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Abstract: The adenosine 5′-triphosphate-gated P2X4 receptor channel is a promising target in neu-
roinflammatory disorders, but the ability to effectively target these receptors in models of neuroin-
flammation has presented a constant challenge. As such, the exact role of P2X4 receptors and their
cell signalling mechanisms in human physiology and pathophysiology still requires further elucida-
tion. To this end, research into the molecular mechanisms of P2X4 receptor activation, modulation,
and inhibition has continued to gain momentum in an attempt to further describe the role of P2X4
receptors in neuroinflammation and other disease settings. Here we provide an overview of the
current understanding of the P2X4 receptor, including its expression and function in cells involved
in neuroinflammatory signalling. We discuss the pharmacology of P2X4 receptors and provide
an overview of P2X4-targeting molecules, including agonists, positive allosteric modulators, and
antagonists. Finally, we discuss the use of P2X4 receptor modulators and antagonists in models of
neuroinflammatory cell signalling and disease.

Keywords: P2X4 receptor; P2RX4 gene; purinergic receptor; purinergic signalling; extracellular ATP;
inflammation; neuroinflammation; pain; macrophage; microglia

1. Introduction

The P2X4 receptor, encoded by the P2RX4 gene, is a trimeric adenosine 5′-triphosphate
(ATP)-gated cation channel that is expressed primarily in cells and tissues of the immune
and central nervous systems where it has established roles primarily in the regulation of
neuroinflammation [1,2]. In the cells of the immune system, the activation of P2X4 receptors
by ATP results in the influx of cations and downstream inflammatory signalling events,
such as the release of prostaglandin E2 from macrophages [3], release of brain-derived
neurotrophic factor (BDNF) from microglia [4], and blood flow-dependent Ca2+ signalling
in endothelial cells [5,6]. As such, changes in P2X4 receptor expression or function have
been associated with the transmission of inflammatory and neuropathic chronic pain [7,8]
and cardiovascular disease [9], as well as alcohol use disorders [10], neuropsychiatric
disorders [11], and alterations in neuroplasticity [12].

P2X4 receptors were first cloned from rat [13] and human [14] brain complementary
DNA, revealing a protein 388 amino acids in length. Studies of the human P2X1 and rat
P2X2 receptors have suggested that the P2X4 receptor could contain up to ten disulphide-
bonding cysteine residues in the extracellular loop region [15,16]. These cysteine-cysteine
interaction properties were later confirmed when the first high resolution (<3 Å) crys-
tal structure of the (zebrafish) P2X4 receptor was reported in the ATP-unbound, closed
state [17] and soon after in the ATP-bound, open state (Figure 1A) [18]. These studies
revealed the ‘dolphin-like’ shape of P2X4 monomeric subunits, with the ‘tail fluke’ sub-
merged in the lipid membrane and extending out into the cytoplasmic region of the cell
and the ‘body’, including ‘dorsal fin, flippers, and head regions’, extruding out into the
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extracellular (or hydrophobic) region (Figure 1B). Although X-ray crystallography of the ze-
brafish P2X4 receptor utilised truncated forms, which lacked the N- and C- terminus, these
truncated receptors still demonstrated functional P2X4 channel activity [17]. With these
studies confirming the trimeric structure of P2X4 receptors, researchers have been able to
identify key roles for disulphide-bonding cysteine residues in P2X4 receptor ligand-binding
pocket formation and channel gating [19]. Despite a strong push towards understanding
the structural biology of the P2X4 receptor, the expected development of effective and
selective molecular tools to study the role of P2X4 receptors in physiology and pathophys-
iology has not been as successful as for other purinergic receptors of similar structure,
such as the P2X3 or P2X7 receptors. In this review, we will give an overview of the cell
and molecular characteristics of P2X4 receptors, including their expression and function.
We detail the agonists, antagonists, and modulators of P2X4 receptors and provide an
update on developments of novel P2X4 receptor-targeting molecules. Finally, we discuss
advances in understanding the role of P2X4 receptors in neuroinflammatory physiology
and pathophysiology.

