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Lymphomas and plasma cell neoplasms are a heterogenous group of malignancies
derived from lymphocytes. They are a significant cause of patient morbidity and mortality.
Advances in morphologic, immunophenotypic and molecular techniques have led to
better understanding of the pathogenesis and diagnosis of these neoplasms. Advances in
treatment, particularly immune-based therapies, increasingly allow for targeted therapies
of these diseases. Mechanistic studies using animal models and clinical trials have
revealed the importance of the tumor microenvironment on disease pathogenesis,
progression, and response to therapy in these malignancies. Simultaneous progress in
diagnostic techniques has made it feasible to generate high-resolution, high-throughput
data from the tumor microenvironment with spatial context. As the armamentarium of
targeted therapies and diagnostic techniques grows, there is potential to harness these
advances to better stratify patients for targeted therapies, including immune-based
therapies, in hematologic malignancies.
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INTRODUCTION

Lymphomas and plasma cell neoplasms are a heterogenous group of malignancies arising from
lymphocytes at various stages of development. Depending on the cell of origin, morphology and
immunophenotype, they are broadly categorized into non-Hodgkin lymphomas, Hodgkin
lymphomas and plasma cell neoplasms (1). Non-Hodgkin lymphomas include the sub-categories
of non-Hodgkin B-cell lymphomas (B-NHL) that comprise majority of cases in this group and T-
cell/Natural-killer (T/NK) lymphomas. As a group, non-Hodgkin lymphomas are the seventh most
common type of cancer in the United States and are expected to account for 81,560 new cases and
20,720 deaths in 2021 (2). Hodgkin lymphomas are rarer and are expected to account for 8,830 new
cases and 960 deaths. For plasma cell neoplasms the corresponding numbers are 34,920 new cases
and 12,410 deaths, respectively in 2021 (3, 4). The clinical course and prognosis for these
heterogenous group of neoplasms is highly dependent on factors such as the specific type of
disease, age, ethnicity and geographic location (1). Advances in our understanding of the molecular
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Perincheri Lymphomas and Plasma Cell Neoplasms
pathology of these diseases has resulted in considerable progress
in the treatment of these diseases. Immune-based therapies using
monoclonal antibodies have become part of treatment regimens
for these diseases (discussed in greater detail below). More
recently, greater understanding of the tumor microenvironment
in these diseases has led to development of immune system
modulatory agents with therapeutic potential (3, 4). Future
treatment regimens are likely to rely on combinatorial strategies
using these agents. These developments are going to necessitate
the development of novel diagnostic and prognostic tools to
facilitate optimal treatment.
TUMOR MICROENVIRONMENT IN
LYMPHOMAS AND PLASMA
CELL NEOPLASMS

Scientific research on molecular mechanisms has expanded our
understanding of cancer pathogenesis leading to advances in
diagnostics and therapy. More recently, there has been increasing
focus in delineating the components of the tumor
microenvironment in enabling tumorigenesis and progression
(5). These have led to development of several immune based
therapies that have shown encouraging results both in epithelial
and hematologic malignancies (6).

