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Abstract: High frequency surface acoustic wave (SAW) technology offers many opportunities for
aerospace applications in passive wireless sensing and communication. This paper presents the design,
simulation, fabrication, and test of an L-band SAW resonator based on 128◦ Y-X LiNbO3 substrate.
The design parameters of SAW resonator were optimized by the finite element (FEM) method and
the coupling-of-mode (COM) theory. Electron-beam lithography (EBL) technology was used to
fabricate the submicron-scale of interdigital transducers (IDTs) and grating reflectors. The effects
of some key EBL processes (e.g., the use of electron beam resist, the choice of metal deposition
methods, the charge-accumulation effect, and the proximity-effect) on the fabrication precision of
SAW devices were discussed. Experimentally, the LiNbO3-based SAW resonators fabricated using
improved EBL technology exhibits a Rayleigh wave resonance peaks at 1.55 GHz with return loss
about −12 dB, and quality factor Q is 517. Based on this SAW resonator, the temperature and strain
sensing tests were performed, respectively. The experimental results exhibit a well linear dependence
of temperature/strain on frequency-shift, with a temperature sensitivity of 125.4 kHz/◦C and a strain
sensitivity of −831 Hz/µε, respectively.

Keywords: surface acoustic wave (SAW); resonator; electron beam lithography; SAW sensing

1. Introduction

A surface acoustic wave (SAW) is an acoustic wave traveling along the surface of an elastic
material. It is generated by interdigital transducers (IDTs), which are periodic metallic bars, deposited
on a piezoelectric material. Lord Rayleigh first described and explained the surface mode of acoustic
wave propagation in a piezoelectric material [1]. The main property of the Rayleigh type of SAW is
that the great majority of energy is localized in the surface region in a penetration depth less than
one or two wavelengths, this means that any external surface perturbation will affect the propagation
of SAW and lead to a sensitive change in the frequency response of SAW devices. By means of this
sensing mechanisms, SAW devices can be utilized for measurement of surrounding environment
parameters, e.g., temperature, pressure, humidity, light intensity, gas composition, and mechanical
deformation [2–7].

In comparison with other potentially competitive technologies, SAW technology has special
advantages for aerospace applications, as shown in Figure 1. SAW devices can be small, rugged, passive,
wireless, and radiation hard and operate with variable frequency and bandwidth [8], which can well
meet the aerospace requirements for small, lightweight, inexpensive, and wireless sensors. For example,
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structural health monitoring (SHM) of aerospace vehicles are greatly important for the safety of the crew
and the vehicle. However, some battery-powered sensors are constrained to use in the harsh environment
(e.g., extreme temperature and pressure) and the narrow internal space with limited access. One solution
to these constraints is to use wireless instead of wired sensors for SHM applications. In contrast to current
wireless systems, the small, passive wireless SAW sensors can operate without batteries across a large
temperature range to sense physical and chemical parameters [9,10]. Furthermore, multiple sensing
parameters also can be obtained using distributed SAW sensor arrays to encode the sensor information
and transmission to the receiver [8].
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Furthermore, SAW technology can be used to fabricate the resonators and filters in an avionics
system [11]. With the development of aerospace communication technology, the demands for high
frequency SAW devices are significantly increasing for radio frequency electronic systems, e.g., filters
and resonators used in mobile communication systems in the L-band (1–2 GHz). According to Sauerbrey
function, the frequency shift of SAW devices are proportional to the square of the resonant frequency [2,12];
thus, the high resonant frequency can greatly increase the sensitivity of sensors and reduce the size
of devices.

Generally, there are two ways to increase the resonant frequency of SAW devices. One is to decrease
the IDT-bars linewidth and periodic spacing to submicron-scale using high precision lithographic
technology (e.g., ultraviolet or electron-beam lithography (EBL) technology). Another is to use
piezoelectric substrate with high acoustic velocity. For example, R.-M. et al. have fabricated a 14
GHz AlN/diamond-based SAW resonator with 800 nm of IDT periodic spacing using EBL technology [13].
Hisashi Hatakeyama et al. have fabricated a 5 GHz SAW resonator with 720nm of IDT periodic spacing
using 42◦ Y-X LiTaO3 substrate and EBL technology [14]. Although extreme ultraviolet lithography
can be used to fabricate deep submicron patterns, the lithography instruments are expensive and mask
fabrications are in a high cost. EBL technology is a maskless lithography technique, which can be
used to fabricate the micro-nano devices through the direct-writing to define the designed pattern and
can achieve the critical dimensions of pattern in less than 100 nm on the polymer. Especially, some
commercial EBL systems have been used in connection with scanning electron microscope (SEM) as a
more time and cost-effective instrument in lab researches for a flexible study requirement and a low-cost
of device fabrication.

