such as rice straw, wheat straw, corn straw and dead
tree branches, and the mushroom is cultivated in fields, woodlands and simple green-
houses. In recent years, studies have shown that the cultivation of S. rugosoannulata can
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increase soil organic carbon by 57.4–61.6% in topsoil (0–10 cm) and by 24.8–39.9% in sub-
soil (10–30 cm) [4]. However, the molecular mechanisms underlying the formation and
development of fruiting bodies remain unclear.

To study the growth and development process of S. rugosoannulata, we optimized a
set of appropriate operating procedures from mycelial growth to fruiting body maturation
under factory conditions including light, temperature, humidity and carbon dioxide (CO2)
concentration control. Compared with outdoor cultivation methods, our factory standard
operation method will be better for studying the life history of S. rugosoannulata. The
life cycle of Agaricus bisporus includes two stages, vegetative hyphae and fruiting body
formation, and the vegetative hyphae are considered to provide nutrients for the growth
of fruiting bodies [5]. S. rugosoannulata is similar to A. bisporus, and both fungi use straw
as a substrate and share many similarities in their life histories. The carbohydrate active
enzyme (CAZyme) that degrades the substrate has been widely studied, and the CAZyme
of A. bisporus during the vegetative hyphal stage and the fruiting body stage has also
been analyzed in detail [5]. Moreover, CAZyme genes related to the degradation of plant
biomass components are mostly involved in the hyphal stage, while fruiting bodies mainly
express CAZyme genes related to the synthesis and modification of fungal cell wall [5]. In
addition, a comparison of the CAZyme genes of the three litter/straw-degrading species
(i.e., A. bisporus, Volvariella volvacea and Coprinopsis cinerea) revealed that they have similar
compositions, but there were significant differences in the number of genes involved [6].
Therefore, it is necessary to further study whether the composition and number of CAZyme
genes of S. rugosoannulata are different from those of other litter/straw-degrading fungi.

Studies have shown that a suitable temperature for the growth of vegetative hyphae
of S. rugosoannulata is 5–32 ◦C, the primordium does not differentiate at temperatures over
25 ◦C and the fruiting body quality deteriorates at temperatures over 20 ◦C in outdoor
cultivation [7]. Mushroom-forming fungi differentiate by sensing several environmental
factors (i.e., nutrient, temperature, CO2 concentration and light conditions) for fruiting
body formation [8]. Starvation is a critical signal of environmental deterioration. Therefore,
nutrients are critical signals for sexual reproduction in mushroom-forming fungi [8]. Studies
have shown that fruiting bodies are more sensitive to CO2 concentrations in the early stages
of development and that high CO2 affects the synthesis of the cell wall component R-glucan
and fruiting body cell morphology [9–11]. Moreover, temperature decrease-induced fruiting
body formation has been applied in many mushrooms [12] such as Lentinula edodes [13], A.
bisporus [14] and Flammulina velutipes [15]. Light can also induce fruiting bodies or promote
fruiting body production, such as in L. edodes [16], Polyporus (Favolus) arcularius [17] and C.
cinerea [18]. However, the presence of light may not always be essential for the induction of
fruiting bodies [8]. Interestingly, previous research has shown that the formation of fruiting
bodies in S. rugosoannulata is not sensitive to light [19].

At present, RNA-seq analysis has been widely used in fruiting body development
research on various edible and medicinal fungi including S. commune [20], A. bisporus [14],
Ganoderma lucidum [21], C. cinerea [22], F. velutipes [23], V. volvacea [24], L. edodes [25] and
Chinese cordyceps [26]. However, unlike in ascomycetes, the molecular mechanism for
fruiting body development in basidiomycetes is not well understood [8], mainly due to the
long cultivation cycle of basidiomycetes and the participation of various environmental
factors in the formation and development of fruiting bodies.

