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Group 2 innate lymphoid cells (ILC2s) are GATA3-expressing type 2 cytokine-producing
innate lymphocytes that are present in various organs throughout the body. Basically,
ILC2s are tissue-resident cells associated with a variety of pathological conditions in each
tissue. Differences in the tissue-specific properties of ILC2s are formed by the post-natal
tissue environment; however, diversity exists among ILC2s within each localized tissue
due to developmental timing and activation. Diversity between steady-state and activated
ILC2s in mice and humans has been gradually clarified with the advancement of single-cell
RNA-seq technology. Another layer of complexity is that ILC2s can acquire other ILC-like
functions, depending on their tissue environment. Further, ILC2s with immunological
memory and exhausted ILC2s are both present in tissues, and the nature of ILC2s varies
with senescence. To clarify how ILC2s affect human diseases, research should be
conducted with a comprehensive understanding of ILC2s, taking into consideration the
diversity of ILC2s rather than a snapshot of a single section. In this review, we summarize
the current understanding of the heterogeneity of ILC2s in the lungs and highlight a novel
field of immunology.
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INTRODUCTION

Group 2 innate lymphoid cells (ILC2s) express transcription factor GATA3 and produce type 2
cytokines upon stimulation with epithelial cell-derived cytokines, including IL-33 and IL-25. ILC2s,
which were first characterized by three different research groups in 2010 (1–3), are distributed
throughout the body, such as in the lungs, skin, intestine, liver, brain, bone marrow, and peripheral
blood in mice and humans (1–13). In particular, ILC2s play a critical role in innate immunity-
mediated type 2 airway inflammation (1–8, 10–12) and contribute to the repair of airway damage
via amphiregulin production after influenza virus infection (14). Recent studies have shown that
ILC2s are associated with lung fibrosis, chronic lung obstructive disease exacerbation, and lung
cancer (15–23). Thus, ILC2s have various functions and are involved in the pathogenesis of several
lung diseases.

ILC2s are primarily tissue-resident cells with different characteristics depending on the tissues in
which they exist (24–27). In mice, ILC2s express higher levels of Il1rl1, which encodes the IL-33
receptor subunit ST2, in the lungs than in other tissues (27, 28). Conversely, the expression levels of
Il17rb, which encodes an IL-25 receptor subunit, and Il18r1, which encodes an IL-18 receptor
subunit, are lower in ILC2s in the lungs than in the small intestine and skin, respectively (27).
Indeed, intranasal administration of IL-33 potently activates ILC2s in the lungs compared with IL-
25 or IL-18 (27, 29, 30). Interestingly, when IL-25 is administered intraperitoneally (but not
org June 2022 | Volume 13 | Article 9184581
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intranasally), an intestine-derived unique ILC2 subset (called
inflammatory ILC2s [iILC2s]), which highly expresses KLRG1
and IL-17RB, migrates to the lungs (31). Moreover, recent single-
cell RNA-seq analyses in mice and humans have revealed the
existence of diverse cell populations among lung ILC2s (27, 32–
38). Although ILC2s were previously considered to be a single-
cell population, these results confirm the presence of different
subsets within ILC2s. Therefore, it is necessary to dissect
individual cell populations to evaluate their molecular
mechanisms and relationships with diseases.

In this review, we provide a current overview of the
heterogeneity of ILC2s in the lungs, and summarize our
understanding of the diversity of ILC2s and their contribution
to immunity in the lungs.
DIFFERENCES IN ILC2s ACROSS
TISSUES AND HETEROGENEITY OF
LUNG ILC2s AT STEADY STATE