Tumor Microenvironment in Lymphomas
The tumor heterogeneity of non-Hodgkin lymphomas is
reflected in the tumor microenvironment. The histologic
architecture of lymph node and extra-nodal lymphoid organs
is generally comprised of B-cell predominant follicles and
interfollicular T-cells (Figure 1A). Naive B cells exposed to
antigen home to follicles where they interact with follicular
dendritic cells that are antigen presenting cells. Further
maturation of B-cells occurs within germinal centers where
they switch-off expression of the anti-apoptotic BCL2 protein
rendering them vulnerable to apoptosis. Following the process of
somatic mutation and affinity maturation, B-cells either undergo
apoptosis or differentiate into memory/marginal zone B-cells
found in the marginal zone around the germinal centers or into
long-lived plasma cells (1). Macrophages present in the germinal
centers remove the apoptotic cells giving rise to the characteristic
tingible body macrophages seen in benign follicles (Figure 1A).
Morphologically, lymphomas are characterized by architectural
effacement of normal lymphoid tissue. The spatial distribution of
tumor cells in lymphomas is variable. Their distribution may
reflect the distribution of the cell of origin as in follicular
lymphomas (Figure 1B) (7). Follicular lymphomas are derived
from follicular germinal center B-cells. Typically, these tumors
arise due to an IGH-BCL2 translocation leading to BCL2
overexpression in contrast to the BCL2 switch-off seen in
normal follicles (8). Spatially the follicular lymphoma cells are
seen within enlarged follicles. In contrast, marginal zone
lymphomas that arise from post-germinal center B-cells show
an expansion of the marginal zone around the follicles. The
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growth of neoplastic cells in marginal zone lymphomas is often
due to continuous antigenic stimulation e.g., persistent
Helicobacter pylori infection. While eradication of the
underlying infection often leads to cure, over time marginal
zone lymphomas can acquire translocations that lead to cell
autonomous signaling independent of the microenvironment,
leading to refractory disease. In contrast to follicular and
marginal zone lymphomas, the tissue architecture is diffusely
effaced in diffuse large B-cell lymphomas (Figure 1C). The
cellular composition of lymphomas is also variable. In
B-NHLs, the tumor is predominantly comprised of neoplastic
B-cells with fewer admixed T-cells, macrophages and stroma that
comprise the tumor microenvironment. In contrast, in Classic
Hodgkin lymphoma (cHL) the neoplastic Hodgkin Reed-
Sternberg (HRS) cells typically form only a minor subset of the
neoplastic infiltrate. The substantial cellular component of the
tumor is a characteristic polymorphous population of small
lymphocytes, plasma cells, histiocytes and admixed granulocytes that
constitutes a morphologically unique microenvironment (Figure 1D).

These morphologic pattens reflect different tumor
microenvironments that result from genetic aberrations in
these neoplasms and the external stimuli needed for survival,
proliferation, and immune response evasion. Lymphoma cells
have been shown to influence their microenvironment by their
ability to use homing and trafficking mechanisms to spatially
colonize milieus characteristic of their non-malignant
counterparts. These include expression of various adhesion
molecules as well as cytokines and cytokine receptors that
regulate lymphocyte trafficking between various tissue
compartments (9–13). After colonization, tumor cells can shift
the tissue milieu to one that promotes cell survival and growth,
and immune response evasion (14–17). Cell growth results from
signaling through cell surface receptors such as the B-cell
receptor and Toll-like receptor as well as cytokines released
from stromal cells (18–21). The evasion of immune response
occurs by various mechanisms including down-regulation of
major histocompatibility complex molecules, recruitment of T-
regulatory cells (T-regs) at the expense of T-helper cells, and
expression of programmed cell death ligands PD-L1 and PD-L2
that bind to programmed cell death protein 1 (PD-1) on CD4-
positive T cells and cytotoxic T lymphocytes to induce a state of
T-cell exhaustion (22–28).

Despite similar spatial localization of neoplastic cells in some
lymphomas when compared to their non-malignant
counterparts, there can be significant differences in their
respective microenvironments. For example, the tumor
microenvironment in the neoplastic follicles in follicular
lymphoma has been shown to be significantly different than
normal germinal centers with respect to T-cells and
macrophages. Specifically, there appears to be an increase in T-
regs and immune-suppressive monocytes at the expense of T-
helper cells in neoplastic follicles (14, 15, 17). In cHL, the
secretion of cytokines produced by and in response to HRS
cells is thought to result in the characteristic polymorphous
milieu that also promotes cell survival (13). Cytokines such as
CCL5, CCL17 and CCL22 recruit CD4+ T-cells that constitute
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the major population of the tumor milieu. CSF1 and CX3CL1
recruit eosinophils and macrophages. Fibrosis, most prominently
seen in the nodular sclerosis variant of cHL, is attributed to
activation and proliferation of fibroblasts by IL-13, TNF-a and
fibroblast growth factors by HRS cells (13). Interaction between
membrane-bound or secreted ligands from the microenvironment
and cell surface receptors on HRS cells results in activation of
canonical signaling pathways such as the JAK-STAT, NF-kB and
BCR pathways. These ligand-based mechanisms are complimented
by gene mutations that cause constitutional activation of these
signaling pathways (29). In highly aggressive tumors such as Burkitt
lymphoma, the tumor cells often acquire mutations that result in
cell autonomous growth signals (30). Most cases of Burkitt
lymphoma harbor translocations of the MYC gene, typically
juxtaposing it with enhancer genes of the IGH locus, and less
frequently the IGK and IGL loci resulting in upregulation of c-myc,
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its target genes and target microRNAs. These and other mutations
result in cell-autonomous growth signaling. These tumors are,
therefore, less likely to need stromal signals for survival resulting
in a characteristically sparse tumor microenvironment (31–34).

