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Abstract

Texture synthesis models have become a popular tool for studying the representations supporting 

texture processing in human vision. In particular, the summary statistics implemented in the 

Portilla-Simoncelli (PS) model support high-quality synthesis of natural textures, account for 

performance in crowding and search tasks, and may account for the response properties of V2 

neurons. We chose to investigate whether or not these summary statistics are also sufficient to 

support texture discrimination in a task that required illumination invariance. Our observers 

performed a match-to-sample task using natural textures photographed with either diffuse 

overhead lighting or lighting from the side. Following a briefly presented sample texture, 

participants identified which of two test images depicted the same texture. In the illumination 

change condition, illumination differed between the sample and the matching test image. In the no 

change condition, sample textures and matching test images were identical. Critically, we 

generated synthetic versions of these images using the P-S model and also tested participants with 

these. If the statistics in the P-S model are sufficient for invariant texture perception, performance 

with synthetic images should not differ from performance in the original task. Instead, we found a 

significant cost of applying texture synthesis in both lighting conditions. We also observed this 

effect when power-spectra were matched across images (Experiment 2) and when sample and test 

images were drawn from unique locations in the parent textures to minimize the contribution of 

image-based processing (Experiment 3). Invariant texture processing thus depends upon 

measurements not implemented in the P-S algorithm.
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Introduction

Natural visual stimuli can vary substantially in appearance as a function of illumination 

conditions, the observer's distance to the stimulus, viewpoint or pose relative to the observer, 

and planar rotation. Indeed, a single real stimulus out in the world (e.g an object or texture) 

may present infinite variations in 2D appearance depending on the specific viewing 

conditions. Nonetheless, observers are typically able to cope with appearance variation 

reasonably well, achieving useful (if limited) levels of perceptual constancy with complex 

stimuli like familiar faces (Burton et al., 1999), real and nonce objects (Bulthoff & Edelman, 

1992), and scenes (Xiao et al., 2010).

Texture and material perception both also exhibit invariance to ecologically-relevant 

changes in appearance to some extent. Observers can typically recognize or match textures 

across changes in planar rotation, changes in scale, and changes in illumination and can 

rapidly categorize images of materials taken in unconstrained settings (Sharan, L., 

Rosenholtz, R. & Adelson, 2009; Wiebel, Valsecchi & Gegenfurter, 2013). Also, as Fleming 

(2014) observes for material perception, the sheer range of diverse images that can reliably 

be labeled as “plastic” or “metal”, for example, suggests that the human visual system has 

some impressive means of compensating for variation in a range of parameters and 

extracting robust estimates of properties that are relevant to material categorization. To some 

extent, observers' ability to be both selective about what images they assign a material 

category (e.g. “glossy” to and generalize the same category to a diverse set of appearances 

suggests that some simple features that are useful tools for material perception in some 

settings (e.g., skewness of the pixel intensity histogram; Motoyoshi et al., 2007; Sharan et 

al., 2008) are likely not the sole basis for material inference (Anderson & Kim, 2008). Also, 

texture and material constancy is not perfect – Ho, Landy, & Maloney (2006) demonstrated 

for example, that roughness judgments regarding artificial textures were affected by 

illumination, a result that suggests that the measurements used to characterize illumination 

and roughness may to some extent be confounded by the visual system. Variation in 

viewpoint also appear to affect roughness judgments in a similar fashion (Ho, Maloney & 

Landy, 2007), which may suggest that whatever degree of perceptual constancy the visual 

system is able to achieve for textures may be constrained by some set of features (what Ho 

et al. refer to as pseudocues) that do not provide perfect information for invariant 

recognition.