High acoustic velocity of single-crystal piezoelectric materials, i.e., α-quartz, LiNiO3, and LiTaO3,
etc., generally have acoustic velocity in 3000–4000 m/s in favor of the fabrication of GHz SAW devices. It
has been reported that the preferred orientation of AlN thin films deposited on diamond or sapphire by
reactive magnetron sputtering or metal organic chemical vapor deposition (MOCVD) can achieve the
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acoustic velocity larger than 10,000 m/s. [15–17]. However, these materials have either high fabrication
cost or low electromechanical coupling coefficient (EMCC).

In our work, an L-band single-port SAW resonator with resonant frequency of about 1.5 GHz
was designed and fabricated. There are two outstanding achievements that show the difference of
this work in comparison with previous works. On the one hand, a two-dimensional finite element
model (FEM) based on COMSOL MultiphysicsTM (COMSOL Inc., Los Altos, CA, USA)and a numerical
model based on coupling-of-mode (COM) theory were built to optimize the design of SAW resonator
with 128◦ Y-X LiNbO3 as substrate. Some key parameters, such as wave velocity, reflection coefficient,
static capacitance, etc., were extracted by FEM analysis. Furthermore, through COM theory the
extracted parameters were used to calculate the response properties of devices and finally determine
the optimal structure parameters of the device. On the other hand, the electron-beam lithography
(EBL) technology was used to fabricate the 1.5 GHz SAW resonators with submicron linewidth (600
nm) by using improved processes. Although the EBL technology has been introduced in some
relevant references [18–22], there are few reports on an overall and comparative result that can
exhibit experimentally the influences of electron beam resist properties, metal deposition processes,
charge-accumulation effect, and proximity-effect on the EBL fabrication precision.

2. Design and Simulation Single-Port SAW Resonator

Figure 2 shows the schematic three-dimensional (3-D) structure of the designed single-port SAW
resonator, which consists of a piezoelectric substrate (128◦ Y-X LiNbO3), an Au IDT electrode fabricated
on the piezoelectric substrate, and a pair of grating reflectors located on both sides of the IDT [23]. The
excited resonant wavelength λ of SAW resonator is determined by IDT period spacing Pi and acoustic
velocity ν. The resonant frequency f of the SAW resonator can be expressed as:

f =
ν
λ
=

ν
Pi

(1)
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The Rayleigh SAWs excited on a 128◦ Y-X LiNbO3 piezoelectric substrate by IDT electrode
propagate along the surface and length directions of piezoelectric substrate in two opposite directions.
The grating reflectors on both sides of IDT like as two plane mirrors of Fabry-Perot resonant cavity,
resulting in the superimposition of two reflected waves each other to form stable and enhanced
resonant peaks [24].

The optimal structure and size parameters of SAW resonator can be determined by utilizing the
finite element (FEM) model and the coupling-of-mode (COM) theory [25–27]. Figure 3 shows the FEM
simulation of resonant mode and displacement distribution mapping of SAW induced on the 128◦

Y-X LiNbO3 by using COMSOL MultiphysicsTM software. The COMSOL simulation uses the triangle
meshed elements. In order to reduce the calculation load, the plane strain hypothesis was used to
build a simplified two-dimensional model with width in 1λ scale and thickness in 5λ scale. Based on a
two-dimensional model, the period boundary conditions were applied to the right and left boundaries



Micromachines 2019, 10, 349 4 of 12

with a width of 1λ, and a free surface boundary condition and a Dirichlet boundary condition were
applied respectively to surface and lower boundary with a thickness of 5λ. It can be seen from Figure 3
that the displacement distribution of Rayleigh wave exhibit symmetric resonant and anti-symmetric
resonant characteristics, respectively. At the same time, the amplitude of SAWs decrease rapidly with
the increase of depth, and its energy are concentrated in the depth of one wavelength, accounting
for the reason why SAWs are very sensitive to external disturbances. Furthermore, the aperture
of IDT and length of grating reflectors, the number of bars, the distance between the IDT and the
grating reflectors were analyzed by COM theory to investigate their influences on the output signal of
device. Meanwhile, two-order effect in high frequency SAW and its influence on the SAW propagation
characteristics were also considered.

