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Objectives: To develop and validate a deep learning (DL)-based primary tumor biopsy
signature for predicting axillary lymph node (ALN) metastasis preoperatively in early breast
cancer (EBC) patients with clinically negative ALN.

Methods: A total of 1,058 EBC patients with pathologically confirmed ALN status were
enrolled from May 2010 to August 2020. A DL core-needle biopsy (DL-CNB) model was
built on the attention-based multiple instance-learning (AMIL) framework to predict ALN
status utilizing the DL features, which were extracted from the cancer areas of digitized
whole-slide images (WSIs) of breast CNB specimens annotated by two pathologists.
Accuracy, sensitivity, specificity, receiver operating characteristic (ROC) curves, and areas
under the ROC curve (AUCs) were analyzed to evaluate our model.

Results: The best-performing DL-CNB model with VGG16_BN as the feature extractor
achieved an AUC of 0.816 (95% confidence interval (CI): 0.758, 0.865) in predicting
positive ALN metastasis in the independent test cohort. Furthermore, our model
incorporating the clinical data, which was called DL-CNB+C, yielded the best accuracy
of 0.831 (95%CI: 0.775, 0.878), especially for patients younger than 50 years (AUC:
0.918, 95%CI: 0.825, 0.971). The interpretation of DL-CNB model showed that the top
signatures most predictive of ALN metastasis were characterized by the nucleus features
including density (p = 0.015), circumference (p = 0.009), circularity (p = 0.010), and
orientation (p = 0.012).

Conclusion: Our study provides a novel DL-based biomarker on primary tumor CNB
slides to predict the metastatic status of ALN preoperatively for patients with EBC.
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INTRODUCTION

Breast cancer (BC) has become the greatest threat to women’s
health worldwide (1). Clinically, identification of axillary lymph
node (ALN) metastasis is important for evaluating the prognosis
and guiding the treatment for BC patients (2). Sentinel lymph
node biopsy (SLNB) has gradually replaced ALN dissection
(ALND) to identify ALN status, especially for early BC (EBC)
patients with clinically negative lymph nodes. Although SLNB
had the advantage of less invasiveness than ALND, SLNB still
caused some complications such as lymphedema, axillary
seroma, paraesthesia, and impaired shoulder function (3, 4).
Moreover, SLNB has been considered a controversial procedure,
owing to the availability of radionuclide tracers and the surgeon’s
experience (5, 6). In fact, SLNB can be avoided if there are some
reliable methods of preoperative prediction of ALN status for
EBC patients.

Several studies intended to predict the ALN status by
clinicopathological data and genetic testing score (7, 8).
However, due to the relatively poor predictive values and high
genetic testing costs, these methods are often limited. Recently,
deep learning (DL) can perform high-throughput feature
extraction on medical images and analyze the correlation
between primary tumor features and ALN metastasis
information. In a previous study, deep features extracted from
conventional ultrasound and shear wave elastography (SWE)
were used to predict ALN metastasis, presenting an area under
the curve (AUC) of 0.796 in the test set (9). Nevertheless, SWE
has not been integrated into routine clinical breast examinations
in many hospitals. Another recent study demonstrated that the
DL model based on diffusion-weighted imaging–magnetic
resonance imaging (DWI-MRI) database of 172 patients
achieved an AUC of 0.852 for preoperative prediction of ALN
metastasis (10), but the small sample size enrolled could not
be representative.

Currently, DL has enabled rapid advances in computational
pathology (11, 12). For example, DL methods have been applied
to segment and classify glomeruli with different staining and
various pathologic changes, thus achieving the automatic
analysis of renal biopsies (13, 14); meanwhile, DL-based
automatic colonoscopy tissue segmentation and classification
have shown promise for colorectal cancer detection (15, 16);
besides, the analysis of gastric carcinoma and precancerous
status can also benefit from DL schemes (17, 18). More
recently, for the ALN metastasis detection, it is reported that
DL algorithms on digital lymph node pathology images achieved
better diagnostic efficiency of ALN metastasis than pathologists
(19, 20). In particular, the assistance of algorithm significantly
increases the sensitivity of detection for ALN micro-metastases
(21). In addition to diagnosis, several previous studies indicated
that deep features based on whole-slide images (WSIs) of
postoperative tumor samples potentially improved the
prediction performance of lymph node metastasis in a variety
of cancers (20, 22). So far, there is no relevant research on
preoperatively predicting ALN metastasis based on WSIs of
primary BC samples. In this study, we investigated a clinical
data set of EBC patients treated by preoperative core-needle
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biopsy (CNB) to determine whether DL models based on
primary tumor biopsy slides could help to refine the prediction
of ALN metastasis.
PATIENTS AND METHODS