Are there specific computational features that may be reasonable for achieving invariant 

texture recognition (and explain the various failures of perceptual constancy that have been 

observed)? The fact that textures (and materials) do not have consistent shape rules out some 

large classes of visual features that are useful in other domains. For example, hierarchical 

models of invariant object recognition (e.g. HMAX, Riesenhuber & Poggio, 1999) are likely 

to be most useful for recognizing objects with well-defined shape and consistent 

relationships between local and global contours, conditions that textures and materials 

typically do not meet. For texture recognition and discrimination, representations of visual 

structure that are less position-dependent are likely to be better. A useful shorthand for such 

representations is summary statistics, by which we refer to a broad class of image 

measurements that describe appearance using visual features considered in the aggregate: 
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histograms of filter ouputs, correlation functions between wavelet coefficients, or moments 

of intensity histograms. Summary statistics are in general useful for texture encoding 

because they inherently reflect some basic properties of texture perception. For example, 

they are naturally invariant to simple transformations of texture appearance like translation. 

Nonetheless, it remains far from clear what specific summary statistics the visual system 

may use for texture and material perception in general. A range of different feature 

vocabularies have been proposed to account for human performance with different kinds of 

textures and different tasks, including the “needle” statistics proposed by Julesz (1981), 

center-surround filter outputs (Bergen & Adelson, 1988), and the “back-pocket” model of 

texture perception (Landy & Graham, 2004). To our knowledge, the specific problem of 

how invariant texture recognition is achieved has received comparatively little attention – 

while a number of computational models that purport to achieve some level of invariant 

texture recognition have been developed (Varma & Zisserman, 2002; 2009; Xu, Ji, & 

Fermuller, 2009), we are not aware of any work with human observers exploring candidate 

features that the human visual system may use to recognize and discriminant natural textures 

in an invariant fashion.

In the present study, we examine the extent to which a specific set of summary statistics, 

those implemented by the Portilla-Simoncelli (P-S) texture synthesis algorithm, support 

matching of texture samples and texture properties given changes in illumination. This is a 

useful candidate model to consider for a number of reasons: First, compared to other 

parametric models of texture appearance, the P-S algorithm reliably generates high quality 

synthetic images for a wide range of natural textures. Second, the P-S model has been used 

in prior behavioral work (Balas, 2006; 2012) to demonstrate that the features used as the 

basis of the model have some perceptual validity. Finally, the model has also been used in 

recent years both as a model of peripheral vision in general (Rosenholtz, 2000) and to 

account for the properties of cells in the ventral visual stream that may process summary 

statistics of appearance (Freeman & Simoncelli, 2011). Taken together, these various lines 

of research suggest that the P-S algorithm is a particularly good target model for 

investigating the extent to which invariant texture perception may be supported by summary 

statistics. Here, we do this by implementing a texture discrimination task designed to reveal 

the extent to which the P-S representation of texture appearance is sufficient for texture 

recognition given naturalistic appearance variation.

We asked observers to perform a match-to-sample task that required them to match sample 

and test textures across changes in illumination using both original and synthetic versions of 

the stimuli. Similar to (though see below) the logic employed in recent studies that used 

“mongrels' of peripherally-viewed stimuli (Balas, Nakano & Rosenholtz, 2009; Rosenholtz 

et al., 2011), we assumed that if the P-S algorithm is indeed a sufficient appearance code for 

invariant texture perception, performing our task with synthetic images should be no more 

challenging than with original images. Should this be the case, it would support the claim 

that the summary statistics in the model allow the visual system to cope with changes in 

illumination by constraining the appearance of images of the same texture under different 

lighting conditions to be more similar to one another than images of different textures. If, 

however, we observe a significant cost when observers complete our task using synthetic 

images, it would suggest that the summary statistics used in the P-S model do not offer a 
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sufficient code for invariant texture processing. This result would suggest that invariant 

texture recognition may depend on higher-order statistics than those contained in the P-S 

model, or possibly even that summary statistics in general may not be an adequate tool for 

invariant texture perception.