ILC2s are distributed in various organs of the body at a steady
state. A recent study comparing the expression of various genes
in murine ILC2s in various tissues, such as lung, skin, adipose,
skin, intestine, and bone marrow, showed that the expression
levels of Gata3 and Il7r do not differ among ILC2s in each tissue;
however, hundreds of genes are differentially expressed by ILC2s
depending on the localized tissue (27). In particular, lung
ILC2s display increased expression of Il1rl1, while intestinal
ILC2s highly express Il17rb as well as Ahr and Nmur1, which
encode aryl hydrocarbon receptor (AHR) and neuromedin U
receptor 1 (NMUR1), respectively (27, 38, 39). Indeed, intranasal
administration of IL-33 potently activates lung ILC2s compared
with IL-25, while genetic ablation of Ahr or Nmur1 modifies
anti-helminth immunity via intestinal ILC2s (38, 39). In
addition, most skin ILC2s that express lower levels of Il1rl1
and Il17rb also show increased expression of Il18r1, which
encodes an IL-18 receptor subunit (27). Interestingly, the
tissue-specific features of ILC2s are independent of either the
microbiome or epithelial cell-derived cytokines, including IL-25,
IL-33, and thymic stromal lymphopoietin (TSLP). However,
neuropilin-1 (Nrp1) was recently identified as a candidate gene
that determines the tissue specificity of lung ILC2s and enhances
the expression of IL-33 receptor (40). NRP1 can be induced
postnatally and its expression is maintained in the lung
environment by TGF-b s ignal ing, result ing in the
establishment of tissue specificity by lung ILC2s (40). These
findings suggest that the diversity of ILC2s depends on the tissue
in which they reside, and that acquisition of tissue specificity may
begin very early in development (Figure 1).

During the development of ILC2s in the lungs, ILC
progenitors migrate to the lung before birth and differentiate
into ILC2s depending on IL-7 signaling (41). These prenatal
ILC2s persist after birth, and are detectable in adult mice,
however, they account for a small proportion and decrease
further with age. After birth, acute expansion and activation of
ILC2s occur in the lungs between 2 and 3 weeks of age, and these
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neonatal ILC2s have high expression of genes related to cytokine
production, immunoregulation, and proliferation, such as Il5,
Il13, Nr4a1, and Mki67, as well as Cxcl2, a neutrophil
recruitment factor, which induces other immune cells into the
lung and contributes to the development of the lung
environment (41, 42). According to the fate-mapping
approach, neonatal ILC2s are long-lived and tissue-resident
and constitute the majority of lung ILC2s, even in adults (41).
In adult mice, the proportion of neonatal ILC2s is gradually
diluted by newly generated ILC2s, termed adult-derived ILC2s,
and the adult lungs contain a diverse mixture of prenatal,
neonatal, and adult-derived ILC2s. However, the turnover
speed of ILC2s varies depending on the tissue and is slower in
the lungs than in the skin, small intestine, and bone marrow.
Therefore, the proportion of neonatal ILC2s is high in the lungs,
and neonatal ILC2s play a major role in enhancing type 2
inflammation through local expansion in the lungs (41).

To assess the diversity of lung ILC2s at a steady state, a study
performed single-cell RNA-seq analysis of lung ILC2s from adult
mice, which revealed that lung ILC2s can be divided into several
subgroups, including a group that highly expresses Cxcl2, Il2,
Klf2, and Cd69; a group that expresses Areg, Calca, and Csf2; and
a group that expresses Il5, Il13, Cacla, Areg, and Cxcl2 (32).
However, it is not clear whether these are groups of cells at
different developmental stages or activation states. This study
also identified a small number of ILC progenitors with low
expression of Gata3 and Il1rl1, and high expression of Il18r1
in the lungs (32). These cells express ILC progenitor marker
genes, such as Tcf7 and Zbtb16, as well as genes that suggest a
mixed lineage potential, such as Rorc and Tbx21. Although these
FIGURE 1 | Heterogeneity of lung group 2 innate lymphoid cells (ILC2s) in
mice at steady state. Lung ILC2s have increased expression of Il1rl1, while
intestinal ILC2s highly express Il17rb, Ahr and Nmur1, and Il18r1 is enriched
in skin ILC2s, respectively. Adult ILC2s in the lung have three developmental
origins: prenatal, neonatal, and adult origin. The lung resident-ILC2 progenitor
cells differentiate into at least three subtypes of mature ILC2s. This figure is
created based on ref (27, 32, 41).
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cells account for less than 2% of ILCs (Lin-IL7R+ cells),
trajectory analysis suggests that these cells lose progenitor
markers, such as Cd7, Il18r1, Tcf7, and Zbtb16, gradually
increase the expression of Gata3, Il1rl1, Klrg1, and Bcl11b, and
differentiate into mature ILC2s (Figure 1). Therefore, these data
suggested that local ILC progenitors differentiated and matured
towards ILC2s within the lung tissue (32).