Patients
On approval by the Institutional Ethical Committees of Beijing
Chaoyang Hospital affiliated to Capital Medical University, we
retrospectively analyzed data from EBC patients with clinically
negative ALN from May 2010 to August 2020. Written consent
was obtained from all patients and their families.

The detailed inclusion criteria were as follows: 1) patients
with CNB pathologically confirmed primary invasive BC; 2)
patients who underwent breast surgery with SLNB or ALND;
3) baseline clinicopathological data including age, tumor size,
tumor type, ER/PR/HER-2 status, and the number of ALN
metastasis were comprehensive; 4) complete concordance of
molecular status was found between CNB and excision
specimens; 5) no history of preoperative radiotherapy and
chemotherapy; and 6) adequate volume of biopsy materials
with three or more cores for each patient.

The exclusion criteria included the following: 1) patients with
physically positive or imaging-positive ALN; 2) missing
postoperative pathology information; 3) missing wax blocks
and hematoxylin and eosin (H&E) slices; and 4) low-quality
H&E slices or WSIs. The patient recruitment workflow is shown
in Figure 1.

Deep Learning Model Development
To avoid the inter-observer heterogeneity, all available tumor
regions in each CNB slide were examined and annotated by two
independent and experienced pathologists blinded to all patient-
related information. A WSI was classified into positive (N(+)) or
negative (N0) using the proposed DL CNB (DL-CNB) model.
Our DL-CNB model was constructed with the attention-based
multiple-instance learning (MIL) approach (23). In MIL, each
training sample was called a bag, which consisted of multiple
instances (24–26) (each instance corresponds to an image patch
of size 256 × 256 pixels). Different from the general fully
supervised problem where each sample had a label, only the
label of bags was available in MIL, and the goal of MIL was to
predict the bag label by considering all included instances
comprehensively. The whole algorithm pipeline comprised the
following five steps:

(1) Training data preparation (Figure 2A). For each rawWSI,
amounts of non-overlapping square patches were first cropped
from the selected tumor regions. Then each WSI could be
represented as a bag with N randomly selected patches. To
increase the training samples, M bags were built for each WSI.
All M bags were labeled as positive if the slide is an ALN
metastasis case, and vice versa. Note that we could add the
clinical information of the slide to all the M constructed bags to
involve more useful information for predicting, and in this
situation, the developed model was called DL-CNB+C.
October 2021 | Volume 11 | Article 759007
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(2) Feature extraction (left part of Figure 2B). N feature
vectors were extracted for the N image instances in each bag by
using a convolutional neural network (CNN) model. The
performances of AlexNet (27), VGG16 (28) with batch norm
(VGG16_BN), ResNet50 (29), DenseNet121 (30), and Inception-
v3 (31) were compared to find the best feature extractor. At this
stage, the clinical data were also preprocessed for feature
extraction. Concretely, the numerical properties in clinical data
were standardizing by removing the mean and scaling to unit
variance, thus eliminating the effect of data range and scale;
furthermore, considering that there was no natural ordinal
relationship between different values of the category attributes,
the categorical properties in clinical data were encoded as the
one-hot vectors, which could express different values equally.

(3)MIL (right part ofFigure2B). The extractedN feature vectors
of image instances were first processed by the max-pooling (32–34)
and reshaping and then were passed to a two-layer fully connected
(FC) layer.TheNweight factors for the instances in thebagwere thus
obtained and then were further multiplied to the original feature
vectors (23) to adaptively adjust the effect of instance features.
Finally, the weighted image feature vectors and the clinical features
were fused by concatenation; due to the large difference of
dimensions between image features and clinical features, the
clinical features were copied 10 times for expansion. Then, the
fused features were fed into the classifier, and the outputs and the
ground truth labels were used to calculate the cross-entropy loss.