An important caveat to our use of synthetic images here is that this study is not an 

examination of the role of “mongrels” and summary statistics in peripheral vision. While it 

would certainly be interesting to examine the capabilities of peripheral vision with regard to 

invariant texture recognition, in the current manuscript we are not characterizing the 

properties of peripheral vision nor using the P-S model as a proxy for computations that may 

occur in the periphery. Instead, we are examining the extent to which this particular model 

of texture appearance carries sufficient information about texture appearance for observers 

to achieve some level of invariant texture processing. Thus, while this study and prior work 

with “mongrels” share some qualities (the use of P-S textures) the goals of the current study 

are distinct and we do not comment here on how these tasks might play out in the visual 

periphery. Instead, in three complementary experiments, we offer insights into what features 

do and do not appear to make contributions to observers' ability to achieve invariant texture 

matching. In Experiment 1, we examine observers' ability to match original and synthetic 

texture samples subject to either changing illumination or stable illumination. In Experiment 

2, we examine the contribution of luminance and contrast to this problem domain by 

imposing matched power spectra on our test images. Finally, in Experiment 3, we examine 

invariant texture processing by asking observers to match texture properties (rather than 

specific samples as in Experiments 1 and 2) of real and synthetic textures subject to 

changing vs. stable illumination. In all three experiments, we observe a significant cost of 

synthetic appearance, suggesting that the summary statistics included in the P-S model do 

not carry sufficient information to account for observers' abilities to match textures in an 

invariant way.

Experiment 1

In our first task, we used the Portilla-Simoncelli model as a means of determining the extent 

to which a rich appearance code based on summary-statistics was sufficient to support 

observers' ability to match texture samples under illumination change.

Method

Subjects—We recruited 13 participants (5 female) from the NDSU Introductory 

Psychology study pool. All participants reported normal or corrected-to-normal vision and 

received course credit for volunteering. Participants were between the ages of 18-25 years 

old and were naïve to the purpose of the experiment. In this experiment (and also 

Experiments 2 and 3) we obtained written informed consent from all participants and all 

three experiments were conducted in accordance with the ethical principles outlined in the 

Declaration of Helsinki.

Stimuli—Our stimulus set was comprised of 14 textures selected from the Amsterdam 

Library of Textures (Burghouts & Geusebroek, 2009), each photographed under diffuse 

overhead lighting and strong side lighting (Figure 1). We selected images based on the 
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availability of visually-matched pairs in the database, such that each texture we selected had 

a counterpart in the stimulus set that was approximately matched for mean luminance, 

contrast, the spatial scale of texture elements, etc. The original texture images were 384 × 

256 pixels in size and rendered in grayscale.

We created synthetic versions of each original texture by applying the Portilla-Simoncelli 

model (Portilla & Simoncelli, 2000). This model describes texture appearance primarily via 

correlations between wavelet coefficients that capture joint statistics across position, scale, 

and orientation (see Balas, Nakano, & Rosenholtz, 2009 for a more thorough description of 

the features in the model). We generated synthetic textures using 4 orientations, 4 spatial 

scales, a spatial neighborhood of 21 pixels and 50 iterations of the algorithm for matching 

statistics between the target texture and the synthetic image. We chose these particular 

parameter values since these led to high-quality syntheses for all of the natural textures we 

selected - increasing the fidelity of the representation by increasing the number of scales and 

orientations did not lead to obvious differences in texture quality, and we found that 

decreasing any of the aforementioned parameters tended to lead to noticeably poorer 

synthetic images for some of our original textures (but not all). As a result, we opted to use a 

common set of parameter values that yielded high-quality synthetic images. Our final 

synthetic images were matched to the size of the original parent images by cropping them 

after synthesis.