In this study, nine samples of S. rugosoannulata at different growth development stages
were used as materials for RNA-seq analysis. Based on a combination of GO, KEGG
and qRT–PCR correlation analyses, this study identified differentially expressed genes
(DEGs) in the growth development stages. In particular, we focused on the differential
expression of CAZyme genes, CO2-responsive genes, heat shock proteins and transcription
factors. This work provides important insights into S. rugosoannulata development and the
environmental factors that affect the formation and development of fruiting bodies. It also
provides a theoretical foundation for the factory production of S. rugosoannulata.
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2. Materials and Methods
2.1. Collection of S. rugosoannulata Materials at Different Developmental Stages

The S. rugosoannulata strain, DQ-1 (CGMCC5.2211), was deposited in the China Gen-
eral Microbiological Culture Collection Center. The solid medium consisted of 50% corncob,
30% sawdust, 15% rice bran, 4% wheat bran and 1% calcium carbonate. After complete mix-
ing, the substrate was packed into polypropylene cultivation bags (average of 1000 g/bag
with a moisture content of 63–65%), sterilized at 121 ◦C for 2.5 h and inoculated with a
pure culture of S. rugosoannulata. Then, the cultivation bags were kept at 22–25 ◦C and
65–70% relative humidity in the dark until the cultivation substrate was fully covered
by mycelia. Then, 2.5 kg of rice straw (moisture content 68%) was transferred to each
cultivation basket, and pure culture mycelium of S. rugosoannulata was inoculated. After
cultivation in the dark for 25 days, the cultivation basket was placed in the factory work-
shop at Shanghai Guosen Biotech Co., Ltd. (Shanghai, China), for cultivation. Temperature,
humidity and CO2 concentration were controlled and recorded by the intelligent IoT system
provided by Agricultural Engineering Manufacturing (AEM, Maasbree, The Netherlands),
and the control parameters were corrected on the basis of measurements made with a
thermometer, hygrometer and CO2 detector. Samples were collected at the mycelial stage
(25 d), primordium stage (35 d) and fruiting body stage (45 d) of cultivation and frozen
at −80 ◦C. Three biological replicates of each stage were used for the RNA-seq analysis
and subsequent experiments.

2.2. Total RNA Isolation, cDNA Library Preparation and Illumina Sequencing

Total RNA was extracted from the samples using TRIzol® Reagent according to the
manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA), and genomic DNA was
removed using DNase I (TaKaRa, Dalian, China). Then, RNA quality was determined
using a 2100 Bioanalyzer (Agilent, Palo Alto, CA, USA) and quantified using an ND-2000
system (NanoDrop Technologies, Wilmington, DE, USA). A high-quality RNA sample
(OD260/280 = 1.8~2.2, OD260/230 ≥ 2.0, RIN ≥ 6.5, 28 S/18 S ≥ 1.0, >10 µg) was used to
construct a sequencing library. RNA-seq transcriptome libraries were prepared using a
TruSeqTM RNA Sample Preparation Kit from Illumina (San Diego, CA, USA) with 1 µg of
total RNA. Briefly, messenger RNA was isolated with poly(A) selection by oligo(dT) beads
and fragmented using fragmentation buffer. cDNA synthesis, end repair, A-base addition
and ligation of the Illumina-indexed adaptors were performed according to Illumina’s
protocol. Libraries were then size-selected for cDNA target fragments of 200–300 bp on 2%
Low Range Ultra Agarose followed by PCR amplification using Phusion DNA polymerase
(NEB) with 15 PCR cycles. After quantification by TBS380, paired-end libraries were
sequenced by Illumina NovaSeq 6000 sequencing (150 bp*2, Shanghai BIOZERON Co., Ltd,
Shanghai, China). The datasets presented in this study can be found online in the NCBI
repository (https://www.ncbi.nlm.nih.gov/ (accessed on 19 March 2021)) under accession
number: SRP311165.

2.3. Read Quality Control and Mapping

The raw paired-end reads were trimmed and quality controlled using Trimmomatic
with the following parameters: SLIDINGWINDOW, 4, and 15 MINLEN, 75 (version 0.36)
(http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic (accessed on 1
June 2020)). Then, clean reads were separately aligned to the reference genome in the
orientation mode using HISAT2 software (https://ccb.jhu.edu/software/hisat2/index.
shtml (accessed on 1 June 2020)). This software was used to map the default parameters.
Quality assessment of these data was performed with Qualimap v2.2.1 (http://qualimap.
bioinfo.cipf.es/ (accessed on 3 June 2020)), and HTSeq (https://htseq.Readthedocs.io/en/
release_0.11.1 (accessed on 3 June 2020)) was used to count the reads of each gene.

https://www.ncbi.nlm.nih.gov/
http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic
https://ccb.jhu.edu/software/hisat2/index.shtml
https://ccb.jhu.edu/software/hisat2/index.shtml
http://qualimap.bioinfo.cipf.es/
http://qualimap.bioinfo.cipf.es/
https://htseq.Readthedocs.io/en/release_0.11.1
https://htseq.Readthedocs.io/en/release_0.11.1
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2.4. Differential Expression Analysis and Functional Enrichment