Figure 1. Structural characteristics of the P2X4 receptor. (A) Trimeric structure of the gated P2X4
receptor channel in the ATP-bound, open state, depicted as embedded in a cell membrane. Each
subunit is labelled a different colour. (B) The ‘dolphin-like’ structure of a P2X4 monomer, with each
section colour-coded as depicted in the dolphin inset. Structures were reproduced from the RSCB
Protein Data Bank file 4DW1 [18] using Mol* Viewer [20]. Created with BioRender.com.

2. P2X4 Receptor Expression and Function

The P2X4 receptor was originally detected in rat [13,21] and human brain tissue [14].
Functional P2X4 receptors have since been reported in a wide distribution of mammalian
cells and tissues [22] (Figure 2), including those of the central nervous system [23–27] and in
peripheral endothelial cells, where they play an important role in the regulation of vascular
tone [5,6,28]. P2X4 receptors have also been identified in a wide range of mammalian
immune cells [29], including B lymphocytes [30], as well as T lymphocytes, where P2X4 re-
ceptor activation has been attributed to ATP release and autocrine signalling, mitochondrial
metabolism, cell polarisation, and cell migration [31–33]. P2X4 receptors are also expressed
on mast cells [34], where they are involved in mast cell degranulation [35], as well as on
other myeloid cells including monocytes [36–38], tissue-resident macrophages [3,39], and
eosinophils [40]. P2X4 receptors are also commonly observed on cultured mammalian
monocyte and macrophage cells and differentiated cell lines [39,41–46]. P2X4 receptors
expressed on microglia have also been well-documented, and together with macrophages,
have known roles in signalling pathways that mediate neuroinflammatory responses and
chronic pain [3,4,24,47–49]. Finally, it should be noted that P2X4 receptors are also widely
expressed in central and peripheral neurons and play important roles in neurotransmis-
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sion (as reviewed in [2,50]). Notably, the P2X4 knockout mouse showed alterations in
synaptic potentiation [51]. Neuronal P2X4 receptors are thus likely to be involved in
neuroinflammation and chronic pain directly and potentially indirectly via activation of
microglia [52].

Figure 2. Expression of P2X4 receptors on cells of the neuroinflammatory axis and their proposed
cellular or physiological roles. *A role for P2X4 receptors in B cells has not yet been determined.
Created with BioRender.com.

P2X4 receptors in human and rodent macrophages, microglia, and endothelial cells
are reported to be functional at the cell surface and intracellularly [53,54] (Figure 3), where
they are targeted to lysosomal compartments through N-terminal di-leucine (L22I23) and C-
terminal tyrosine-based (Y372XXV and Y378XXGL) motifs [54–56]. These motifs control the
constitutive, dynamin-dependent internalisation and recycling of P2X4 receptors [57,58],
while disruption of these targeting motifs resulted in an increase in the surface expression
of P2X4 receptors [56]. The P2X4 receptor contains seven N-linked glycosylation sites which
further aid in establishing expression at the cell surface [59] and in trafficking to and maintaining
function within lysosomal compartments, while also resisting degradation [54,60]. Luminal pH
within lysosomes has been demonstrated to have regulatory effects on P2X4 receptors [55].
It is in the lysosomes, as well as in late-endosomal compartments, where P2X4 receptors
are reported to control a number of important physiological roles, such as Ca2+ regulation,
lysosomal fusion, and receptor re-sensitisation [61]. This may also suggest a role for
P2X4 receptors in autocrine signalling events such as lysosomal exocytosis, ATP release,
and Ca2+ homeostasis, as has been established for other P2 receptors, such as the P2Y2
receptor [62,63].
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Figure 3. Cell surface and subcellular expression of P2X4 receptors. P2X4 receptors are expressed at
both the cell surface, and on lysosomal compartments following internalisation, where their activity
is tightly regulated by luminal pH. Endolysosomal recycling, membrane fusion, and exocytosis have
been linked with P2X4 receptor activation, autocrine signalling, and Ca2+ homeostasis. Abbreviations:
ATP, adenosine 5′-triphosphate; [Ca2+]e, extracellular calcium; [Ca2+]i, intracellular calcium. Created
with BioRender.com.