(4) Model training and testing. We randomly divided the
WSIs into training cohort and independent test cohort with the
ratio of 4:1 and randomly selected 25% of the training cohort as
the validation cohort. We used Adam optimizer with learning
rate 1e−4 to update the model parameters and weight decay 1e−3
for regularization. In the training phase, we used the cosine
annealing warm restarts strategy to adjust the learning rate (35).
Frontiers in Oncology | www.frontiersin.org 3
In the testing phase, the ALN status is predicted by aggregating
the model outputs of all bags from the same slide (Figure 2C).

The DL models are available at: https://github.com/bupt-ai-
cz/BALNMP.

Visualization of Salient Regions From
Deep Learning Core-Needle Biopsy Model
We visualized the important regions that were more associated
with metastatic status. After the processing of attention-based
MIL pooling, the weights of different patches can be obtained,
and the corresponding feature maps were then weighted together
in the following FC layers to conduct ALN status prediction.
With the attention weights, we created a heat map to visualize the
important salient regions in each WSI.

Interpretability of Deep Learning
Core-Needle Biopsy Model With
Nucleus Features
Interpretability of DL-CNB model with nucleus features was
performed to study the contribution of different nucleus
morphological characteristics in the prediction of lymph node
metastasis (36, 37). Multiple specially designed nucleus features
were firstly extracted for each WSI, and these features together
formed a training bag. With the constructed feature bags, the
proposed DL-CNB model was re-trained. The weights of different
features (instances) can be obtained based on the attention-based
MIL pooling, and thus the contribution of different features was
yielded. The specific process is described in Figure 3.

Statistical Analysis
The logistic regression was used to predict ALN status by clinical
data only model. The clinical difference of N0 and N(+) was
compared by using the Mann–Whitney U test and chi-square
FIGURE 1 | Patient recruitment workflow.
October 2021 | Volume 11 | Article 759007
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A B DC

FIGURE 3 | Overview on interpretability methods of deep learning core-needle biopsy (DL-CNB) model based on nucleus morphometric features. (A) The selected
tumor regions of each whole-slide image (WSI) was cropped into patches. (B) For each patch, we processed nucleus segmentation (a weakly supervised
segmentation framework was applied to obtain the nucleus), defined multiple nucleus morphometric features (such as major axis, minor axis, area, orientation,
circumference, density, circularity, and rectangularity, which are denoted as f1, f2, f3, …, fn), and extracted n feature parameters correspondingly. (C) All n kinds of
feature parameters from a WSI were quantized into n distribution histograms and saved to n feature matrices (m1, m2, m3, …, mn). (D) The matrices from a WSI
were considered as instances of a bag and served as the input of DL-CNB model; the re-trained DL-CNB model could generate scores of features (instances) in the
bag, which represented the weight of each feature in pathological diagnosis.
A

B

C

FIGURE 2 | The overall pipeline of the deep learning core-needle biopsy incorporating the clinical data (DL-CNB+C) model to predict axillary lymph node (ALN)
status between N0 and N(+). (A) Multiple training bags were built based on clinical data and the cropped patches from the selected tumor regions of each core-
needle biopsy (CNB) whole-slide image (WSI). (B) DL-CNB+C model training process included two phases of feature extraction and multiple-instance learning (MIL),
and finally the weighted features fused with clinical features were used to predict classification probabilities and calculate the cross-entropy loss. (C) The predicted
probabilities of each bag from a raw CNB WSI were merged to guide the final ALN status classification between N0 and N(+).
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test. The AUCs of different methods were compared by using
Delong et al. (38). The other measurements like accuracy (ACC),
sensitivity (SENS), specificity (SPEC), positive predictive value
(PPV), and negative predictive value (NPV) were also used to
estimate the model performance. All the statistics were two-
sided, and a p-value less than 0.05 was considered statistically
significant. All statistical analyses were performed by MedCalc
software (V 19.6.1; 2020 MedCalc Software bvba, Mariakerke,
Belgium), Python 3.7, and SPSS 24.0 (IBM, Armonk, NY, USA).
RESULTS