While ILC2s are the dominant population of ILCs in murine
lungs, percentage of ILC2s among lung-resident innate
lymphocytes in human is around 30% (13, 35, 36, 43). Human
ILC2s express IL1RL1, IL17RB, KLRG1, GATA3, and PTGDR2,
which encode CRTH2, however, there is diversity in the
expression of various genes depending on the localized tissues
(33–36, 44). Specifically, human lung ILC2s show higher
expression levels of IL1RL1, IL17RB, and IL13 than tonsil and
blood ILC2s (34–36). In addition, SLAMF1, TNFRSF9, FFAR3,
and PPARG expression are upregulated in human lung ILC2s.
SLAMF1 (CD150), encoded by SLAMF1, belongs to the signaling
lymphocytic activation molecule (SLAM) family that modulates
the activation of immune cells, including T cells (34, 45).
TNFRSF9 encodes the activation-induced surface receptor
TNFRSF9, which was originally found in activated T cells (34,
46). FFAR3 and PPARG are lipid metabolism-related genes that
regulate the immune cells (47–49). Therefore, the upregulation
of these four genes implies a tendency for cell activation. In
contrast, human blood ILC2s show high expression levels of
PTGDR2, S1PR2, and CCR2, which are migration markers (33,
34). While CRTH2 is one of the representative surface markers of
human ILC2s, the expression of CRTH2 in blood ILC2s is
downregulated after stimulation with a combination of IL-2,
IL-25, IL-33, and TSLP, suggesting that CRTH2 expression is
negatively correlated with ILC2 activation (34). Among lung
ILC2s, approximately 35% of ILC2s lack CRTH2 expression (34).
Based on these findings, human lung ILC2s may be relatively
activated even in the steady state.

Although the diversity within human lung ILC2s has not been
well studied due to their small number, a human study of single-
cell RNA-sequence analysis using fetal samples following elective
medical termination of pregnancy has been recently reported
(33). In this study, fetal lung ILC2s were divided into five
subgroups: Pre-ILC2s, CRTH2_ILC2s, PTGS2_ILC2s,
CCR9_ILC2s, and KIT_ILC2s. Pre-ILC2s highly express
PRSS57 and SPINK2, which are associated with stem cell
signaling and are suggested to be ILC2 progenitors. Pre_ILC2s
were further divided into two subgroups according to the
expression levels of MKI67, PTGDR2, and BCL11B, indicating
that immature Pre_ILC2s differentiate into restricted ILC2
progenitors, thereby upregulating the expression of these three
genes. CRTH2_ILC2s and PTGS2_ILC2s had high expression
levels of PTGDR2, and can be considered as conventional ILC2s.
In particular, CRTH2_ILC2s exhibited the highest expression
levels of IL1RL1 and IL13, and PTGS2_ILC2s expressed high
levels of PTGS2, which encodes COX2. CCR9_ILC2s and
KIT_ILC2s are unconventional ILC2s because of low
expression levels of PTDGR2. CCR9_ILC2s are a rare
population of lung ILC2s that express T cell marker genes,
Frontiers in Immunology | www.frontiersin.org 3
including CD1E, CD2, CD3G, CD4, and CD8A; however, their
biological roles are unknown. KIT_ILC2s express CCR6 and LTB
and show plasticity, converting into IL-17+ILC3-like cells,
suggesting that KIT-ILC2s may be involved in ILC2 plasticity.
Thus, it has been reported that there is diversity in the lung ILC2s
of human fetuses; however, the relationship to disease and
diversity in adults has not yet been determined.
HETEROGENEITY OF ACTIVATED
ILC2s IN THE LUNGS