3. Agonists of the P2X4 Receptor

The primary agonist of the human P2X4 receptor, as with all other mammalian P2X
receptor subtypes, is ATP [64,65], with varying EC50 values reported between 0.2 and 10 µM
(Table 1). Based on the data presented in Table 1, these differences most likely reflect varying
assay conditions, rather than differences between P2X4 receptors from different species,
with the exception of the zebrafish P2X4 receptor. Consistent with other P2X receptor
subtypes, the activation of P2X4 receptors results in the influx of cations, such as Ca2+

and Na+, although P2X4 receptors are most permeable to Ca2+ [66]. Following activation,
P2X4 receptors undergo relatively moderate desensitisation, which is dependent on two
key residues: Lys373 and Tyr374 [67]. Pharmacological studies of cloned P2X4 receptors
from rat brains reported maximal activation of the receptor via ATP-induced currents,
with similar EC50 values [13,21,23]. These rat P2X4 receptors were also activated by other
nucleotide analogues in the following order of decreasing potency: ATP > adenosine 5′-O-
(3-thiotriphosphate) (ATPγS) > 2-methylthio-ATP (2MeSATP) >> adenosine 5′-diphosphate
(ADP) ≈ α,β-methylene-ATP (α,β-meATP) [13,23].

The agonist profile for the human P2X4 receptor expressed in Xenopus laevis oocytes
was found to be similar to that of the rat P2X4 receptor (ATP > 2MeSATP ≥ cytidine-5′-
triphosphate (CTP) > α,β-meATP) [14]. Recombinant P2X4 receptor orthologues expressed
in mammalian cell lines, including human, rat, mouse, dog, bovine, zebrafish, and Xenopus
P2X4 receptors have since demonstrated sensitivity to ATP consistent with the low micro-
molar range determined in the original studies [68–71]. Studies have also demonstrated
partial agonist activity of 3′-O-(4-benzoyl)benzoyl adenosine-5′-triphosphate (BzATP) and
diadenosine polyphosphates (AP4A and AP5A), but not ADP at mammalian P2X4 recep-
tors [69–72] The response of mammalian P2X4 receptors to ADP in some, but not all, studies
has been attributed to the presence of traces of contaminating ATP in commercial ADP
stocks [69].
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Table 1. Activity of ATP in cells expressing different P2X4 receptor orthologues.

Target 1 EC50

hP2X4 0.2 µM [69], 0.5 µM [71], 0.7 µM [72], 1.4 µM [70], 5.0 µM [73], 7.4 µM [14],
10.2 µM [74]

rP2X4 1.7 µM [72], 2.3 µM [75], 4.1 µM [74,76], 5.5 µM [70], 6.9 µM [21], 7.9 µM
[73], 10.0 µM [13,23]

mP2X4 0.3 µM [72], 1.7 µM [74], 2.3 µM [70], 6.3 µM [73]
dP2X4 0.3 µM [69]
cP2X4 9.5 µM [77]
zP2X4 274 µM [78]

1 hP2X4, human P2X4; rP2X4, rat P2X4; mP2X4, mouse P2X4; dP2X4, dog P2X4; cP2X4, chicken P2X4; zP2X4,
zebrafish P2X4.

4. Positive Modulators of the P2X4 Receptor

A number of positive modulators of P2X4 receptors have been described with a range
of therapeutic benefits [79]. Ivermectin is a broad-spectrum anti-parasitic drug that is
commonly used in human and veterinary medicine [80]. The application of extracellular
ivermectin (<10 µM) potentiated human and rodent P2X4 receptor-mediated currents
and delayed channel deactivation [39,81,82]. ATP-induced currents potentiated by the
application of extracellular ivermectin led to the identification of a binding pocket within
the transmembrane domains of P2X4 receptors, which was found to play a key role in
ivermectin recognition, binding, and selectivity [83–85]. Ivermectin has also demonstrated
the potentiation of ATP-induced Ca2+ responses through native P2X4 receptors on human
monocyte-derived macrophages [41,43] and human THP-1 monocytes [46]. Interestingly,
given the use of ivermectin in veterinary medicine, this compound can also potentiate
canine P2X4 receptors [69], but whether ivermectin has off-target effects in dogs remains
unknown. However, breeds such as collies and sheepdogs, due to mutations in the MDR1
gene and associated defects in the blood-brain barrier, are prone to ivermectin-induced
neurotoxicity [86]. Other members of this family of lipophilic compounds, known as
avermectins, including abamectin and moxidectin, have also demonstrated the potentiation
of P2X4 receptors [87,88]. Although the sensitivity of ivermectin is greatest for P2X4
receptors, ivermectin can also potentiate human, but not rodent, P2X7 receptors [89].