To identify DEGs between the two different growth stages of S. rugosoannulata, the
expression level of each gene was calculated using the fragments per kilobase of exon
per million mapped reads (FRKM) method. The R statistical package “edgeR” (Empiri-
cal analysis of Digital Gene Expression in R) (http://www.bioconductor.org/packages/
release/bioc/html/edgeR.html/ (accessed on 5 June 2020)) was used for the differential
expression analysis. The DEGs between two samples (P-S vs. G-S, M-F vs. P-S and M-F
vs. G-S) were selected using the following criteria: a logarithmic fold change greater
than 2 and a false discovery rate (FDR) less than 0.05. To understand the functions of the
DEGs, GO functional enrichment and KEGG pathway analysis were carried using Goa-
tools (https://github.com/tanghaibao/Goatools (accessed on 6 June 2020)) and KOBAS
(http://kobas.cbi.pku.edu.cn/home.do (accessed on 6 June 2020)). DEGs were significantly
enriched in GO terms and metabolic pathways when their Bonferroni-corrected p-value
was less than 0.05.

2.5. Validation of Gene Expression by Quantitative Real-Time Polymerase Chain Reaction
(qRT–PCR)

Approximately 2 µg of total RNA from S. rugosoannulata at the three growth stages
(i.e., the hyphal (G-S), primordium (P-S), and mature-fruiting (M-F) stages) was reverse-
transcribed by M-MLV reverse transcriptase (Takara, Dalian, China) using oligo (dT) as the
primer. qRT–PCR was performed using SYBR (Takara, Dalian, China) [27]. The primers
and internal reference gene (18 S ribosomal RNA) are listed in Table S4. Moreover, relative
gene expression was analyzed using the 2−∆∆Ct method [28], and each experiment was
performed in triplicate.

2.6. Statistical Analysis

All experimental data presented in this paper are based on three independent samples
to ensure that the trends and relationships observed in the cultures were reproducible.
The data and graphs were processed using GraphPad Prism 6.0. Differences among
treatments were analyzed by one-way analysis of variance (ANOVA) combined with
Duncan’s multiple range test at a probability of p < 0.05.

3. Results
3.1. Analysis of the Morphological Features of S. rugosoannulata

Under factory cultivation conditions, the mycelium completely covered the cultivation
substrate after culturing at 23 ◦C for 25 days (Figure 1A). To stimulate the formation of
primordia, the temperature was gradually lowered from 23 to 12 ◦C, the carbon dioxide
concentration was also gradually reduced (3000 to 2000 ppm), and the humidity was
increased (60% to 95%). When the mycelium climbed to the surface of the peat soil, the
temperature was gradually increased (12 to 15 ◦C), which promoted mycelial kinking and
the formation of a spherical primordium with a white villus appearance and hard texture
(Figure 1). After the primordium formed, the temperature was kept at 15 ◦C, the carbon
dioxide was 2000 ppm, and the air humidity was greater than 80% (Figure 1B–D). The
mushroom cap gradually turned from white to dark red, the annulus formed and extended
outward, and tiny scale formations were designated mature fruiting bodies (Figure 1A).

3.2. Global Transcriptomic Analysis of S. rugosoannulata and Identification of DEGs

To describe the patterns of gene expression during growth and development, nine
libraries were constructed using samples from three different growth stages of S. rugosoan-
nulata. A total of 558.99 million raw reads were generated by Illumina sequencing. After
applying cleaning and quality control steps, 528.31 million clean reads were obtained, and
the Q30 value of the base ratio was higher than 94.16% (Table S1). Moreover, 91.65–94.75%
of the reads could be mapped to the S. rugosoannulata genome (Table S1). The obtained
RNA sequences were assembled using the sequence clustering software Trinity, with

http://www.bioconductor.org/packages/release/bioc/html/edgeR.html/
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html/
https://github.com/tanghaibao/Goatools
http://kobas.cbi.pku.edu.cn/home.do
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11,459 transcripts and 9646 genes annotated via the NR, STRING gene, GO, COG, KEGG,
and SWSS databases with an E-value of 10−5. A total of 83.9% were annotated as known
functional genes.
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Figure 1. Different growth and development stages of S. rugosoannulata under industrialized condi-
tions. (A) Different developmental stages of S. rugosoannulata—G-S: hyphal growth stage; P-S:
primordium stage; M-F: mature fruiting body stage. (B) Temperature changes during growth
and development. (C) Changes in carbon dioxide concentration during growth and development.
(D) Humidity changes during growth and development.