Various stimuli, such as allergens and viruses, induce the release
of epithelial cell-derived cytokines, including IL-25 and IL-33.
These cytokines enhance the phosphorylation of GATA3 via the
NF-kB and MAPK signaling pathways in ILC2s (50), which
induces cell proliferation and production of type 2 cytokines,
such as IL-5 and IL-13. Although murine lung ILC2s express
CD25, CD90.2, CD127, KLRG1, Sca-1, and ST2, the expression
levels of these surface markers vary depending on the mouse
strain and sex. Furthermore, they vary largely with the type of
stimulation; intranasal administration of IL-33, house dust mite,
or Alternaria alternata extract induced the different expression
levels of surface markers, including CD25 and KLRG1,
depending on the stimuli (51). In addition, a recent study
evaluated the diversity of activated lung ILC2s in mice treated
with IL-33 or IL-25 using single-cell RNA-seq analysis and flow
cytometry (38). Intranasal administration of IL-25 or IL-33
increased the expression of Il5, Il13, Klrg1, Arg1, and Areg
genes, as well as Gp49 and Batf, and some subsets of ILC2s
also increased MHC class 2 and CTLA4. Interestingly, Nmur1
was highly expressed in lung ILC2s at the steady state and after
IL-25 stimulation; however, it was downregulated by IL-33.
Furthermore, the expression of semaphorin 4a was reduced by
IL-33 stimulation. These results suggest that activated ILC2s can
alter the expression of various genes and surface markers,
depending on the stimulus.

Nippostrongylus brasiliensis (N. brasiliensis) causes migratory
helminth infection in mice. Within hours of entry through the
skin, N. brasiliensis stage 3 larvae migrate via the blood stream to
the lung and alveolar space, causing local tissue damage and
hemorrhage on days 1–2 post infection. Maturing larvae are then
transported up the airways and swallowed to take up residence in
the small intestine on days 4–7 post infection to allow adult
reproduction before eventual expulsion. It has been reported that
N. brasiliensis infection or an intraperitoneal injection of IL-25
induces a different subtype of ILC2s in the lungs and mesenteric
lymph nodes, termed inflammatory ILC2s (iILC2s) (31). iILC2s
are undetectable in the lungs at the steady state and have high
expression of KLRG1 and IL-17RB; however, they have low
expression of ST2 and Sca-1. Notably, iILC2s are circulating cells
that arise from gut ILC2s residing in the intestinal lamina
propria, and migrate to diverse tissues based on sphingosine 1-
phosphate (S1P)-mediated chemotaxis (52). iILC2s contribute to
the regulation of anti-helminth immunity by producing type-2
cytokines similar to lung ILC2s, that are called natural ILC2s
June 2022 | Volume 13 | Article 918458
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(nILC2s), to distinguish them from iILC2s. Furthermore, iILC2s
express not only GATA3, but also intermediate levels of RORgt,
suggesting that iILC2s carry out both nILC2-like and ILC3-like
functions. Indeed, iILC2s produce IL-17 after an oral Candida
albicans infection and contribute to antifungal immunity (31).
Recently, IL-33 was reported to promote the generation of iILC2s
via induction of tryptophan hydroxylase 1 (Tph1). Ablation of
Tph1 resulted in the impairment of iILC2 responses viamodified
expression of ICOS and increased susceptibility to N. brasiliensis
infection (53).

Two studies investigated the heterogeneity of lung ILC2s during
an N. brasiliensis infection using single-cell RNA-seq analysis (32,
54). In the first study, lung ILC2s were divided into four groups
based on their gene clusters: resting nILC2s, Il5highnILC2s,
Il13highnILC2s, and iILC2s (54). Il5highnILC2 populations
increased early after the N. brasiliensis infection (day 2), however,
this proportion gradually decreased. On day 5, iILC2 populations
transiently increased and became the major component of lung
ILC2s. iILC2s, however, were undetectable on day 9, and
Il13highnILC2 populations increased thereafter (days 9 and 14)
(Figure 2). Similarly, another study showed that the populations
of ILC2s expressing Calca, Csf2, and Cxcl2 increased on day 4 of the
N. brasiliensis infection, whereas the populations of blood-derived
circulating iILC2s expressing Klrg1 increased on days 7 and 10 (32).
On day 15, various subtypes of ILC2s were induced. Interestingly,
fate mapping revealed that ILC2s on days 4 and 15 were
differentiated from ILC progenitors in the lung rather than being
Frontiers in Immunology | www.frontiersin.org 4
replenished from the bone marrow. Thus, the diversity of ILC2s
changes dynamically over time during N. brasiliensis infections.