Recently, a number of novel positive allosteric modulators of P2X4 receptors were identified
from protopanaxadiol ginsenoside extracts of the Chinese medicinal plant, Panax ginseng [90].
These compounds, known as Rd and compound K (CK), demonstrated a two-fold potentia-
tion of ATP-induced responses in cells expressing human P2X4 receptors across a range
of techniques, including electrophysiology, Ca2+ flux assays, and fluorescent dye uptake
assays [90]. Despite this, these ginsenosides can also potentiate ATP-induced responses at
human and rodent P2X7 receptors [90–93].

Cibacron blue, an isomer of reactive blue 2 and a broad-spectrum P2X receptor in-
hibitor, demonstrated positive modulation of the rat P2X4 receptor at concentrations be-
tween 3 and 30 µM [94]. However, cibacron blue did not potentiate ATP-induced responses
in cells expressing the human P2X4 receptor [14].

5. Antagonists of the P2X4 Receptor
5.1. Broad-Spectrum and Non-Selective Antagonists

Human P2X4 receptors, but not rat P2X4 receptors, display sensitivity to the broad-
spectrum P2 receptor antagonists, pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid
(PPADS), and suramin when expressed in Xenopus oocytes [14]. In contrast, others have
found PPADS to be a poor inhibitor of ATP-induced Ca2+ responses through recombinant
human P2X4 receptors expressed in 1321N1 cells [71]. Likewise, PPADS and another
broad-spectrum P2 receptor antagonist, reactive blue 2, (both up to 50 µM) failed to inhibit
ATP-induced currents in Xenopus oocytes expressing the rat P2X4 receptor [13], with
others even observing potentiation by these compounds in oocytes expressing the mouse
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P2X4 receptor [74]. This lack of inhibition by PPADS was later found to be restored upon
replacing glutamic acid at position 249 with lysine, which is found at the equivalent position
in PPADS-sensitive P2X receptors [23]. A similar effect was also observed with a single
point mutation on the rat P2X4 receptor (Gln78Lys) resulting in an increased sensitivity
to suramin [14]. Other non-selective P2 receptor antagonists, such as bromophenol blue
and cibacron blue, were found to inhibit ATP-induced currents at the human and rat P2X4
receptor, although with greatly different species selectivity [14]. Similar findings have been
observed with Brilliant Blue G, which can impair human, but not rat, P2X4 receptors at
micro-molar concentrations, despite inhibiting both human and rat P2X7 receptors [95].
Ethanol has also demonstrated the inhibition of ATP-induced currents through rodent P2X4
receptors, which in itself can be antagonised by ivermectin [96,97].

High concentrations of extracellular Zn2+ and Cd2+ (>100 µM) have been observed to
inhibit the rat P2X4 receptor [14,98], while at lower concentrations (10 µM) these divalent
cations can potentiate ATP-induced currents. In contrast, Cu2+ and Hg2+ have demon-
strated the time- and concentration-dependent inhibition of ATP-induced currents through
the rat P2X4 receptor [98,99]. More recently, molecular dynamic simulations have revealed
that Mg2+ complexed with ATP maintains the open channel state of the P2X4 receptors and
that this process can be reversed when Mg2+ is exchanged with K+ [100]. In addition, rat
and human P2X4 receptor activity are also modulated by extracellular H+, where decreases
in pH (<6.5) inhibit P2X4 receptor activity, while increases above physiological pH potenti-
ate channel activity [76,101]. The biological significance of pH-mediated regulation of the
P2X4 receptor is supported by its lysosomal distribution [54], where the resting luminal pH
of lysosomes (pH 4.6) can tightly regulate P2X4 receptor activity [102].