Clinical Characteristics
A total of 1,058 patients with EBC were enrolled for analysis.
Among them, 957 (90.5%) patients had invasive ductal
carcinomas, and 101 (9.5%) patients had invasive lobular
carcinomas. There were 840 patients in the training cohort and
218 patients in the independent test cohort after all WSIs were
randomly divided by using N0 as the negative reference standard
and others as the positive. The average patient age was 57.6 years
(range, 26–90 years) for the training and validation sets and 56.7
years (range, 22–87 years) for the test set. The mean ultrasound
tumor size was 2.23 cm (range, 0.5–4.5 cm). A total of 556
patients (52.6%) had T1 tumors, while 502 patients (47.4%) had
T2 tumors. According to the results of SLNB or ALND, positive
lymph nodes were found in 403 patients. Among them, 210
patients (52.1%) had one or two positive lymph nodes (N+(1 −
2)), and 193 patients (47.9%) had three or more positive lymph
nodes (N+(≥3)). As shown in Table 1, there was no significant
difference between the detailed characteristics of the training and
independent test cohorts (all p > 0.05).
Frontiers in Oncology | www.frontiersin.org 5
Convolutional Neural Network
Model Selection
The detailed results are summarized in Supplementary Table 1.
Based on the overall analysis, VGG16_BN model pre-trained on
ImageNet (39) provided the best performance in the validation
cohort and the independent test cohort (AUC: 0.808, 0.816),
compared with AlexNet (AUC: 0.764, 0.780), ResNet50 (AUC:
0.644, 0.607), DenseNet121 (AUC: 0.714, 0.739), and Inception-v3
(AUC: 0.753, 0.762). Furthermore, considering other metrics,
VGG16_BN achieved the best ACC, SPEC, and PPV in the
independent test cohort. VGG16_BN consisted of (convolution
layer, batch normalization layer, and Rectified Linear Unit (ReLU))
as the basic blockwhereReLUplayed a role of activation function to
provide the non-linear capability; and max-pooling layers were
insertedbetweenbasicblocks fordown-sampling; besides, therewas
an adaptive average pooling layer at the end of VGG16_BN for
obtaining features with a fixed size. The details of VGG16_BN are
described in Supplementary Table 2.

Predictive Value of Deep Learning Core-
Needle Biopsy Incorporating the Clinical
Data Model Between N0 and N(+)
In the trainingcohort,DL-CNB+Cachieved anAUCof0.878,while
DL-CNB and classification by clinical data only model achieved
AUCsof 0.901 and0.661, respectively.And in the validation cohort,
theDL-CNB+Cmodel achievedanAUCof0.823,whichwashigher
than an AUC of 0.808 obtained by DL-CNB only and an AUC of
0.709 obtained by classification by clinical data.

In the independent test cohort, the DL-CNB+C model still
achieved the highest AUC of 0.831, which was better than the
AUC of DL-CNB only (AUC: 0.816, p = 0.453) and classification
October 2021 | Volume 11 | Article 759007
TABLE 1 | Patient and tumor characteristics.

Characteristics All patients Training Test p

Number 1,058 840 (80%) 218 (20%)
Age, mean ± SD, years 57.58 ± 12.523 57.80 ± 12.481 56.72 ± 12.674 0.344
Tumor size, mean ± SD, cm 2.234 ± 0.8623 2.228 ± 0.8516 2.256 ± 0.9040 0.898
Number of LNM, mean ± SD 1.20 ± 2.081 1.20 ± 2.095 1.20 ± 2.033 0.847
Tumor type 0.812

Invasive ductal carcinoma 957 760 (90.5%) 197 (90.4%)
Invasive lobular carcinoma 101 80 (9.5%) 21 (9.6%)

T stage 0.327
T1 556 435 (51.8%) 121 (55.5%)
T2 502 405 (48.2%) 97 (44.5%)

ER 0.333
Positive 831 665 (79.2%) 166 (76.1%)
Negative 227 175 (20.8%) 52 (23.9%)

PR 0.312
Positive 790 633 (75.4%) 157 (72.0%)
Negative 268 207 (24.6%) 61 (28.0%)

HER-2 0.613
Positive 277 217 (25.8%) 60 (27.5%)
Negative 781 623 (74.2%) 158 (72.5%)