Micromachines 2019, 4, 349 4 of 12 

 

decrease rapidly with the increase of depth, and its energy are concentrated in the depth of one 
wavelength, accounting for the reason why SAWs are very sensitive to external disturbances. 
Furthermore, the aperture of IDT and length of grating reflectors, the number of bars, the distance 
between the IDT and the grating reflectors were analyzed by COM theory to investigate their 
influences on the output signal of device. Meanwhile, two-order effect in high frequency SAW and 
its influence on the SAW propagation characteristics were also considered.  

By the numerical calculation based on COM theory, the parameters of the IDT and the grating 
reflectors were optimized (e.g., the length of IDT aperture Li, the pairs of IDT/reflector Ni and Nr, 
metallization of IDT/reflector η, Au thickness t) to realize a 1.5 GHz SAW. Table 1 present the optimal 
design parameters of SAW resonator based on 128° Y-X LiNbO3 substrate. The bar-width and pitch-
width of the IDT and the grating reflector were determined to be 600 nm, corresponding to a 2.4 μm 
of period of IDTs. There are 148.5 pairs of input and output IDT and 100 pairs of grating reflectors on 
each side, corresponding to a length of IDT aperture of 60λ. A 60 nm thick Au was designed to 
fabricate IDT and reflectors. The distance between IDT and reflector was adjusted to 2.4 μm so that 
the peak of IDT conductance lies in the center of stop-band of reflectors. As a result, a maximum 
conductance of SAW and thus the optimal energy efficiency were obtained in the resonant structure. 
The simulated results are shown in Figure 4. It can be seen that the optimal conductance peak of SAW 
resonator is well located at the stop-band of reflecting gate, and a resonant frequency of 1.52 GHz is 
determined to match a 2.4 μm of period of IDTs and an acoustic wave speed of around 3700 m/s. 
Table 2 presents the COM parameters used for the simulation and optimization of the resonator, 
which were extracted from the FEM analysis [28–31]. 

  
(a) (b) 

Figure 3. Finite element (FEM) simulations of resonant mode and displacement distribution mapping 
of SAW (color bar = total displacement (nm)) (a), COM simulations of conductance response of IDT 
and SAW resonator and reflection spectrum of reflectors (b). 

 

Figure 4. Fabrication process flow of the SAW resonator (a); photo of the SAW resonator packaged in 
printed circuit board (b) and scanning electron microscope (SEM) images of the SAW resonator (c) 
and the enlarged IDT structure (d). 

  

Figure 3. Finite element (FEM) simulations of resonant mode and displacement distribution mapping
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By the numerical calculation based on COM theory, the parameters of the IDT and the grating
reflectors were optimized (e.g., the length of IDT aperture Li, the pairs of IDT/reflector Ni and Nr,
metallization of IDT/reflector η, Au thickness t) to realize a 1.5 GHz SAW. Table 1 present the optimal
design parameters of SAW resonator based on 128◦ Y-X LiNbO3 substrate. The bar-width and
pitch-width of the IDT and the grating reflector were determined to be 600 nm, corresponding to a 2.4
µm of period of IDTs. There are 148.5 pairs of input and output IDT and 100 pairs of grating reflectors
on each side, corresponding to a length of IDT aperture of 60λ. A 60 nm thick Au was designed to
fabricate IDT and reflectors. The distance between IDT and reflector was adjusted to 2.4 µm so that
the peak of IDT conductance lies in the center of stop-band of reflectors. As a result, a maximum
conductance of SAW and thus the optimal energy efficiency were obtained in the resonant structure.
The simulated results are shown in Figure 4. It can be seen that the optimal conductance peak of SAW
resonator is well located at the stop-band of reflecting gate, and a resonant frequency of 1.52 GHz
is determined to match a 2.4 µm of period of IDTs and an acoustic wave speed of around 3700 m/s.
Table 2 presents the COM parameters used for the simulation and optimization of the resonator, which
were extracted from the FEM analysis [25,26,28,29].

Table 1. Design parameters of SAW resonator. IDT: interdigital transducer.