The broad-spectrum P2X receptor antagonist 2′,3′-O-(2,4,6-trinitrophenyl)adenosine-
5′- triphosphate (TNP-ATP) [103] has demonstrated competitive inhibition of ATP-induced
Ca2+ responses and inward currents through recombinant mammalian P2X4 receptors
expressed in HEK293 and 1321N1 cells [69,72,104,105]. Nonetheless, TNP-ATP is a much
more potent antagonist of P2X1, P2X2, and P2X3 heterotrimeric and homotrimeric recep-
tors [106]. The selective serotonin reuptake inhibitor (SSRI) paroxetine has also been found
to act as an allosteric antagonist of mammalian P2X4 receptors [69,107]. Similarly, the
serotonin-norepinephrine reuptake inhibitor (SNRI) duloxetine also inhibited mammalian
P2X4 receptors with similar selectivity and potency to paroxetine [69,108].

5.2. Selective Antagonists

Several more potent and selective P2X4 receptor antagonists have been identified
and tested against the human and rodent P2X4 receptors. A chemical library screen iden-
tified 5-[3-(5-thioxo-4H-[1,2,4]oxadiazol-3-yl)phenyl]-1H-naphtho [1, 2-b][1,4]diazepine-
2,4(3H,5H)-dione (NP-1815-PX) as a novel antagonist of mammalian P2X4 receptors [109].
A number of compounds derived from N-substituted phenoxazines have also been iden-
tified as selective P2X4 receptor antagonists [105], including the allosteric inhibitor N-
(benzyloxycarbonyl)phenoxazine (PSB-12054), which blocked recombinant mammalian
P2X4 receptor-mediated Ca2+ responses in 1321N1 cells [105]. Another study utilising the
same expression model confirmed PSB-12054 as a potent antagonist of human the P2X4
receptor with a much greater selectivity for P2X4 compared to other P2X receptors [110].
Whilst PSB-12054 is amongst one of the more potent P2X4 receptor antagonists, it is poorly
water-soluble, making it a difficult compound for both in vitro and in vivo use. An ana-
logue of this inhibitor with greater water solubility, N-(p-methylphenyl)sulfonylphenoxazine
(PSB-12062), was demonstrated to have a similar potency and selectivity to PSB-12054 at
mammalian P2X4 receptors [105]. PSB-12062 has also demonstrated the inhibition of ATP-
induced calcium responses in human THP-1 monocytes and differentiated macrophages [46]
and the reduction of ATP-induced Ca2+ responses and CXCL5 secretion in human monocyte-
derived macrophages [41,43].
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The selective P2X4 receptor antagonist, 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro
[3,2-e]-1,4-diazepin-2-one (5-BDBD) [111], was first reported to competitively inhibit ATP-
induced currents and Ca2+ responses in HEK293 cells expressing the recombinant human
P2X4 receptor [104]. Studies have also reported 5-BDBD as an antagonist of recombinant
P2X4 receptors of other mammals, including dog, mouse, and rat P2X4 receptors [69,72,112].
Despite several studies indicating a competitive mechanism of antagonism, the mechanism
of action of 5-BDBD is still of some debate. Using radioligand binding assays, it was
demonstrated that 5-BDBD likely modulates P2X4 receptor activity through an allosteric
site, rather than through interaction with the orthosteric binding site occupied by ATP [72].
This is further supported by molecular modelling and site-directed mutagenesis data,
which indicate an allosteric binding region formed by the Met109, Phe178, Tyr300, and
Ile312 residues of one P2X4 subunit, and the Arg301 residue of the adjacent subunit [113].
The aforementioned study also indicates a poor inhibitory effect on open or desensitising
P2X4 receptors, suggesting that 5-BDBD likely acts as a negative allosteric modulator rather
than a competitive antagonist as previously thought. Similar to PSB-12054, 5-BDBD has a
low water solubility, which can severely hinder its suitability as both an in vitro and in vivo
P2X4 receptor antagonist [114].