LNM 0.880
Yes 403 521 (62.0%) 134 (61.5%)
No 655 319 (38.0%) 84 (38.5%)
Qualitative variables are in n (%), and quantitative variables are in mean ± SD, when appropriate.
SD, standard deviation; ER, estrogen receptor; PR, progesterone receptor; HER-2, human epidermal growth factor receptor-2; LNM, lymph node metastasis.
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by clinical data only (AUC: 0.613, p < 0.0001). The ACC, SENS,
and NPV of DL-CNB+C were also better than those of other
methods. The detailed statistical results are summarized in
Table 2, and its corresponding receiver operating characteristics
(ROCs) are shown in Figure 4.

We further divided N(+) into low metastatic potential (N+

(1 − 2)) and high metastatic potential (N+(≥3)) according to the
number of ALN metastasis. Adopting N0 as the negative
reference standard, the combined model showed better
discriminating ability between N0 and N+(1 − 2) (AUC: 0.878)
and between N0 and N+(≥3) (AUC: 0.838).

The detailed statistical results are summarized in
Supplementary Tables 3, 4, and the corresponding ROCs are
shown in Supplementary Figures 1, 2.
Frontiers in Oncology | www.frontiersin.org 6
Predictive Value of Deep Learning Core-
Needle Biopsy Incorporating the Clinical
Data Model Among N0, N+(1 − 2),
and N+(≥3)

The overall AUC of multi-classification in the independent test
cohort based on DL-CNB+C model was 0.791; there existed the
highest precision and recall of 0.747 and 0.947, respectively, in
N0; there existed the precision and recall of 0.556 and 0.400 in N+

(1 − 2); and there existed the precision and recall of 0.375 and
0.162 in N+(≥3). The confusion matrix under the classification
threshold of 0.5 is shown in Figure 5. According to the results, the
model performed well in differentiating the N0 group while
showing poor diagnostic efficacy in the other two groups.
FIGURE 4 | Comparison of receiver operating characteristic (ROC) curves between different models for predicting disease-free axilla (N0) and heavy metastatic
burden of axillary disease (N(+)). Numbers in parentheses are areas under the receiver operating characteristic curve (AUCs).
TABLE 2 | The performance in prediction of ALN status (N0 vs. N(+)).

Methods AUC ACC (%) SENS (%) SPEC (%) PPV (%) NPV (%)

Clinical data only T 0.661 [0.622, 0.698] 64.13 [60.24, 67.88] 64.58 [58.17, 70.63] 63.85 [58.86, 68.62] 52.36 [48.32, 56.38] 74.55 [70.85, 77.92]
V 0.709 [0.643, 0.770] 67.62 [60.84, 73.90] 65.82 [54.29, 76.13] 68.70 [60.02, 76.52] 55.91 [48.46, 63.11] 76.92 [70.62, 82.22]
I−T 0.613a,b [0.545, 0.678] 61.93 [55.12, 68.40] 50.00 [38.89, 61.11] 69.40 [60.86, 77.07] 50.60 [42.34, 58.83] 68.89 [63.49, 73.82]

DL-CNB model T 0.901 [0.875, 0.923] 80.32 [76.99, 83.35] 94.17 [90.41, 96.77] 71.79 [67.05, 76.21] 67.26 [63.61, 70.71] 95.24 [92.30, 97.09]
V 0.808 [0.748, 0.859] 72.86 [66.31, 78.75] 77.22 [66.40, 85.90] 70.23 [61.62, 77.90] 61.00 [53.95, 67.62] 83.64 [77.04, 88.62]
I−T 0.816c [0.758, 0.865] 74.77 [68.46, 80.39] 80.95 [70.92, 88.70] 70.90 [62.43, 78.42] 63.55 [56.76, 69.84] 85.59 [79.04, 90.34]