Although there are no studies on the diversity of activated
lung ILC2s in humans, a recent study reported that most resting
ILC2s in humans express CD45RA; however, there is a large
population of ILC2s expressing CD45RO in inflammatory
mucosal t issues , inc luding nasal polyps (55) . The
transcriptomic features of these cells were similar to those of
mouse iILC2s, and peripheral blood-derived resting ILC2s
expressed CD45RO in response to the stimulation. Thus,
CD45RO may be a useful activation marker for human ILC2s.

As described previously, ILC2s produce type 2 cytokines in a
GATA3-dependent manner upon stimulation with IL-33 or IL-
25; however, their properties are known to be greatly altered by
the surrounding cytokine environment. ILCs are divided into
three groups according to their transcription factors and
functions: ILC1s, ILC2s, and ILC3s; however, ILCs have
plasticity, and can acquire the properties of other ILCs.

First, upon exposure to viruses, bacteria, or noxious agents,
such as cigarette smoke, murine lung ILC2s convert to an ILC1-
like phenotype with decreased expression of GATA3 and IL-33
receptor ST2, increased expression of T-bet, and the ability to
produce IFN-g (18). This conversion to an ILC1-like phenotype
is mediated by stimulation with IL-1b, IL-12, or IL-18 (18, 56).
Human ILC2s also acquire an ILC1-like phenotype via IL-1b, IL-
12, and IL-18 (57, 58). Indeed, ILC1 populations are reported to
increase in patients with chronic obstructive pulmonary disease
(COPD), suggesting that ILC2s may be converted to ILC1s owing
to the influence of cigarette smoke (18).

Second, a combination of IL-33 with leukotriene C4 or D4
can induce IL-17-producing ILC2s termed ILC217s in mice.
Unlike Th17 cells or ILC3s, ILC217s are independent of RORgt
expression (59). ILC217s produce IL-17, IL-5, and IL-13 by an
intranasal administration of IL-33 or papain; however, Ahr-
deficient ILC2s produce limited amounts of IL-17 since Ahr is
essential for the induction of ILC217s. In humans, IL-2, IL-1b, IL-
23, and TGF-b stimulation induces peripheral blood-derived
ILC2s to convert to C-Kit+ NKp44-ILC3-like cells that have the
ability to produce IL-17 (60).

Recently, IL-10-producing ILC2s termed ILC210s were found in
the lungs of mice after an intranasal administration of IL-33 or
papain (61). In IL-33-treated mice, ILC210s represent a major
proportion of IL-10-producing cells, and ILC210s can suppress
activated ILC2s directly via IL-10. However, ILC210s also have the
ability to produce type 2 cytokines upon stimulation by IL-33 and
TSLP. Mechanistically, retinoic acid (RA) and IL-2 induce ILC210s,
whereas TGF-b inhibits IL-10 production (62). RA also induces IL-
10-producing ILC2s in human ILC2s, suggesting that RA plays an
important role in ILC210s generation (61).

Together, ILC2s change their phenotype dramatically
depending on the surrounding environment. These
phenotypical changes may constitute a part of heterogeneity of
ILC2s both in the steady state and activated state. However, while
effector function of each phenotypical plasticity in vitro was
reported, distinct role in vivo remained unclear. Therefore,
further survey is awaited.
FIGURE 2 | Heterogeneity of lung group 2 innate lymphoid cells (ILC2s) during
N.brasiliensis infection. Time course of activation of lung ILC2s in the lungs
following a helminth infection. High levels of Il5high natural ILC2s that appear
shortly after the infection. Then, iILC2 populations transiently increased, and
Il13high natural ILC2 populations increased thereafter. iILC2, inflammatory type 2
innate lymphoid cell; nILC2, natural type 2 innate lymphoid cell; N. brasiliensis,
Nippostrongylus brasiliensis.
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HETEROGENEITY OF LUNG ILC2s
POST INFLAMMATION

ILC2s are diverse even after they are activated once. Recent
studies have shown that lung ILC2s can acquire immunological
memory. In mice, some activated lung ILC2s mediated by an
intranasal administration of papain or IL-33 have the ability to
induce strong ILC2-mediated inflammation against secondary
challenge. These cells exhibit immunological memory properties
and are termed “memory-like ILC2s” (63). Memory-like ILC2s
do not exhibit antigen specificity and respond strongly to a
second stimulus regardless of the allergen type.