The phenylurea 1-(2,6-dibromo-4-isopropyl-phenyl)-3-(3-pyridyl)urea (BX430) was
also identified as an allosteric inhibitor of the human and bovine, but not mouse or rat,
P2X4 receptors and displayed strong selectivity compared with other P2X receptors [115].
BX430 also appears to partially inhibit canine, zebrafish, and Xenopus P2X4 receptor or-
thologues [68,69]. The selectivity of BX430 across a range of P2X4 receptor orthologues
was demonstrated to be regulated by a single amino acid (Ile312) which forms a docking
site with Asp88 and Tyr300, leading to reduced inhibitory effects at rodent and other
non-mammalian P2X4 receptors [68].

Notably, the inhibition of endogenous P2X4 receptors on human or canine macrophages
and macrophage cell models using selective antagonists such as PSB-12062, BX430, and
5-BDBD appears to have a limited effect on the peak calcium response but has a stronger
inhibitory effect on the decay response kinetics and net calcium movement [41–43,46].
The incomplete inhibition of Ca2+ responses following treatment of these P2X4-expressing
cells with thapsigargin or antagonists for other purinergic receptors indicates that P2X4
receptors are likely involved in co-signalling events with other ATP-activated P2 receptors.

Newly developed, yet relatively untested compounds have also emerged recently
in an attempt to improve both the potency and the selectivity of P2X4 receptor antago-
nists. A potent, orally active, and selective P2X4 antagonist, N-[4-(3-chlorophenoxy)-3-
sulfamoylphenyl]-2-phenylacetamide (BAY-1797), was discovered to have improved po-
tency at human and rodent P2X4 receptors in vitro with little to no inhibitory effect on other
P2X receptors [116]. This compound also demonstrated promising anti-inflammatory and
anti-nociceptive effects in a mouse model of inflammatory pain [116]. Most recently, struc-
tural features of known P2 receptor antagonists have been used in the design and develop-
ment of a thiourea derivative, N-((2-bromo-4-isopropylphenyl)carbamothioyl)adamantane-
1-carboxamide (Compound 4n), which inhibited recombinant human P2X4 receptor Ca2+

responses with >20-fold greater potency than BX430 [117]. Similar to BX430, this com-
pound demonstrated non-competitive, allosteric properties. A summary of the antagonists
discussed here and their half-maximal inhibitory concentrations (IC50) at the human P2X4
receptor and mammalian P2X4 receptor orthologues, has been provided in Table 2.
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Table 2. Compounds demonstrating antagonistic effects against mammalian P2X4 receptors.

Antagonist Target 1 IC50

PPADS hP2X4 27.5 µM [14]
rP2X4 2 >500 µM [14]

Suramin hP2X4 178 µM [14]
rP2X4 3 >500 µM [14]

Bromophenol blue hP2X4 78.3 µM [14]
rP2X4 302 µM [14]

Cibacron blue hP2X4 39.2 µM [14]
rP2X4 128 µM [14]

Brilliant Blue G hP2X4 3.2 µM [95]
rP2X4 >10 µM [95]

TNP-ATP hP2X4 1.5 µM [72,104,105], 4.3 µM [69]
rP2X4 1.3 µM [72], 4.7 µM [105]
mP2X4 1.3 µM [105], 4.2 µM [72]
dP2X4 8.1 µM [69]

Paroxetine hP2X4 1.9 µM [107], 4.8 µM [72], 77.6 µM [69]
rP2X4 1.6 µM [72], 2.5 µM [107]
mP2X4 0.7 µM [72]
dP2X4 13.2 µM [69]

Duloxetine hP2X4 1.6 µM [108], 17.0 µM [69]
dP2X4 15.1 µM [69]

NP-1815-PX hP2X4 0.3 µM [109]
PSB-12054 hP2X4 0.2 µM [105]

rP2X4 2.1 µM [105]
mP2X4 1.8 µM [105]

PSB-12062 hP2X4 1.4 µM [105]
rP2X4 1.8 µM [105]
mP2X4 0.9 µM [105]