A better understating of expression, distribution, and
interaction of PD-1 and PD-L1 in the tumor microenvironment
has been critical in the development of immune checkpoint
blockade therapy (CBT) in cancer therapy. CBT involves
blockade of the PD-1/PD-L1 axis to enhance the therapeutic
effects of anti-tumor immune response (35). PD-1 is expressed
predominantly on activated T cells, natural killer cells, dendritic
cells, macrophages, and B-cell subsets. PD-L1 is expressed on a
wide variety of hematopoietic and non-hematopoietic cells
including stromal cells and can also be expressed by tumor
cells. In the context of lymphomas, PD-1 expression is seen in
tumor infiltrating lymphocytes, as well as the neoplastic cells in
A B

C D

FIGURE 1 | Examples of tumor microenvironment in lymphomas. (A) Benign lymph node with a germinal center containing tangible body macrophages (arrow).
(B) Follicular lymphoma with neoplastic follicle. (C) Diffuse large B cell lymphoma showing tissue effacement by large, neoplastic cells with very few admixed small
lymphocytes. (D) Classic Hodgkin lymphoma showing rare Reed-Sternberg cells (arrow) in a background of small lymphocytes and histiocytes with fibrosis.
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some types of B- and T-cell lymphomas (36). PD-L1 expression is
seen in a wide variety of neoplastic cells in various lymphomas
including cHL, Primary mediastinal large B cell lymphoma, and
extra-nodal NK-T cell lymphomas among others (37). PD-L1
expression is also seen in some immune cells within the tumor
microenvironment including tumor infiltrating lymphocytes as
well as tumor associated macrophages (TAMs).

Tumor Microenvironment in Plasma
Cell Neoplasms
Unlike lymphomas that often present in nodal tissues, plasma
cell neoplasms are primarily diseases of the bone marrow. The
marrow stromal niche in plasma cell neoplasm is occupied by a
variety of cells including T-regs, NK cells, macrophages,
dendritic cells, bone marrow stromal cells, endothelial cells,
osteoblasts, and osteoclasts embedded in an extracellular
matrix (38–40). The stromal niche has been shown to
influence homing and adhesion of plasma cells by expression
of adhesion molecules and cytokines (41–43). It also appears to
aid immune evasion by mechanisms similar to those seen in
lymphomas. For example, increased T-regs have been reported
in the peripheral blood of neoplasms patients with plasma cell
neoplasms (44). Interaction between myeloma cells and T-regs
results T-reg expansion by a type 1IFN-dependent positive
feedback loop (45). In response to stromal signals, plasma cell
neoplasms cells express PD-L1 that interacts with PD-1 protein
in T-cells, leading to immune exhaustion (46, 47). A caveat to
these observations is that they are based on qRT-PCR and flow
cytometry studies on small sample sets that include both patient
samples and cell lines; larger studies are needed to validate
these observations.
IMMUNE-BASED THERAPY IN
LYMPHOMAS AND PLASMA
CELL NEOPLASMS

Current therapy for non-Hodgkin lymphomas is dependent on
various factors including the pathologic subtype of lymphoma,
stage at presentation, and performance status of the patients. The
treatment can range from watchful waiting to combination
modality regimens followed by stem cell transplant. Salvage
regimens are used to treat relapsed disease (48). Therapy for
Hodgkin lymphoma is also influenced by stage and risk factors
and can range from chemotherapy alone to combination modality
treatment, and salvage therapy for progressive disease (49).
Treatment for symptomatic myeloma typically involves
immunomodulatory drugs and proteasome inhibitors (50, 51).
For all three entities, immune based therapies are increasingly part
of the therapeutic armamentarium in treatment regimens (3, 40).