Based on a DEG analysis of the transcriptomes of the consecutive developmental
stages of S. rugosoannulata, a total of 2969 DEGs were identified between the P-S and G-S
stages, which covered 25.82% of the annotated genes, with 1679 genes being upregulated
and 1290 being downregulated (Figure 2A). A total of 3287 DEGs were identified between
the M-F and P-S stages, and the numbers of upregulated genes (1660) and downregulated
genes (1627) were not very different (Figure 2A). The largest number of DEGs was identified
between the M-F and G-S stages (3434), and the number of upregulated genes (1907) was
significantly greater than the number of downregulated genes (1527). A Venn diagram was
used to analyze the DEGs between stages, and 709 DEGs were found to overlap among
the three groups. Moreover, the M-F and P-S comparisons had the largest number of
unique DEGs with 774 genes (Figure 2B). Further analysis of the expression patterns of the
709 overlapping DEGs showed that some DEGs were significantly downregulated after
the G-S stage, but more genes were upregulated in the P-S and M-F stages, and the gene
expression patterns in the P-S and M-F stages were more similar (Figure 2C). The overall
gene expression patterns suggested differences in gene expression among the growth stages,
but the P-S and M-F stages were the most similar (Figure 2D). These results revealed that
a large number of DEGs are required to complete the process from mycelial kinking to
fruiting bodies and further development.
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expression levels in different growth and development stages.

3.3. GO Enrichment and KEGG Pathway Analysis for DEGs

Based on GO functional classification, all DEGs were classified into three different
categories: biological process (BP), cellular component (CC) and molecular function (MF).
Then, with a p-value ≤ 0.05 as the threshold for significant enrichment, the classifications
with significant differences were identified. The top 30 categories for each comparison
are displayed in Table S2, and the results show that in the comparison of P-S vs. G-S, the
significantly enriched terms involved in MFs and BPs included hydrolase activity (543),
small molecule metabolic process (391), small molecule biosynthetic process (198) and
carbohydrate derivative metabolic process (174) (Figure 3). This finding indicates that the
substrate needs to be degraded to provide nutrients for growth in the process of mycelium
kinking to form fruiting bodies. In the M-F vs. P-S stage comparison, the processes that
involved more genes included structural molecule activity (165), organelle fission (135),
ribosome (119), mitochondrial protein complex (102), structural constituent of ribosome
(100) and meiosis I (67) (Figure 3), indicating that a large amount of energy synthesis is
involved in the growth and development of fruiting bodies to promote cell proliferation,
differentiation and sexual reproduction. In addition, the M-F vs. G-S comparisons were as-
sociated mainly with oxidoreductase activity (275), carbohydrate metabolic processes (169),
chromosome segregation (129) and extracellular regions (112) (Figure 3), also indicating the
degradation of the substrate, the meiotic process of fruiting body sexual reproduction and
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the oxidative stress process of cells being challenged by environmental factors occurred
from the G-S stage to the M-F stage.
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The DEGs were mapped to the KEGG database, and an enrichment analysis was
performed to determine their functions. The top 20 KEGG pathways with significant
enrichment of these DEGs are shown in Table S3. The P-S vs. G-S comparison involved
mainly phenylpropanoid biosynthesis (ko00940), cyanoamino acid metabolism (ko00460),
metabolism of xenobiotics by cytochrome P450 (ko00980), polycyclic aromatic hydrocar-
bon degradation (ko00624) and naphthalene degradation (ko00626). These pathways
belong mainly to xenobiotic biodegradation and metabolism and the biosynthesis of other
secondary metabolites, which also suggests that the mycelial stage involves mainly the
degradation of culture substrates and synthesis of secondary metabolites. The ribosome
pathway (ko03010), an important pathway for protein synthesis, was significantly enriched
in the M-F vs. P-S comparison. Moreover, the oxidative phosphorylation (ko00190), pro-
teasome (ko03050), biosynthesis of unsaturated fatty acids (ko01040) and meiosis–yeast
(ko04113) pathways were also significantly enriched during the development of fruiting
bodies. In addition, in the M-F and G-S comparisons, we found that the DNA replication
(ko03030), mismatch repair (ko03430), glycosphingolipid biosynthesis (ko00603), meiosis-
yeast (ko04113), and amino sugar and nucleotide sugar metabolism (ko00520) pathways
were mainly enriched (Table S3). Overall, the growth process from vegetative mycelium to
mature fruiting body involved multiple pathways such as substrate degradation, energy
metabolism, reproductive growth and response to environmental changes.
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3.4. Differential Expression of Carbohydrate Enzyme Genes in Different Growth Developmental Stages