5-BDBD hP2X4 0.3 µM [72], 1.2 µM [104], 5.2 µM [69]
rP2X4 3.5 µM [72]
mP2X4 2.0 µM [72]
dP2X4 5.8 µM [69]

BX430 hP2X4 0.5 µM [115], 1.9 µM [69]
dP2X4 7.8 µM [69]

BAY-1797 hP2X4 0.1 µM [116]
rP2X4 0.1 µM [116]
mP2X4 0.2 µM [116]

Compound 4n hP2X4 0.04 µM [117]
1 hP2X4, human P2X4; rP2X4, rat P2X4; mP2X4, mouse P2X4; dP2X4, dog P2X4. 2 Sensitivity of rat P2X4 receptors
to PPADS is restored through Glu249Lys substitution [23]. 3 Sensitivity of rat P2X4 receptors to suramin is restored
through Gln78Lys substitution [14].

6. P2X4 Receptors as Molecular Targets in Neuroinflammatory Signalling and Disorders

Neuroinflammation broadly describes an inflammatory response within the central
nervous system [118]. Although widely associated with damage to neurons, degradation
of neuronal tissue and the onset of neurodegenerative disorders [119,120], positive as-
pects of the neuroinflammatory response have also been identified, such as injury-induced
macrophage remodelling and promotion of axon repair [121]. The neuroinflammatory
response is primarily mediated through the activation of microglia and astrocytes, which
release pro-inflammatory cytokines, chemokines, and secondary messengers, while en-
dothelia and peripheral immune cells in circulation play an important role in the regulating
the crosstalk between immune cell mediators and the central nervous system [118]. Given
the P2X4 receptor is present on many of these cell types of the neuroinflammatory axis,
there has been a shifting focus towards the role of this receptor in neuroinflammatory
signalling and related disorders.

From studies in human and rodent spinal cord microglia, it has been well estab-
lished that activation of P2X4 receptors by ATP, such as that released from the vesicular
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nucleotide transporter (VNUT) following peripheral nerve injury in mice [122], stimu-
lates p38 mitogen-activated protein kinase (MAPK) to induce the release of BDNF from
microglia [4,24,27]. In a model of neuropathic allodynia, this release of BDNF has been
suggested to activate transmembrane tyrosine kinase B on secondary sensory neurons,
downregulating the K+/Cl− transporter, KCC2, leading to a depolarising shift in the an-
ionic gradient, and the subsequent injury-mediated release of γ-aminobutyric acid (GABA)
from interneurons [123]. This dysregulation suppresses transmission through GABAergic
inhibitory synapses, leading to an opening of Cl− channels and pain hypersensitivity
through disinhibition of the spinal circuits [124]. As such, microglial P2X4 receptors have
been suggested to play important roles in the gating of neuropathic chronic pain and tactile
allodynia following peripheral nerve injury [7,125,126], traumatic brain injury [127], and in
cancer-induced bone pain models [128,129].

Studies have found that P2X4 receptor expression and activation in spinal cord-derived
microglia are highly upregulated following peripheral nerve injury [24,130], supporting
a role for these receptors in neuropathic pain. This is further supported by findings that
P2X4 receptor-deficient mice exhibit reduced responses to chronic neuropathic pain caused
by peripheral nerve injury but show no pain response defect to acute noxious stimuli
or local tissue damage [49]. In addition to this, P2X4 receptor inhibition with the SNRI
duloxetine or the SSRI paroxetine has been demonstrated to reverse neuropathic pain in
rats following nerve injury [107,108]. Both of these clinically prescribed anti-depressants
have also been used to treat chronic neuropathic pain in humans, although the effectiveness
of duloxetine appears to be greater [131–137] in comparison to paroxetine, which has often
demonstrated mixed results regarding effectiveness in reducing chronic pain [138–140].
The proposed mechanisms through which these compounds act include signalling through
neuronal transient receptor potential channels [141] and the Toll-like receptor 4 signalling
pathway [142]. More recently, the inhibition of P2X4 receptors with 5-BDBD has been
shown to reduce the inflammasome activation in motoneurons and prevent the loss of
these cells in a murine model of sciatic nerve injury [52] indicating that the role of P2X4
receptors in nerve injury extends beyond microglia.