Immune-Based Therapy in Lymphomas
Immune based therapies have been used for treatment of
lymphomas for more than two decades (3). The earliest success
was with rituximab, a chimeric monoclonal antibody targeting
Frontiers in Oncology | www.frontiersin.org 4
the B-cell marker CD20 (52–55). Since then, several other
antibodies targeting B- and T-cell markers including CD30,
CD19 and CCCR4 have been evaluated in lymphoma
treatment with many such drugs receiving regulatory approval
(56–59). Initial targeted monoclonal antibodies used
complement dependent cytotoxicity or antibody-dependent
cytotoxicity for anti-tumor effect. More recently, attempts have
been made to increase their efficacy by conjugating them to
cytotoxic drugs (60, 61). Bispecific T cell engager antibodies
(BiTEs) that are designed to target both tumor antigens and T-
cells to bring the tumor cells in close physical proximity to the T
cells for enhanced anti-tumoral effects are also being evaluated
(62, 63). There is mechanistic evidence that the tumor
microenvironment can impact response to therapy. In cell-
culture based studies CXCR-4 dependent interaction of
lymphoma cells with stromal cells has been shown to protect
lymphoma cells from anti-CD20 monoclonal antibody induced
apoptosis (64). Studies have also shown induction of microRNAs
impacting levels of proapoptotic proteins and upregulation of
cell survival signals (65). As in solid organ epithelial tumors,
there is intense interest in harnessing the power of CBT in
lymphoid malignancies. Downstream signaling from the PD-1
receptor in T cells due to PDL-1 overexpression in tumor cells
leads to immune exhaustion and helps tumors evade immune
response. Blockade of this signaling pathway with monoclonal
antibodies targeting either the PD-1 receptor or its ligand is
predicted to enhance antitumor immune response (35). The
results of immune checkpoint blockade in lymphomas have been
mixed. The strongest response has been seen in lymphomas
associated with high PDL-1 expression including Hodgkin
lymphoma, primary mediastinal large B cell lymphoma and
EBV-associated lymphoproliferative disorders (66–71). In
contrast, the efficacy of CBT in other lymphomas such as
DLBCL and chronic lymphocytic leukemia (CLL) have been
less impressive (72, 73). Other strategies targeting the host
immune response to lymphoma are being evaluated e.g.,
antibodies to the CD47 molecule that suppresses macrophage-
induced phagocytosis by binding to signal regulatory protein-
alpha (74).

The data with engineered adoptive cell therapies is promising
in lymphoma therapy. Details of chimeric antigen receptor
T cells (CAR-T) based therapy have been reviewed elsewhere
(75). Briefly, CAR-Ts are created by transducing genetic material
into patient’s own T-cells using lentiviral or retroviral vectors.
The chimeric receptor contains an antigen binding extracellular
domain that targets a tumor antigen coupled to an intracellular
signaling domain, including chimeric domains derived from
costimulatory proteins. This design allows the CAR-T cells to
respond to tumor antigen without MHC presentation. The CAR-
T cells are infused after lymphodepletion chemotherapy.
Upon antigen recognition, the receptors cluster together to
trigger a T-cell activating signaling cascade. CAR-T therapy
targeting CD19 has been approved for the treatment of
relapsed refractory aggressive B-NHLs and acute lymphoblastic
leukemia following impressive and sustained response in clinical
trials (76–78). Prospective clinical trials to evaluate expanded use
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of CAR-T as an alternative to stem cell transplant and in other
B-NHLs are ongoing including combinatorial strategies with CBT
and immunomodulatory therapy (3). Lack of long-term response
due to emergence of target antigen negative cells (also known as
antigen escape) has led to combinatorial antigen targeting
including CD19 and CD20 or CD19 and CD22 (79–81). In
contrast to CBT, CAR-T responses in Hodgkin lymphoma and
T-cell lymphomas have not been impressive (82, 83).