Carbohydrate-active enzymes are a large class of important enzymes divided into six
types, namely, glycoside hydrolases (GHs), carbohydrate esterases (CEs), carbohydrate-
binding modules (CBMs), auxiliary activities (AAs), glycosyl transferases (GTs) and polysac-
charide lyases (PLs), and they have functions such as degradation, modification and glyco-
sidic bond formation [29]. Therefore, we tracked the expression of carbohydrate enzyme
genes during the process of mycelial vegetative growth to the fruiting body stage (Figure 4).
GHs play an important role in the hydrolysis and synthesis of sugars and glycoconjugates
in organisms. In the GH family, the expression patterns during growth and development
were divided into three types: 12 GH family genes were significantly upregulated in the
G-S stage, 5 genes were significantly upregulated in the P-S stage and 4 genes were sig-
nificantly upregulated in the M-F stage (Figure 4A). In the CE family, nine genes were
significantly upregulated in the G-S stage, three genes were significantly upregulated in the
P-S stage and two genes were significantly upregulated in the M-F stage (Figure 4B). CBMs
mainly improve the catalytic efficiency of carbohydrate active enzymes. Among these
genes, nine had the highest expression in the G-S stage, two had the highest expression in
the P-S stage and CBM19 (DQGG009537) had the highest expression levels in the M-F stage
(Figure 4C). AA family enzymes are also key enzymes that improve degradation efficiency.
Ten genes were significantly upregulated in the G-S stage, and the AA7 (DQGG005602),
AA9 (DQGG010609) and AA5 (DQGG007622) genes were also significantly upregulated
in the M-F stage (Figure 4D). In addition, the GT and PL genes were much less abundant
than other carbohydrate enzymes. In the GT family, seven genes were significantly up-
regulated in the M-F stage, while the GT48 (DQGG007250), GT2 (DQGG006597) and GT2
(DQGG006533) family genes were upregulated in the G-S stage (Figure 4E). Moreover, five
genes were significantly upregulated in the G-S stage, and PL4 (DQGG005928) and PL14
(DQGG010936) were also significantly upregulated in the P-S stage (Figure 4F). This result
indicates that a large number of carbohydrate enzyme (i.e., GH, CE, CBM, AA and PL)
genes are upregulated during the vegetative growth stage of mycelium and mainly play
a role in substrate degradation. However, a small number of genes were more highly ex-
pressed in the fruiting body development stage, indicating that they might also participate
in fruiting body development.

3.5. DEGs Related to Primordium Formation during Growth Developmental Stages

The CO2 concentration and temperature in the growth environment of edible fungi are
the key conditions affecting the growth of mycelium and the formation and development
of fruiting bodies. Therefore, specific analyses of CO2-responsive genes, temperature-
responsive genes and transcription factors regulating fruiting body development were
performed. Carbonic anhydrase (CA, EC4.2.1.1) is a type of zinc metalloenzyme that can
efficiently catalyze the reversible reaction between CO2 and water to produce carbon acid
and hydrogen protons that regulate the balance of CO2/HCO3

− in the cell [30]. Therefore,
CA is an important enzyme enabling the mycelium to sense CO2. A total of three CA genes
were obtained in the genome of S. rugosoannulata. CA-1 (DQGG004716) had the highest ex-
pression level in the G-S stage, while its expression level was downregulated in other stages,
and CA-2 (DQGG004326) and CA-3 (DQGG008753) also had the highest expression levels in
the M-F and P-S stages, respectively (Figure 5B). Studies have shown that CO2 can regulate
the growth of mycelium through the cAMP signaling pathway [31]. Accordingly, we found
that two adenylyl cyclase genes (i.e., DQGG003026 and DQGG004524) that regulate cAMP
synthesis were upregulated at the P-S and M-F stages (Figure 5C). However, the cAMP-
dependent protein kinase (PKA) genes downstream of cAMP regulation were further found
to be differentially expressed, of which two genes (i.e., DQGG007390 and DQGG001349)
were upregulated at the P-S and M-F stages, and the other two (i.e., DQGG000595 and
DQGG004694) were downregulated (Figure 5D).
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Heat shock proteins (HSPs) are typical proteins that respond to temperature changes
to prevent damage to the mycelium caused by high temperature. The hsp90-domain-
containing protein (DQGG001016), hsp70 (DQGG010653), hsp88 (DQGG004214) and hsp31
(DQGG001388) were the most highly expressed in the G-S stage among all HSP DEGs. Low
temperature (12 ◦C) is an effective stimulus for the formation of primordia, and we found
that most genes were significantly downregulated in the P-S stage (Figure 6A). However,
11 more HSP genes were upregulated in the M-F stage, suggesting that HSPs may be
involved in resistance to environmental stress during growth and development.