Memory-like ILC2s have some genetical similarities with
activated ILC2s but they are resting cells unlike activated
ILC2s. Memory-like ILC2s have higher expression levels of
Il1r2, Il5, Tnfsf18, Bcl2a1b, Bcl2a1d, Ler3, Syne1, and Il17rb
compared to those of naïve ILC2s, suggesting that memory-like
ILC2s are activated. Since the expression of Il17rb is enhanced in
memory-like ILC2s, they produce type 2 cytokines upon IL-25
stimulation, whereas naïve ILC2s do not respond to IL-25
stimulation alone (63).

Although S1pr1, Il6st, Cd2, Cd7, and Sell expression are lower
in both activated ILC2s and memory-like ILC2s than naïve
ILC2s, the expression of cell cycle-related genes including
Mki67 and Ccnb2, and the chemokine genes including Ccl17,
Ccl24, Cxcl3, and Ccl6 are lower in memory-like ILC2s compared
to that in activated ILC2s, suggesting that memory-like ILC2s do
not proliferate or produce chemokines as much as
activated ILC2.

On the contrary, repetitive stimulation induces hyporesponsive
phenotypes of ILC2s, which are termed “exhausted-like ILC2s”
(64). This subset of ILC2s expresses high levels of Il10 and Tigit,
which are considered exhaustion markers. In addition, they
express higher levels of PD-1, GITR, and KLRG1 than those in
naïve ILC2s. In contrast to ILC210s, exhausted-like ILC2s are
Frontiers in Immunology | www.frontiersin.org 5
incapable of producing type 2 cytokines. A previous report showed
that exhausted-like ILC2s could be collected from mice
intranasally instilled with 100 mg papain every three days (64).
On day 7 after the administration of the three papain doses,
exhausted-like ILC2s emerged in bronchoalveolar lavage (BAL)
fluid only. In addition, papain administration every three days for
a month induced the generation of exhausted-like ILC2s both in
the BAL fluid and lung. Thus, the intensity or duration of
stimulation changes the fate of lung ILC2s from the acquisition
of immunological memory to the loss of functional exhaustion.
HETEROGENEITY OF LUNG
ILC2s IN AGING

Senescence is characterized by the progressive loss of
physiological function in individuals with age (65, 66). DNA
damage throughout life induces “cellular senescence”, resulting
in a poor proliferative capacity and irreversible cell cycle arrest,
and results in a proinflammatory senescence-associated secretory
phenotype (SASP) that leads individuals to low-grade, chronic
inflammatory state termed as “inflamm-aging (67–71)”. In mice,
there is a marked increase in the expression of ILC2 progenitors
in the bone marrow of aged (19–24 months old) mice compared
with that in young (2–3 months old) mice; however, this increase
was not observed in their progenitor cells, common helper-
innate lymphoid progenitors (CHILPs) (72). Notch signaling
could be involved in this increase in ILC2 progenitor expression
with age; this pathway is specific to aged mice and is not involved
in ILC2 progenitor differentiation in young mice. While the
expression levels of ST2 are lower in aged ILC2 progenitors,
young and aged ILC2 progenitors have the same expression level
of Ki67, indicating that ILC2 progenitors of aged mice preserve
the reproductive activity (72). In accordance with the increase in
ILC2 progenitor expression in the bone marrow, ILC2
FIGURE 3 | Overview of plasticity and trained lung group 2 innate lymphoid cells (ILC2) in the lung.
June 2022 | Volume 13 | Article 918458

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Asaoka et al. Heterogeneity of Lung ILC2s
progenitor populations in the peripheral blood and ILC2
populations in the peripheral blood and small intestine
also increase with aging. However, since bone marrow ILC2
progenitors are rarely transferred to the lung and lung ILC2s are
highly dependent on local expansion of lung-resident ILC2
progenitors, lung ILC2 populations are reduced with aging.