Parameter Symbol Value

Bar-width of IDT Wi 600 nm
Bar-width of reflector Wr 600 nm

Period of IDT Pi 2.4 µm
Length of IDT aperture Li 144 µm

Length of reflector Lr 144 µm
Pairs of IDT Ni 152

Bar number of reflector Nr 100
Distance between IDT and reflector d 2.4 µm
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Table 2. Coupling-of-mode (COM) parameters of SAW resonator (128◦ Y-X LiNbO3).

Parameter Symbol Value

Open circuit bar reflection coefficient (h/λ = 0.015) kp 0.01958
SAW velocity (h/λ < 0.02, approximate free surface) Vsf 4032.4 m/s

SAW velocity (Open circuit reflection bar) vog 3654.6.4 m/s
Static capacitance C0 0.481 fF/µm
Propagation loss LP 0.0035 dB/λ

Electrode square resistance (Au) (hm is the electrode thick in um) rs 0.034/hm·Ω

3. Fabrication and Testing of SAW Resonator

The Figure 4a shows the fabrication process flow of the SAW resonator. A 4 inch of 128◦ Y-X LiNbO3

wafer (NanoLN, Jinan Jingzheng Electronics Co., Ltd., Jinan, China) was cut into several rectangular
substrates with 10 mm (length) × 7 mm (width), and then, the substrates were cleaned in the ultrasonic
bath with acetone, ethanol, and deionized water to remove adsorbed dust and surface contamination.
Next, an Ar plasma bombardment was used to activate substrate surface and enhance the adhesion of
electron beam resist to LiNbO3 substrate. For fabricating high-precision of IDT structure, two models of
electron beam resists (600 K polymethyl methacrylate (PMMA) and 950 K PMMA, Germany ALLRESIST
Co., Ltd., Strausberg, Germany) were used to fabricate the mask pattern. The effects of electron beam
resists on the fabrication precision of metal bars will be discussed in subsequent part. The 600 K electron
beam resist was firstly spin-coated on LiNbO3 substrate with speed of 2000 r/min and then was baked on
150 ◦C on hot plate for 3 minutes. Following above steps and using same steps to process 950 K electron
beam resist on previous substrate. It was measured that the layer thickness of 600 K and 950 K electron
beam resists were 240 nm and 120 nm, respectively. Due to the poor conductivity of PMMA resist and
LiNbO3 substrate, a conductive layer of 8~10 nm Au was sputtered on resist sample to avoid charge
accumulation effect before the electron beam exposure, and the extra Au conductive layer should be
removed by using KI solution before development. Next, the electron beam writer directly wrote to define
the IDTs according to the designed pattern as shown in Figure 2. In this process, the accelerated voltage
of electron beam writer was set at 10 kV, and the current was controlled at 50 pA. After EBL process,
the resist mask was developed in methyl isobutyl ketone (MIBK)/isopropyl alcohol (IPA) (1:3) solution
for 40s and rinsed in IPA for 30 s. Next, Au (60 nm) was deposited on the mask pattern using e-beam
thermal evaporation with Cr (5 nm) as adhesive layer using sputtering method. Finally, by using Au/Cr
lift-off process, the IDTs and grating reflectors were achieved. For measuring the devices, the LiNbO3

substrate with SAW resonators was adhered to a printed circuit board with RF coplanar waveguide
connected electrically to the SMA connector. The IDT electrodes of SAW resonator were connected with
RF coplanar waveguide circuit through Au wire-bonding as shown in Figure 4b. Figure 4b shows also
the SEM image of the complete SAW resonator and the enlarged IDTs structure, respectively.
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The surface morphologies of SAW devices were observed by a Carl Zeiss’s Supra 55 scanning
electron microscope (SEM) with a Raith EBL system. The frequency spectrum of the SAW resonator was
monitored by a Rohde & Schwarz ZNB8 network analyzer, and the temperature and strain responses
of the SAW resonator were measured through the network analyzer interfaced to a computer to record
the measured data by a LabVIEW resonance frequency tracking software.