DL-CNB+C model T 0.878 [0.622, 0.698] 76.51 [73.00, 79.77] 93.33 [89.40, 96.14] 66.15 [61.22, 70.84] 62.92 [59.53, 66.19] 94.16 [90.90, 96.30]
V 0.823 [0.765, 0.872] 75.71 [69.34, 81.35] 74.68 [63.64, 83.80] 76.34 [68.12, 83.32] 65.56 [57.69, 72.65] 83.33 [77.19, 88.08]
I−T 0.831 [0.775, 0.878] 75.69 [69.44, 81.23] 89.29 [80.63, 94.98] 67.16 [58.53, 75.03] 63.03 [56.96, 68.71] 90.91 [84.21, 94.94]
October 2021 | Volume
95% confidence intervals are included in brackets.
AUC, area under the receiver operating characteristic curve; ACC, accuracy; SENS, sensitivity; SPEC, specificity; PPV, positive predictive value; NPV, negative predictive value; T,
training cohort (n = 630); V, validation cohort (n = 210); I–T, independent test cohort (n = 218); ALN, axillary lymph node; DL-CNB+C, deep learning core-needle biopsy incorporating
the clinical data.
aIndicates p < 0.0001, Delong et al. in comparison with DL-CNB model in independent test cohort.
bIndicates p < 0.0001, Delong et al. in comparison with DL-CNB+C model in independent test cohort.
cIndicates p = 0.4532, Delong et al. in comparison with DL-CNB+C model in independent test cohort.
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Subgroup Analysis of Deep Learning Core-
Needle Biopsy Incorporating the Clinical
Data Model
Furthermore, we analyzed the measurement results of the
different subgroups in the independent test cohort of
predicting ALN status between N0 and N(+) by the DL-
CNB+C model. The detailed statistical results are summarized
in Supplementary Table 5. In the independent test cohort,
compared with an AUC of 0.794 (95%CI: 0.720, 0.855) in the
subgroup of age >50, there existed better performance in the
subgroup of age ≤50 with an AUC of 0.918 (95%CI: 0.825, 0.971,
p = 0.015). There were no significant differences regarding other
subgroups of ER(+) vs. ER(−) (p = 0.125), PR(+) vs. PR(−) (p =
0.659), HER-2(+) vs. HER-2(−) (p = 0.524), and T1 vs. T2 stage
(p = 0.743) between N0 and N(+).

Interpretability of Deep Learning Core-
Needle Biopsy Model
To investigate the interpretability of the DL-CNB, we conducted
two studies for digging the correlation factors of ALN status
prediction. In the first study, we adopted the attention-based
MIL pooling to find the important regions that contributing to
the prediction. The heat map in Figure 6A highlights the red
patches as the important regions. Although the obtained
important areas can provide some clues to the diagnosis of
DL-CNB model, it is not clear that the model makes decisions
based on what features of the tumor area.

In the second study, we specially designed and extracted
multiple nucleus features for each WSI. The weights of different
features were then obtained based on the same attention-based
MIL pooling in our DL-CNB. The weights highlighted the nucleus
features that were most relevant to the ALN status prediction of
Frontiers in Oncology | www.frontiersin.org 7
each WSI. We found that the WSI of N(+) group had higher
nuclear density (p = 0.015) and orientation (p = 0.012) but lower
circumference (p = 0.009), circularity (p = 0.010), and area (p =
0.024) compared with N0 group (Figures 6B, C). There were no
significant differences in other nucleus features including major
axis (p = 0.083), minor axis (p = 0.065), and rectangularity (p =
0.149) between N0 and N(+).
DISCUSSION

In most previous studies, DL signatures of ALN metastases were
based on medical images such as ultrasound, CT, and MRI (10,
40, 41). However, since many patients had undergone CNB at the
time of imaging examination, and the reactive changes such as
needle path in the tumor would result in the predictive
inaccuracy of imaging information. This study focused on
preoperative CNB WSI, which also played an important role in
BC management and has been increasingly performed in clinical
practice. Preoperative CNB can provide not only the
histopathological diagnosis of BC but also the molecular status
including ER/PR/HER-2 status, which is associated with ALN
metastasis (42). Otherwise, the morphological features of tumor
cells can be visualized on CNB WSI. Therefore, primary tumor
biopsy WSI as a complementary imaging tool has the potential
for ALNmetastasis prediction. To the best of our knowledge, this
is the first study to apply the DL-based histopathological features
extracted from primary tumorWSIs for ALN prediction analysis.