Further to neuropathic pain, P2X4-deficient mice also exhibit reduced responses to
chronic inflammatory pain following nerve injury via a similar activation pathway involv-
ing p38 MAPK stimulation [49]. This process occurs within tissue-resident macrophages,
which have been shown to express P2X4 receptors [3]. The activation of P2X4 receptors
in tissue-resident macrophages results in an enzymatic cascade of events, including the
activation of cyclooxygenases and the subsequent release of prostaglandin E2, a key medi-
ator of inflammation [3]. In addition to this, tissues extracted from P2X4 knockout mice
were completely absent of inflammatory prostaglandin E2 [3], further supporting the role
of the P2X4 receptor in the production of this compound and its signalling of chronic
inflammatory pain.

A number of studies have demonstrated that P2X4 receptors may also play a key role
in alcohol use disorders [10]. This has been suggested through the upregulation of P2X4
receptors on murine microglial cells, which coincides with increased microglial activation,
the release of neuroinflammatory mediators, and the regulation of downstream signalling
events [97,143,144]. Furthermore, excessive alcohol use has also been linked with enhanced
neuroinflammation [145], promoting microglial activation and peripheral macrophage
recruitment into the central nervous system in a murine model of chronic alcohol consump-
tion [146]. Ivermectin, which is known to antagonise the ethanol-mediated inhibition of
P2X4 receptors [85], has been assessed in a Phase 1 clinical trial for treating alcohol use
disorders [147]. However, despite demonstrating the safety of ivermectin (30 mg taken
orally) in combination with an intoxicating dosage of alcohol, this trial was unable to
provide evidence for ivermectin in effectively reducing alcohol craving or response to
alcohol. Nonetheless, the authors suggest additional studies with larger sampling and al-
ternate dosing regimens are warranted, given the demonstrated safety of ivermectin and its
potential for treating alcohol use disorders observed through in vivo studies in mice [148].
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Ivermectin has also demonstrated other potential therapeutic benefits outside of alcohol
use disorders. Potentiation of P2X4 receptors with ivermectin revealed an anti-bacterial
effect and improved survival in a mouse model of sepsis [149], while in a mouse model
of multiple sclerosis (autoimmune encephalomyelitis), the potentiation of P2X4 receptors
by ivermectin improved oligodendrocyte-mediated remyelination of neurons [150]. In a
dopamine depletion mouse model of Parkinson’s disease, the potentiation of P2X4 receptors
by ivermectin-enhanced motor behaviour in the presence of levodopa [151], a therapeutic
agent used for the treatment of Parkinson’s disease. This demonstrated the potential of
ivermectin for the treatment of Parkinson’s disease. Despite these studies, the full effects of
ivermectin as a therapeutic agent for neuroinflammatory and neurodegenerative diseases,
such as multiple sclerosis and Parkinson’s disease, requires further investigation.

7. Conclusions

The P2X4 receptor has emerged as a strong candidate for targeting neuroinflammatory
signalling mechanisms, particularly in macrophages, microglia, and endothelial cells. Stud-
ies continue to demonstrate links between the P2X4 receptor and important physiological
and pathophysiological mechanisms, such as that observed in chronic neuropathic and
inflammatory pain models. The continued development of novel drugs targeting the P2X4
receptor over the past decade has contributed to our current understanding of this receptor
and its molecular mechanisms. Despite this, the molecular tools currently used to study
P2X4 receptors have demonstrated a number of shortfalls, including a lack of selectivity,
effectiveness, or low solubility. This has limited the ability to selectively target the phys-
iological effects of the P2X4 receptor, such as in neuroinflammatory models of disease.
Although much is left to be understood regarding how best to target these receptors in
neuroinflammatory disease, studies continue to deliver promising results in the design and
development of effective and selective drugs for elucidating the cellular and molecular
properties of the P2X4 receptor. As such, the challenges presented here represent relatively
minor roadblocks in the future of targeting the P2X4 receptor as a therapeutic strategy in
neuroinflammatory disease.
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