4. Results and Discussion

4.1. Effect of Electron Beam Resist on Fabrication Quality

Generally, the thickness of the resist should be more than two times of that of deposited metal film
in order to perform the next lift-off process. If the metal film is deposited by the magnetron sputtering
technology, the thickness could be larger because of step coverage; otherwise, the lift-off will be difficult.
When the thickness of deposited metal film is greater than 50nm, the exfoliation can be improved by
using double-layers resist to obtain the inverted T-shape structure after exposure and development.
The relative molecular weight of PMMA electron beam resists has a significant effect on the sensitivity
and resolution of exposure. e.g., 600 K PMMA has high sensitivity but low resolution while 950 K PMMA
has the reverse properties when compared to 600 K PMMA. Therefore, the cracking size of 600 K PMMA
will be larger than that of 950 K PMMA when an electron beam spot is incident on the surface of resist.
As a result, the double-layers resist (upper/lower layer = 950 K/600 K PMMA, 950 K is 120 nm and 600 K
is 240 nm.) structure will form an inverted T-shape structure after development, which is beneficial to
metal lift-off process. Figure 5 shows a comparison of experimental results of metal IDT fabrication using
single-layer and double-layers resist. It can be seen that the use of double-layers resist can make a more
complete IDT structure than use of single-layer resist.
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4.2. Effect of Metal Film Deposition Processes on Metal Lift-Off

Vacuum thermal evaporation and RF magnetron sputtering are the common process to deposit
metal thin films. Thermal evaporation method is able to create a well directional deposition and poor
step coverage, which is beneficial to lift-off and trench filling. In contrast, the sputtering method gives
rise to a non-directional deposition good for sidewall and step coverage.

In the fabrication of IDTs of SAW devices, a double-layer resist was used to form the inverted
T-shape structure in order to facilitate the lift-off process. However, a perfect fabrication of IDTs still
needs a matched deposition method of metal film. Figure 6 shows a comparison of metal thin films
deposited in mask with inverted T-shape structure by magnetron sputtering and thermal evaporation.
It can be seen that the thermal evaporation can be used to fabricate a perfect IDT structure after lift-off

process, in contrast the sputtering bring about some incomplete bars of IDT with some edge-defects and
the residual metal film. A schematic illustration is shown in Figure 6, the sidewall and bottom space in
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the inverted T-shape structure were covered and filled partly by metal films due to the non-directional
deposition of metal atoms in sputtering method, resulting in an incomplete metal exfoliation.Micromachines 2019, 4, 349 7 of 12 
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4.3. Effect of Charge Accumulation on Exposure Precision

When an electron beam resist coated substrate is irradiated by a high beam-current density of
electron beam, the charges will accumulates on the surface if the resist or substrate is of insulating
material. The accumulated charges will give rise to the deflection of E-beam caused by the electric
field produced by the trapped charges, resulting in a considerable amount of pattern displacement and
distortion. Generally, piezoelectric materials (e.g., LiNbO3, quartz, AlN) are good dielectric materials
with poor conductivity. The effect of charge accumulation on exposure accuracy can be reduced by
using low accelerated voltage. However, the low accelerated voltage will lead to a large proximity effect,
making the exposure precision worse. For a shallow structure, an optimal accelerated voltage (e.g., 10 kV
in this work) can be used to achieve a good balance between charge accumulation and proximity effect.
For a deep structure, the feasible approach reducing charge accumulation is to deposit a very thin layer
of high conductive layer (e.g., Au, Al, Cr) on the surface of the resist in order to dissipate the charge
during EBL exposures. It is important to note that a thick metal layer will scatter electrons and limits
the fabrication at deep structure. The experiments demonstrate that a 10 nm thick Au layer deposited
by sputtering can alleviate the charge accumulation effect obviously without affecting the resolution of
the final exposure pattern. Figure 7 shows a comparison of patterns of e-beam exposure on LiNbO3

substrate with and without Au layer on resist. A schematic illustration also shows the effect of with and
without Au layer on dissipating the charge during EBL exposures.
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4.4. Correction of Proximity Effect

The proximity effect in EBL is the phenomenon that the electron scatters in the resist or the
substrate at a significant distance from the incident beam cause the developed pattern to be wider
than the scanned pattern, i.e., the proximity effect cause the electron beam resist outside the scanned
pattern to receive a non-zero dose. The electron scatters could come from electron forward scattering
and backscattering, which statistically broaden the e-beam in the resist.

Proximity effect will affect the size and shape of the exposure pattern obviously, which must
be corrected for the requirement of a high precision pattern. There are three factors that affect the
proximity effect, namely the energy of the incident electron beam, the substrate material, and the dose
of the electron beam per unit area. In previous experimental analysis, the acceleration voltage and
substrate material have been determined according to the design, thus the dose of the electron beam
is only parameter that can be adjusted. Although the size and width of the design pattern can be
adjusted by linear interpolation base on existing exposure data to make sure that the exposed patterns
match the original design, the process is tedious and might be unavailable for some subtle or special
exposure patterns.