Here, the best-performing DL-CNB model yielded
satisfactory predictions with an AUC of 0.816, a SENS of
81.0%, and a SPEC of 70.9% on the test set, which had
superior predictive capability as compared with clinical data
FIGURE 5 | The confusion matrix of predicting axillary lymph node (ALN) status between disease-free axilla (N0), low metastatic burden of axillary disease
(N+(1 − 2)), and heavy metastatic burden of axillary disease (N+(≥3)).
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alone. Furthermore, unlike other combined models incorporating
clinical data (7, 9), the DL-CNB+C model slightly improved the
ACC to 0.831, which showed that our results were mainly derived
from the contribution of DL-CNB model. In addition, during the
subgroup analysis stratifiedbypatient’s age, ourDL-CNB+Cmodel
achieved an AUC of 0.918 for patients younger than 50 years,
indicating that age was the critical factor in predicting ALN status.
Regarding the number of ALN metastasis, the DL-CNB+C model
showedbetterdiscriminating ability betweenN0andN+(1− 2), and
between N0 and N+(≥3). However, the unfavorable discriminating
ability was found between N+(1 − 2) and N+(≥3). This was
consistent with the study of Zheng et al. (9), who also reported
poor efficacy between N+(1 − 2) and N+(≥3), utilizing the DL
radiomics model. In the future, further exploration of ALN staging
prediction is needed.

Indeed, computer-assisted histopathological analysis can
provide a more practical and objective output (43). For
Frontiers in Oncology | www.frontiersin.org 8
example, different molecular subtypes (44) and Oncotype DX
risk score (45) occurring in BC could be directly predicted from
the H&E slides. On the one hand, our DL model can provide
significant information for risk stratification and axillary staging,
thereby avoiding axillary surgery and reducing the complication
and hospitalization costs. On the other hand, our results also
highlight the development of algorithms based on artificial
intelligence, which will reduce the labor intensity of
pathologists. Similar approaches may be used to the pathology
of other organs.

In our study, we are first to quantitatively assess the role of
nuclear disorder in predicting ALN metastasis in BC. Our
finding is consistent with several recent studies that
demonstrate the powerful predictive effect of nuclear disorder
on patient survival (46, 47). Interestingly, the top predictive
signatures that distinguished N0 from N(+) were characterized
by the nucleus features including density, circumference,
A B

C

FIGURE 6 | The interpretability of the deep learning core-needle biopsy (DL-CNB) model of two patients. (A, B) The heat maps and nuclear segmentation from
core-needle biopsy (CNB) whole-slide images (WSIs) of the N0 and the N(+) separately, and the red regions show greater contribution to the final classification.
(C) The statistical analysis of three nuclear characteristics most relevant to diagnosis of all patients.
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circularity, and orientation. We found that the WSI of N(+) had
higher nuclear density and polarity but lower circularity, which
was understandable since in the tumors with ALN metastasis,
tumor cells became poorly differentiated as a result of rapid cell
growth, encouraging the nuclei in these structures to form highly
clustered and consistently metastatic patterns. Our results
showed that nuanced patterns of nucleus density and
orientation of tumor cells are important determinants of
ALN metastasis.

There are some limitations in our study. First, the selection of
regions of interest within each CNB slide required pathologist
guidance. Future studies will explore more advanced methods for
automatic segmentation of tumor regions. Second, this is a
retrospective study, and prospective validation of our model in
a large multicenter cohort of EBC patients is necessary to assess
the clinical applicability of the biomarker. Third, recent evidence
indicated that a set of features related to tumor-infiltrating
lymphocytes (TILs) was found to be associated with positive
LNs in bladder cancer (22). However, due to few TILs on breast
CNB slides, we only selected sufficient tumor cells for the
identification of salient regions rather than whole slides.
Finally, we only chose H&E stained images of CNB samples.
The clinical utility of immunochemical stained images remains
to be established as an interesting attempt.
CONCLUSION

In brief, we demonstrated that a novel DL-based biomarker on
primary tumor CNB slides predicted ALN metastasis
preoperatively for EBC patients with clinically negative ALN,
especially for younger patients. Our methods could help to avoid
unnecessary axillary surgery based on the widely collected H&E-
stained histopathology slides, thereby contributing to precision
oncology treatment.
Frontiers in Oncology | www.frontiersin.org 9
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