Transcription factors are key proteins that ensure that the target gene is expressed
at a specific time and location with a specific intensity. In the P-S stage, 11 transcription
factors had higher expression levels. At the same time, there were six transcription fac-
tors with the highest expression in the M-F stage (Figure 6B). Notably, the transcription
factors that might be involved in the regulation of growth and development mainly in-
cluded steA (i.e., DQGG000640 and DQGG001965), MYB (i.e., DQGG003605), C6 finger
domain-containing nosA (i.e., DQGG002798), HAP1 (i.e., DQGG002147) and GATA-4/5/6
(i.e., DQGG008309).

3.6. Validation of Transcriptomics Data by RT–qPCR

Based on gene expression patterns, typical genes involved in growth and develop-
ment and detected as DEGs were selected for qRT–PCR analysis. Among the CAZymes,
nine enzyme genes were identified: GH7 (i.e., DQGG002368), GH11 (i.e., DQGG004511),
CE1 (i.e., DQGG010182), CE5 (i.e., DQGG000985), CBM5 (i.e., DQGG006344), AA9-1
(i.e., DQGG009829), AA9-2 (i.e., DQGG009624), GT2 (i.e., DQGG006597) and PL14
(i.e., DQGG010936) (Figure 7A). Most of these enzyme genes were expressed at the highest
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level in the G-S stage, similar to the transcriptome expression pattern. In addition, we also
verified the expression patterns of two carbonic anhydrases (i.e., CA-1 (DQGG004716) and
CA-2 (DQGG008753)), two cAMP-dependent protein kinases (i.e., PKA-1(DQGG004293) and
PKA-2 (DQGG007322)), two HSP genes (i.e., hsp60 (DQGG011020) and hsp90 (DQGG001016))
and two transcription factors (TF-MYB (DQGG003605) and TF-STEA (DQGG001965))
(Figure 7B–E). This result indicates that these qRT–PCR expression patterns and the RNA-
Seq results at different developmental stages have similar trends, further validating the
RNA-Seq results.
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CAZyme genes (i.e., GH7, GH11, CE1, CE5, CBM5, AA9-1, AA9-2, GT2 and PL14) in the growth and
development stages; (B) two differentially expressed carbonic anhydrase genes (i.e., CA-1 and CA-2)
in the growth and development stages; (C) two differentially expressed PKA protein kinase genes
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development stages. All data are presented as the means ± standard deviations (SDs) of three
independent experiments. Bars with different letters are significantly different at p < 0.05 according
to Duncan’s multiple range test.

4. Discussion

S. rugosoannulata is widely cultivated in China because of its easy cultivation and
extensive management and the use of agricultural waste as a substrate for growth [32]. S.
rugosoannulata not only has high commercial value but also has a certain medicinal value
(i.e., preventative effect against coronary heart disease, hyperglycemia and solid tumor
S-180) [33]. However, because S. rugosoannulata can be cultivated only according to seasonal
temperature changes, such as in Eastern China, the mushroom is generally cultivated from
November to December in the first year and harvested from March to April in the second
year [7]. Therefore, the inability to industrialize production has always been an important
factor restricting the development of S. rugosoannulata. To improve industrial production,
we explored a factory cultivation model and used developmental transcriptomics to study
the growth and development of S. rugosoannulata.