The modulation exposure is a good strategy, by which the exposure does can be adjusted and
controlled according to the proximity correction algorithms for achieving uniform resist exposure.
Figure 8 shows the influences of under-exposure, over-exposure, and modulation exposure on proximity
effect. It can be seen from Figure 8a that the under-exposure due to low exposure will result in a large
amount of residual resist that appear in the whole developed pattern. In contrast, if the exposure dose is
suitable for the middle area, a proximity effect will result in an over-exposure in adjacent area where
if a same exposure dose is still used, as shown in shown Figure 8b. In order to avoid above situation,
the exposure dose used in the adjacent area can be adjusted in gradient change to correction the proximity
effect. Figure 8c exhibits a perfect developed pattern when using a modulation exposure based on
a specially designed modulation exposure graphics with the color intensity to display exposure does,
as shown in Figure 8d.

Micromachines 2019, 4, 349 8 of 12 

 

pattern to receive a non-zero dose. The electron scatters could come from electron forward scattering 
and backscattering, which statistically broaden the e-beam in the resist. 

Proximity effect will affect the size and shape of the exposure pattern obviously, which must be 
corrected for the requirement of a high precision pattern. There are three factors that affect the 
proximity effect, namely the energy of the incident electron beam, the substrate material, and the 
dose of the electron beam per unit area. In previous experimental analysis, the acceleration voltage 
and substrate material have been determined according to the design, thus the dose of the electron 
beam is only parameter that can be adjusted. Although the size and width of the design pattern can 
be adjusted by linear interpolation base on existing exposure data to make sure that the exposed 
patterns match the original design, the process is tedious and might be unavailable for some subtle 
or special exposure patterns. 

The modulation exposure is a good strategy, by which the exposure does can be adjusted and 
controlled according to the proximity correction algorithms for achieving uniform resist exposure. 
Figure 8 shows the influences of under-exposure, over-exposure, and modulation exposure on 
proximity effect. It can be seen from Figure 8a that the under-exposure due to low exposure will 
result in a large amount of residual resist that appear in the whole developed pattern. In contrast, if 
the exposure dose is suitable for the middle area, a proximity effect will result in an over-exposure in 
adjacent area where if a same exposure dose is still used, as shown in shown Figure 8b. In order to 
avoid above situation, the exposure dose used in the adjacent area can be adjusted in gradient change 
to correction the proximity effect. Figure 8c exhibits a perfect developed pattern when using a 
modulation exposure based on a specially designed modulation exposure graphics with the color 
intensity to display exposure does, as shown in Figure 8d.  

 
Figure 8. A comparison of developed patterns with an under-exposure (a), an over-exposure (b), and 
a modulation exposure (c) based on a specially designed modulation exposure graphics with the color 
intensity to display exposure does (d).  

4.5. Characterization and Sensing Properties of SAW Devices  

Figure 9 shows a frequency responses comparison of the simulated and measured S11 of SAW 
resonator based on 128° Y-X LiNbO3. For the measured S11, the SAW resonator exhibits a Rayleigh 
wave resonance peaks at 1.550 GHz with return loss about -11.92dB, and quality factor Q is 517 [32]. 
In contrast, for the simulated S11, the resonance peak is 1.532 GHz with return loss about −35.59dB, 
and quality factor Q is 775. It can be seen that the frequency difference of both resonance peaks is 
about 5 MHz. At same time, there is a significant difference in return loss and Q, which is attributed 
in the impedance mismatching. The response spectrum of S11 was repeatedly measured several times 
in quite long period of time, and it was found that the resonant frequency remained fairly stable, 
which indicates that the SAW resonator can meet the needs of sensing applications. 

The temperature sensing test of LiNbO3-based SAW resonator was performed in a hotplate with 
a PID controller, and the test data were recorded automatically by labVIEW software according to 
the test results of network analyzer (see Figure 10a). A thermocouple was used to calibrate the 
temperature of LiNbO3-based SAW temperature sensor (see Figure 10b). Figure 10c shows the 
frequency-time (F-t) and return loss-time (R-t) response curves of SAW sensor. It can be seen that the 

Figure 8. A comparison of developed patterns with an under-exposure (a), an over-exposure (b), and
a modulation exposure (c) based on a specially designed modulation exposure graphics with the color
intensity to display exposure does (d).