Functionally, aged lung ILC2s show decreased expression of
Gata3, Il5, and Areg, and reduced proliferative capacity and
cellular function. Indeed, aging mice are susceptible to viral
infections; however, transplantation of young mouse-derived
ILC2s promotes recovery from viral infections (72).
Furthermore, the expression of Ehhadh and Cyp2e1, which are
involved in peroxisome proliferator-activated receptors (PPAR)
pathway and cytochrome P450 (CYP) activity, respectively, is
downregulated in aged ILC2s, and these genes enhance IL-5
production and Areg expression independent of GATA3
involvement (72). In addition, the levels of IL-12 and IL-18,
that are able to suppress Cyp2e1 expression, were increased in
the lungs of aged mice, suggesting that both intrinsic and
extrinsic mechanisms cause cellular senescence in lung
ILC2s (72).

The effects of aging on ILC2s in humans are poorly
understood. In contrast to mice, peripheral blood ILC2
populations decrease with age in humans (73). Lung ILC2
populations in humans may also be negatively correlated with
aging, similar to murine lung ILC2s (35). However, studies on
human lung ILC2s are not sufficiently large to allow the
estimation of this trend.
DISCUSSION

Since the discovery of ILC2s about a decade ago, a large number
of studies on ILC2s have been carried out, and these studies have
greatly contributed to our understanding of the immunology and
unraveling of the underlying pathophysiology of various human
diseases. Various molecules and regulators of ILC2s have been
reported, and the general features of ILC2s are widely
understood. However, ILC2s have received increasing attention
in the last few years because they comprise a heterogeneous cell
population rather than homogeneous.

Basically, ILC2s are tissue-resident cells, and the expression
levels of transcription factors and receptors of ILC2s vary among
tissues. Murine lungs consist of ILC2 progenitor cells and mature
ILC2s at different developmental time points in the steady state,
and tissue specificity of ILC2s develops postnatal due to the lung
tissue environment. Lung mature ILC2s are not only activated by
IL-33 due to the high expression of IL-33 receptors, but also by
other stimuli, including IL-25 and allergens. However, besides
“activation,” changes in the expression of surface antigens and
transcription factors vary depending on the stimulus that
“activate” ILC2s, and in particular, migratory helminth
infection or an intraperitoneal administration of IL-25
transiently induces intestinal-derived iILC2s in the lungs.

Recently, it has been reported that ILC2s have plasticity, and
their properties are variable, such as the production of IFN-g,
Frontiers in Immunology | www.frontiersin.org 6
IL- 10, and IL-17, depending on the surrounding environment,
which also contributes to the diversity of ILC2s. While the
plasticity is important and a well-known concept of ILC2s, its
immunological role is unclarified. Moreover, boundaries
between the concept of plasticity and heterogeneity of ILCs are
unclear. Furthermore, after activation, ILC2s develop training
immunity; however, they sometimes cause cell exhaustion. These
diversities change with the aging time scale, and cellular
senescence is induced by intracellular and extracellular factors
in the lungs (Figure 3).

Despite the efforts of many studies to elucidate the diversity of
lung ILC2s, several questions remain unclear: Does the diversity
of lung ILC2s play a distinct physiological role in vivo? If so, what
would happen if lung ILC2s are homogenous and lack plasticity?
Does the transcriptional heterogeneity of ILC2s, especially at
steady state have a unique biological role or does it merely reflect
differences in mRNA expression? Additionally, does each ILC2
subtype affect lung immunity and have clinical significance
in humans?

Although human studies are also insufficient, the studies
summarized in this review contribute to our understanding of
disease conditions in humans. The acquisition of immunological
memory may contribute to allergen-specific asthma exacerbation
and non-specific allergic inflammation. Exhaustion and aging of
ILC2s may limit the type 2 inflammation response, especially in
geriatric patients, because these changes attenuate the effector
function of ILC2s. Therefore, a greater understanding of ILC2
subsets may provide new insights into the pathophysiology of
lung diseases, including asthma. In addition, targeting specific
ILC2 subsets may provide a new therapeutic strategy for
lung diseases.

To date, most studies have only taken a snapshot of ILC2
diversity. Therefore, diversity among ILC2s should be considered
in future investigations. It is expected that future research
exploring the heterogeneity of ILC2s will shed light on a
variety of life science mysteries.
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