Finally, we cropped circular texture patches that were 256 pixels in diameter from the 

original and synthetic images for use in our texture matching tasks. We note that cropping 

these patches after performing texture synthesis means that patches taken from the same 

parent image are not guaranteed to have texture statistics that are perfectly matched. This is 

also true of real textures, however, since natural images are also not perfectly stationary. In 

general, the texture statistics from different patches of the same parent image are likely to be 

more similar than the statistics of two patches drawn from different parent images unless we 

are considering a texture with substantial inhomogeneity (in which case different patches 

may have very different statistics) or if we working with pairs of distinct textures that are 

highly similar. We attempted to choose our original set of textures such that neither of these 

were the case, and our full set of synthetic stimuli is available in the Supplemental Materials. 

The ALOT database is freely available at: http://aloi.science.uva.nl/public_alot/ and the 

original texture images used here can be obtained there (the synthetic images we have 

included are numbered to correspond with the numbering used in the ALOT database).

Procedure—Participants were asked to complete a match-to-sample task using the texture 

patches described above. On each trial, participants were instructed to observe the sample 

texture presented first, and identify which of two subsequently presented patches depicted 

the same texture as the sample. In the illumination-change condition, the matching test 

image and the sample image were illuminated differently. In the no-change condition, the 

matching test image and the sample image were identical. In both cases, the non-matching 

test image on each trial depicted a texture patch drawn from the texture that was selected to 

be an approximately visually-matched foil for the sample texture. Participants completed the 

illumination-change and no-change conditions in separate blocks, with block order 

counterbalanced across observers. Within a block, texture appearance (real or synthetic), the 
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left/right position of the matching test texture, and the illumination of the sample texture 

(overhead or side illumination) were pseudo-randomized.

Participants viewed the stimuli at a distance of 40cm on a 1024×768 LCD display. At this 

viewing distance each texture patch subtended approximately 3 degrees at this distance. On 

each trial, the sample texture was presented on a black background for 250ms, followed by 

an ISI of 500ms and the two test images presented on a black background until response 

(Figure 2). Participants indicated which test image matched the sample using the left and 

right shift keys. We recorded response accuracy and reaction time -participants were asked 

to respond as quickly as possible while still being accurate. Participants completed a total of 

224 trials per block, for a grand total of 448 trials in the entire experimental session. 

Participants typically completed the entire task in approximately 30 minutes. All stimulus 

display and response collection routines were implemented in the MATLAB Psychophysics 

toolbox (Brainard, 1997; Pelli, 1997).

Results and Discussion

For each participant we calculated the proportion of correct responses in both the 

illumination-change and no-change conditions for real and synthetic textures. We also 

calculated median reaction time for correct responses. We analyzed both measures using a 

2×2 repeated-measures ANOVA with lighting condition (illumination change vs. no change) 

and texture appearance (real vs. synthetic) as within-subject factors.

Accuracy—We observed significant main effects of lighting condition (F(1,12)=207.4, 

p<0.001, η2=0.94) and texture appearance (F(1,12)=326.0, p<0.001, η2=0.96) on 

participants' accuracy in our task. The former was the result of greater accuracy in the no-

change condition (M=95.0, 95% CI = [93.2,96.8]) relative to the illumination change 

condition (M=80.8%, 95% CI = [78.7,82.9]). The latter was driven by greater accuracy for 

matching real textures (M=94.3%, 95% CI=[92.7,96.0]) than synthetic ones (M=81.4%, 

95% CI=[79.5,83.4]). These main effects were also qualified by a significant interaction 

between lighting condition and texture appearance (F(1,12)=92.3, p<0.001, η2=0.89). The 

interaction was the result of a larger difference between real and synthetic texture accuracy 

in the illumination change condition (Mreal=91.5%, Msynthetic=70.1%) than in the no-change 

condition (Mreal=97.2%, Msynthetic=92.8%). Though this difference is smaller in the no-

change condition, it is nonetheless still statistically significant (t(12)=4.48, p=0.001, two-

tailed paired-samples t-test). The average accuracy per condition across all participants is 

displayed in Figure 3.