4.5. Characterization and Sensing Properties of SAW Devices

Figure 9 shows a frequency responses comparison of the simulated and measured S11 of SAW
resonator based on 128◦ Y-X LiNbO3. For the measured S11, the SAW resonator exhibits a Rayleigh
wave resonance peaks at 1.550 GHz with return loss about −11.92 dB, and quality factor Q is 517 [30].
In contrast, for the simulated S11, the resonance peak is 1.532 GHz with return loss about −35.59 dB,
and quality factor Q is 775. It can be seen that the frequency difference of both resonance peaks is about
5 MHz. At same time, there is a significant difference in return loss and Q, which is attributed in the
impedance mismatching. The response spectrum of S11 was repeatedly measured several times in
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quite long period of time, and it was found that the resonant frequency remained fairly stable, which
indicates that the SAW resonator can meet the needs of sensing applications.
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Figure 9. Response spectrum of S11 of SAW resonator based on 128◦ Y-X LiNbO3.

The temperature sensing test of LiNbO3-based SAW resonator was performed in a hotplate with
a PID controller, and the test data were recorded automatically by labVIEW software according to the
test results of network analyzer (see Figure 10a). A thermocouple was used to calibrate the temperature
of LiNbO3-based SAW temperature sensor (see Figure 10b). Figure 10c shows the frequency-time (F-t)
and return loss-time (R-t) response curves of SAW sensor. It can be seen that the resonant frequency
exhibit a step-down change when a step-up temperature was used from the range of 25 to 250 ◦C, and
the total variation of return loss is round 1 dB in this range. Figure 10d shows the frequency-temperature
(F-T) curves of SAW sensor. The resonant frequency is linearly proportional to the temperature with
temperature coefficient of frequency (TCF) of 81.1 ppm/◦C and temperature sensitivity of 125.4 kHz/◦C.
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Figure 11a shows a schematic diagram of strain measurement method of the SAW strain sensor.
The strain sensing test of LiNbO3-based SAW resonator was performed in a PCB cantilever with
a piezo-resistive strain gauge to calibrate the strain. As shown in Figure 11b, a SAW resonator and
a 35 Ω piezo-resistive strain gauge with the sensitivity K of 2.0 and the strain limit of 2% were glued
on the middle position of PCB cantilever. The strain ε can be calculated by the change in resistance
of strain gauge, ∆R = Kε. Figure 11c shows the S11 response of SAW strain sensor under different
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strains. Experimentally, it was found that the positive strain (tensile stress) will down-shift the resonant
frequency of SAW resonator while the negative strain (compressive stress) will up-shift the resonant
frequency. Figure 11d exhibits a negative linear dependence of the frequency-shift change ratio ∆f /f on
strain ε, with a strain coefficient of frequency-shift change ratio of −0.53 ppm/µε and strain sensitivity
of −831 Hz/µε. This sensitivity can be further improved by using thinner LiNbO3 substrate and more
sensitive package structure.Micromachines 2019, 4, 349 10 of 12 
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5. Conclusions

In conclusion, this paper presents the design, simulation, fabrication, and test of an L-band SAW
resonator based on 128◦ Y-X LiNbO3 substrate. The design parameters of SAW resonator were optimized by
the finite element (FEM) method and the coupling-of-mode (COM) theory. The SAW resonator with 600 nm
linewidth was fabricated by the improved EBL technology. The use of double-layer electron beam resist and
e-beam thermal evaporation were used to resolve the issue of incomplete lift-off of IDT structure. The issues
of charge accumulation and proximity effect in EBL were eliminated by depositing a very thin layer of Au
layer on the surface of the resist and the use of modulation exposure method, respectively. Experimentally,
the LiNbO3-based SAW resonators fabricated using improved EBL technology exhibits a Rayleigh wave
resonance peaks at 1.55 GHz with return loss about −12 dB, and quality factor Q is 517. Based on this SAW
resonator, the temperature and strain sensing tests were performed, respectively. The experimental results
exhibit a well linear dependence of temperature/strain on frequency-shift, with a temperature sensitivity of
125.4 kHz/◦C and a strain sensitivity of −831 Hz/µε, respectively.
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