In the present study, the transcriptomes of different developmental stages of S. ru-
gosoannulata were compared using the same batch of samples. We compared vegetative
growth at the hyphal (G-S) and primordium (P-S) stages and found 2696 DEGs, of which
1769 were upregulated and 1290 were downregulated. From the primordium stage (P-S) to
the mature fruiting body stage (M-F), a total of 3287 DEGs were identified, and 50.5% were
upregulated. Previous studies have found that C. cordyceps, C. cinerea and Pleurotus eryngii
have a large number of DEGs when hyphal and primordia transcriptomes are compared,
which is similar to our research results [22,26,34]. However, we found more DEGs in the
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comparison between the primordium and the mature fruiting body, while the number of
DEGs found in other species was lower. These results suggest that a large number of DEGs
are involved in the formation of complex phenotypes of fruiting bodies. Transcriptome
DEG enrichment analysis is usually used in fruiting body growth and development studies,
such as in C. cordyceps [26], Morchella importuna [35] and C. cinerea [22]. The GO enrichment
analysis showed that hydrolase activity, small molecule metabolic process, small molecule
biosynthetic process and carbohydrate-derivative metabolic process were significantly en-
riched in the comparison between the G-S and P-S stages. Moreover, hydrolase activity was
also significantly enriched in the hyphal stage of C. cordyceps [26]. Thus, substrate degra-
dation by the vegetative mycelium requires more hydrolytic enzymes. However, more
genes involved in structural molecule activity, organelle fission, ribosome, mitochondrial
protein complex, structural constituent of ribosome and meiosis I were enriched during the
P-S to M-F stages. This result indicates that in the development from the primordium to
the fruiting body, continuous cell proliferation and differentiation are required to promote
the growth and development of the fruiting body and gradually carry out the process of
sexual reproduction.

Carbohydrate-active enzymes degrade specific substrates (lignocellulose) and are
also involved in the growth and development of mushrooms and the synthesis of plant
lignocellulose [36,37]. In our research, we found that most carbohydrate enzymes, such as
exoglucanase (GH7), endo-1,4-β-xylanase (GH11), acetylxylan esterase (CE5), carbohydrate-
binding module family 5 protein (CBM5), glycoside hydrolase family 61 protein (AA9), gly-
cosyltransferase family 2 protein (GT2) and polysaccharide lyase family 14 protein (PL14),
were upregulated during the mycelial growth stage. In a study of A. bisporus, compost-
grown mycelium expressed a large diversity of CAZyme genes related to the degradation
of plant biomass components [5,36]. This finding is similar to the process of S. rugosoan-
nulata degrading the straw substrate during the mycelial growth stage. However, we also
found that some CAZyme genes, such as GH5 (DQGG007848), GH47 (DQGG009025), CE1
(DQGG003582), CBM13 (DQGG011341), AA9 (DQGG010609), GT2 (DQGG004795), GT48
(DQGG002416) and PL14 (DQGG010936), had higher expression levels in the primordium
stage and mature fruiting body stage. Among these genes, GT2 (DQGG004795) and GT48
(DQGG002416) belonged to chitin synthase and 1,3-β-glucan synthase, respectively. These
two enzymes are also key enzymes in the synthesis of chitin and glucan in fungal cell
walls [37], also implying that CAZyme genes may be involved in cell wall formation. Stud-
ies of A. bisporus have also found that multiple sugar degradation pathways are involved in
the mycelial stage, but only glycolysis pathways are involved in the fruiting body stage, and
the transfer of accumulated sugars to the fruiting body may involve specific carriers and
transporters [5,36]. We also found that CAZyme genes are involved in the sugar transport
process in the fruiting body stage of S. rugosoannulata. Therefore, the differential expression
of carbohydrate and enzyme genes is not only involved in the degradation of substrates
but may also be involved in nutrient utilization and cell wall synthesis.

Environmental factors that influence fruiting body induction in basidiomycetes in-
dividually or in combination include physical (i.e., light, temperature and injury) and
physiological (i.e., nutrients, gaseous components and hormones) factors [8]. However, we
further studied the fruiting body development of S. rugosoannulata under the conditions of
stable nutrition and strict control of CO2 concentration, temperature, humidity and light.
Our research revealed that the genes related to fungal CO2 sensing were differentially
expressed. In edible fungi, there are few reports on the response to CO2 changes and the
regulation of downstream gene expression. To date, seven carbonic anhydrase superfamily
protein genes related to CO2 regulation have been reported in F. velutipes [30]. In our study,
only three genes encoding carbonic anhydrase protein were found: CA1 (DQGG004716) had
the highest expression levels in the vegetative hyphae, and the highest expression levels
of CA2 and CA3 were observed in the primordia and fruiting bodies stages, respectively,
which may be the result of the response to CO2 through multiple genes. In addition, studies
have shown that CO2 can activate adenylyl cyclase, leading to increased cAMP levels.
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Subsequently, the cAMP pathway was activated, which controls a variety of cellular pro-
cesses including stress response and metabolism [31]. Another study found that the cAMP
pathway was also involved in the growth and development of Hypsizygus marmoreus [38].
Interestingly, the expression of the adenylyl cyclase gene was also upregulated during
the formation of primordia and fruiting body development of S. rugosoannulata, and the
PKA gene regulated by cAMP was also significantly upregulated. However, measuring the
cAMP content of the straw mushroom growth and development stage also showed that
the highest content occurred in the primordium stage [39], therefore suggesting that the
accumulation of cAMP caused by a series of enzymatic reactions induced by CO2 may play
an important role in primordium formation and fruiting body development.