Other immune based therapeutics in lymphoma include
immunomodulators and small molecule inhibitors such as
lenalidomide and ibrutinib. Lenalidomide and other
thalidomide analogs exhibit immune modulatory effects by
altering cytokine production, regulating T cell co-stimulation
and augmenting NK cell cytotoxicity (84, 85). Ibrutinib and
acalabrutinib are small molecule inhibitors that inhibit Bruton
tyrosine kinase (BTK) that is part of the B cell receptor signaling
pathway (86–89). In addition, ibrutinib can modulate immune
response by increasing Th1 T cell response at the expense of Th2
T cell response by blocking IL-2 inducible kinase (90). Finally,
observations in non-Hodgkin lymphomas have shown that
treatment with these kinase inhibitors leads to the mobilization
of lymphoma cells from their stromal niches into the
bloodstream which may be an added component of their
efficacy (91).

Immune-Based Therapy in Plasma
Cell Neoplasms
Several immunotherapy approaches are being used in treatment
of plasma cell neoplasms, both as part of standard-of-care
treatments and in clinical trials (92). Lenalidomide is used in
first line treatment of both standard-risk and high-risk plasma
cell neoplasms (51). Targeted antibodies are now FDA-approved
for treatment of plasma cell neoplasms. Anti-CD38 antibodies
(daratumumab) in combination with immunomodulators has
shown improved outcomes in relapsed refractory plasma cell
neoplasms. The mechanism of action includes complement- and
antibody-mediated cytotoxicity, and suppression of T-regs and
regulatory myeloid populations (93). In contrast to B-NHLs
results of CBT therapy in plasma cell neoplasms have been less
impressive (94, 95). Combination immunotherapy approaches
after autologous stem cell transplant are being evaluated based
on encouraging data from preclinical trials (96). Immune
modulatory drugs are now routinely used in treatment of
symptomatic myeloma in combination regimens where they
induce plasma cell apoptosis in addition to immune stimulatory
effects. Other immunomodulatory regimens are being evaluated
in early clinical trials. CAR-T therapy targeting B cell maturation
antigen (BCMA) has shown promise (97, 98). BCMA is expressed
primarily in plasmablasts and plasma cells in the bone marrow
with no detectable expression in naïve B cells and hematopoietic
cells (99, 100). The BCMA expression levels are much higher in
neoplastic plasma cells compared to normal plasma cells. In
response to signaling from its ligands APRIL and BAFF, BCMA
signaling leads to activation of pro-survival pathways (38).
Despite impressive early response in trials, persistent and durable
response has not been seen, likely due to antigen escape and
Frontiers in Oncology | www.frontiersin.org 5
immunosuppressive effect of the bone marrow tumor
microenvironment (101). Other immunomodulatory techniques
targeting BCMA including targeted antibodies, BiTE antibodies,
and CAR-T therapies to other antigens such as CD138 are under
clinical development (102, 103).
IMPACT ON DIAGNOSTICS,
PROGNOSTICS, AND BIOMARKERS

The diagnostic work-up of lymphomas and plasma cell neoplasms
incorporates morphologic evaluation, immunophenotyping by
tissue immunohistochemistry and multiparametric flow
cytometry, and ancillary studies. The ancillary studies include
cytogenetics, fluorescence in situ hybridization (FISH), molecular
studies such as PCR for immunoglobulin heavy chain
rearrangement, and targeted mutation detection for specific
disease entities (104). While substantial information about disease
behavior and prognosis can be obtained by these studies, they may
provide only limited information regarding the tumor
microenvironment and the potential for response to immune
based therapies. There is a need to broaden the diagnostic and
prognostic modalities to better predict disease response to immune-
based therapies in lymphomas and plasma cell neoplasms. Some
specific diagnostic modalities and their potential applications are
briefly discussed below. While some techniques can be applied
routinely in clinical diagnostic labs at the current time, other
techniques exist currently more in the realm of clinical research
that with time will probably supplant the current techniques.

Immunophenotyping
Immunohistochemistry (IHC) which involves interrogation of
formalin-fixed paraffin embedded (FFPE) tissue with specific
antibodies for specific antigens, and multiparametric flow
cytometry are indispensable tools in clinical hematopathology
diagnostic labs (104). These methods have potential utilities in
assessing tissue for response to immune-based therapy. In solid
organ tumors involving the lung and genitourinary tract for
example, an FDA-approved immunohistochemistry based
diagnostic assay for PD-L1 is used to predict response to CBT
(105, 106). There are currently no FDA-approved IHC
diagnostic assays to identify patients that will respond to CBT
in hematologic malignancies. Analysis of PD-1 and PD-L1
expression patterns in hematologic malignancies show
promising albeit sometimes contradictory results. For example,
high proportion of PD-L1 positive macrophages or PD-1-
positive T-cells is associated with favorable outcomes in
primary testicular lymphoma (107). Similarly in a cohort of
de novo DLBCL, increased myeloid derived PD-L1 cells
correlated with STAT3 and macrophage gene expression, and
improved outcomes in a subset of patients (108). A study utilizing
3-marker fluorescent multiplex immunohistochemistry coupled
with automated immunofluorescent analysis concluded that the
PD-1/PD-L1 expression and interaction is associated with adverse
prognosis in DLBCLs with significant T cell infiltration (109). The
variability of results in some of these studies may be attributable to
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the different antibody clones and experimental methods used in
these studies illustrating the need for standardization of these
assays across clinical labs prior to widespread diagnostic use. The
fact that many of the antigens targeted by immune-based therapies
such as CD20, CD19 and CD30 are evaluated during routine
lymphoma diagnostic workup is fortuitous. However, the utility of
IHC assays to predict disease response to CBT and targeted
immunotherapy in hematologic neoplasms is limited in the
absence of prospective studies. While it is logical to assume that
immunopositivity and the level of antigen expression as assessed by
immunophenotyping will correlate with disease response, one
should be cautious with such assumptions. Individual studies
looking at the correlation of antigen expression by IHC and
response to targeted therapy have sometimes shown variable
correlation as in the case of CD30 (110, 111). Additionally, lab-
to-lab variability in the individual clones of antibody used and in
staining protocols can lead to subjective interpretation and poor
reproducibility of IHC and flow cytometry studies (112–114). On
the other hand, immunomodulatory techniques themselves have
potential to impact diagnostic assessment by these techniques. For
example, CD20 staining can yield negative IHC results after
treatment with rituximab due to antigen masking and down-
regulation of CD20 expression (115). Bright CD38 expression is
often used in assessing plasma cells by flow cytometry; treatment by
daratumumab can lead to interference and artifactual results with
laboratory assays for monitoring disease (116, 117). As the arsenal
of targeted antibodies grows, diagnosticians need to be keenly aware
of such iatrogenic artifacts during diagnostic and prognostic work
up. Documentation of increased macrophages, cytotoxic T cells and
NK cells by IHC has been shown to correlate with outcomes in cHL
(118–121). Current immunohistochemical workup in clinical labs
typically uses one antibody on one slice of tissue at a time on glass
slides. The development of high-throughput, multiplex
immunohistochemical methods opens the possibility of
simultaneous evaluation of multiple markers on a single slice of
tissue. The individual markers can be evaluated for their expression
status and spatial distribution facilitating assessment of the tumor
microenvironment by immunophenotypic methods (122–124).
Immunophenotypic evaluation may also have utility in predicting
response in CAR-T therapy. For example, a population of
CD27+PD-1-CD8+ cells expressing high levels of the IL-6 receptor
has been shown to correlate with therapeutic response (125).

Digital and Computational Pathology
IHC assays performed on FFPE tissue are easy to adopt in
anatomic pathologic labs. However, interlaboratory variability
in protocols and subjective variation in manual interpretation
can lead to poor reproducibility of assays with impact on
treatment and clinical course. The evolution of digital
pathology where whole slide imaging scanners are used to
digitize glass slides and render images in digital formats has
aided the development of automated, reproducible, computer
aided diagnostic tools that promise to be the next frontier in
tissue-based diagnostics (126). WSI technology builds images of
whole slides by stitching together multiple images of tissue
sections on slides (127). WSI scanners have now been
approved by the FDA for purposes of rendering anatomic
Frontiers in Oncology | www.frontiersin.org 6
pathology diagnoses (128). The College of American Pathology
has published guidelines for validation and adoption of digital
pathology techniques in clinical settings (129). Digital analyses
tools including machine learning algorithms can be applied on
digitized histology images for reproducible and quantitative
assessment of tumors and their microenvironment. Multiplex
approaches can yield high-complexity data with regard to spatial
expression of multiple markers in the tumor microenvironment
(130). In cHL for example, multiplex IF has shown the
association of tumor microenvironment with CTLA-4-positive
T cells that are PD-1 negative (131). Data shows that multiplex
methods may be better at predicting response to CBT than
standard IHC or gene expression profiling methods (132).
These analyses can be extended to assess response to
immunotherapy by assessing for distribution of components of
the immune system such as regulatory T cells and macrophages.
A limiting factor in the development and application of machine
learning algorithms in computer aided diagnosis is the need for
large, high quality data sets to train these algorithms (133). The
performance metrics and portability of these algorithms across
datasets can also be impacted by pre-analytic variables such as
slide scan quality, need for additional image processing and input
from human pathologists for accurate interpretation (134, 135).
While multiplex IF provides high-resolution data about the
tumor microenvironment, complexity of analyses, cost and
time considerations currently limit the applicability of this
technique in clinical settings. For practical purposes, gene
expression analysis is currently utilized to assess characteristic
signatures in diagnostic settings.