Temperature change is also a key factor stimulating primordium formation [8]. This
study showed that the HSP genes were differentially expressed during the growth and
development of S. rugosoannulata. The expression of most genes was significantly down-
regulated during the formation of the primordium stage by a temperature downshift
(22–12 ◦C). At the same time, the expression of HSP genes were significantly upregulated
in the mature fruit body stage (Figure 6A). A temperature decrease is one of the necessary
conditions for the formation of fruiting bodies of L. edodes [13], A. bisporus [14], F. velu-
tipes [15] and P. eryngii subsp. tuoliensis (Bailinggu) [40]. The HSPs in S. rugosoannulata
were significantly affected by temperature, and mycelium resistance to low-temperature
stress may also be a key condition for stimulating the formation of primordia. We also
searched for cold shock proteins, and a previous study showed that F. velutipes presents
FDS protein genes that respond to temperature decreases [15]; however, none of these
genes were found among the annotated genes from transcriptome data. Therefore, this
aspect requires further study.

Transcription factors are involved primarily in the regulation of cell meiosis, growth
and development, primary metabolism, secondary metabolism, and drug resistance in
fungi [41,42]. Therefore, they are expected to be very important for regulating the forma-
tion, growth and development of S. rugosoannulata. We found that in the entire life cycle
of S. rugosoannulata, most of the transcription factors were expressed at a low level at the
hyphal stage but at the highest level at the primordium stage, such as zinc finger transcrip-
tion factor (DQGG001624), transcription factor steA (DQGG000640 and DQGG001965),
transcription factor MYB (DQGG003605), C6 finger domain transcription factor nosA
(DQGG002798), transcription factor HAP1(DQGG002147) and GATA-4/5/6 transcription
factor (DQGG008309). In rice blast fungus, Zn2Cys6 transcription factor genes involved in
pathogenicity frequently tend to function in multiple developmental stages [43]. In plants,
TF-MYB has been found to regulate plant growth and differentiation [44]. In Aspergillus,
the transcription factor steA is essential for sexual reproduction, while the transcription
factor nosA also plays an important role in stress responses and development [45,46]. In ad-
dition, the transcription factor HAP1 regulates the expression of oxygen-dependent genes,
which have a crucial role in growth, and GATA-4/5/6 transcription factors are also able to
regulate animal cell differentiation [47,48]. Previous research has shown that transcription
factors affect mycelial growth and both asexual and sexual development in Neurospora [49].
Therefore, transcription factors (i.e., steA, MYB, nosA, HAP1 and GATA-4/5/6) may have
important roles in the formation, development and sexual reproduction of fruiting bodies
of S. rugosoannulata.

5. Conclusions

In conclusion, our results revealed the differential expression patterns of genes in the
mycelium, primordium and fruiting body stages of S. rugosoannulata under factory cultiva-
tion conditions. Moreover, we detected 9690 DEGs in different growth and development
stages. Furthermore, we also found that CAZyme genes not only degrade the substrate
at the hyphal stage but may also play a role in the formation of cell walls during devel-
opment. Carbonic anhydrase responds to changes in CO2 concentration, and combined
with mediation of the synthesis of cAMP and HSPs in response to temperature changes,
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might also play a key role in primordium formation and fruiting body development. In
addition, we found that transcription factors are necessary for the regulation of primordium
formation. Overall, this report presents the first detailed developmental transcriptomic
study of S. rugosoannulata. These results will improve our understanding of the nutritional
and environmental factors that promote fruiting body formation and provide a foundation
for improving the industrialized cultivation of S. rugosoannulata.
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