Molecular Techniques
Ancillary molecular techniques are a significant part of current
diagnostic workflow in lymphoid and plasma cell malignancies
(104). The presence of specific cytogenetic abnormalities, specific
gene mutations, and other molecular findings such as IGH
hypermutation status impact disease prognosis in various
lymphomas and plasma cell neoplasms, and factor into the
calculation of risk stratification scores of individual entities (1).
These studies reveal little about the effect of tumor
microenvironment on disease course since the spatial context
is often lost with these techniques. However, studies have shown
the potential utility of gene expression profiles that appear to
reflect the tumor microenvironment in predicting response to
immune based therapies. For example, in DLBCL gene
expression profiles derived from non-malignant cells have
shown association with response to R-CHOP therapy. A
signature enriched for genes associated with components of the
extracellular matrix deposition and histiocytic infiltration was
associated with good behavior whereas a signature associated
with angiogenesis was associated with poor prognosis (136).
Similarly in follicular lymphoma, gene expression profiles
associated with macrophages are correlated with different
prognoses. Expression of a set of genes enriched for T-cell
markers and genes highly expressed in macrophages was
associated with better prognosis while a signature enriched for
genes highly expressed in dendritic cells, macrophages or both
was associated with worse prognosis (137). The refinement of
December 2021 | Volume 11 | Article 719140
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techniques that allow for spatial single cell sequencing from
FFPE tissue with the potential to deliver high-resolution
molecular data of the tumor microenvironment with spatial
context are particularly exciting developments in this realm
(138). Techniques such as CODEX (for CO-Detection by
indEXing) that utilizes DNA barcodes, fluorescent dNTP
analogs and an in-situ polymerization based indexing
procedure to iteratively detect antibody binding events have
recently been described (139). This methodology allows for
single cell antigen quantification in tissue sections, and
unlimited levels of multiplexing to map cell types in tissues. The
continued development of multiplexed and high-dimensional
imaging methods, and their application in translational research
are likely to lead to a better understanding of the tumor
microenvironment in malignancies and their impact on response
to therapy (140).

The power of using a combinatorial approach to dissect
tumor microenvironment in lymphoid malignancies is
demonstrated by a recent study that used FISH, chromogenic
IHC, and multiplex immunofluorescence microscopy with cell
phenotyping followed by spatial analyses of the cell phenotypic
data to characterize the PD1/PD-L1 pathway in the tumor
microenvironment of a multi-institutional cohort of T-cell/
histiocyte-rich large B-cell lymphomas (THRLBCL) (141). The
authors found frequent PD-L1/PD-L2 copy gain or amplification
in the large malignant B-cells of THRLBCL. Using sophisticated
spatial image analyses to characterize the distribution of immune
cells and their PD1/PDL1 expression status, the authors were
Frontiers in Oncology | www.frontiersin.org 7
able to develop spatially resolved immune signatures that
distinguish TCRLBCL from cHL and DLBCL.
CONCLUSION

Recent advances in our understanding of the tumor
microenvironment have led to better understanding of
pathogenesis of lymphomas and plasma cell neoplasms.
Concurrent advances in immune based therapies have
highlighted the importance on the tumor microenvironment
on disease course and response to therapy. Advances in
diagnostic modalities are likely to lead to better biomarker
identification, patient risk stratification and theranostic
prediction in hematologic malignancies.
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