Reaction time—We also observed main effects of lighting condition (F(1,12)=15.6, 

p=0.002, η2=0.56) and texture appearance (F(1,12)=6.36, p=0.027, η2=0.35) on the median 

reaction time to correct responses. The main effect of lighting condition was the result of 

slower reaction times in the illumination change condition (M=0.74, 95% CI=[0.64,0.86]) 

than in the no-change condition (M=0.61, 95% CI=[0.55 0.68]). The main effect of texture 

appearance was the result of slower reaction times in response to synthetic textures 

(M=0.72, 95% CI=[0.62,0.83]) than to real textures (M=0.63, 95% CI=[0.56, 0.76]). We 

observed no interaction between these factors (F(1,12)=2.50, p=0.14, η2=0.17).
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Discussion

We conclude from this experiment that the P-S algorithm appears to be insufficient for to 

account for observers' ability to match texture samples given the relatively mild changes in 

appearance that we have considered here (illumination change). Specifically, the fact that we 

observed not only a significant cost of synthetic appearance when illumination invariance 

was required, but also a larger cost than when it was not suggests that this set of texture 

descriptors lacks information that is useful for matching textures across a lighting change. 

The no change condition we have used serves as a way to evaluate the quality of the 

synthetic images we used here, ensuring that poor performance with synthetic textures in the 

illumination-change condition is not simply the result of such poor texture synthesis that all 

of our textures appear highly similar to one another once they are synthesized. Were this the 

case, we would expect that synthetic textures should be hard to match in all cases due to 

high inter-texture similarity. Instead, we observed that the cost was especially high when 

illumination invariance was required, suggesting that our synthetic textures were of 

sufficiently high quality to support texture matching under some conditions. We point out, 

however, that since the no-change condition could theoretically be accomplished using 

image-based features (pixels), we cannot draw strong conclusions about texture processing 

on the basis of this control. Presently, we simply use it as an indicator of what our observers 

can do with these synthetic textures under optimal conditions for matching - an “upper 

bound” on performance with these images.

One potential weakness of this task is that we did not control for low-level properties of the 

texture images like the mean luminance of the sample and test images or the contrast of 

these image. One possible account of the large cost for synthetic textures in the illumination 

change condition is that these properties contribute substantially to observers' performance 

with real textures and are somehow less available in synthetic textures (or less useful, since 

the P-S algorithm only matches moments of the intensity histogram rather than the entire 

function and may thus leave out some information). Indeed, Groen et al. (2012) recently 

demonstrated that variation in low-level contrast was predictive of natural texture 

invariance, suggesting that illumination invariance may be supported in part by these 

properties of real-world images. Thus, to examine the role of these basic features in the 

illumination change condition, we implemented a second task with mean luminance, 

contrast, and the power spectrum matched across our entire stimulus set.

Experiment 2

In our second task, we re-ran our illumination-change condition after applying luminance, 

contrast and spatial frequency matching to our entire stimulus set. To the extent that low-

level differences in mean luminance and contrast following texture synthesis may have 

contributed to the disproportionate performance cost we observed in this task in Experiment 

1, matching these properties across our stimulus set may reduce the impact of texture 

synthesis on observers' ability to match texture samples when illumination changes.

Subjects—We recruited an additional group of 13 participants (4 female) for this task, 

none of whom had taken part in Experiment 1. All of these participants reported normal or 
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corrected-to-normal vision and were naïve to the purpose of the experiment. We obtained 

written informed consent from all participants prior to their participation in the task.

Stimuli—The same stimulus set described above in Experiment 1 was used here. However, 

to ensure that mean luminance and contrast were matched across our images, we used the 

SHINE toolbox (Willenbockel et al., 2010) to enforce a common mean luminance and a 

common average power spectrum across our entire stimulus set. This was applied to the 

patches cropped from the original textures to ensure that each texture patch closely matched 

low-level properties. In Figure 4 we display examples of real and synthetic images from 

Experiment 1 before and after this transformation was applied.

Procedure—All display parameters and experimental procedures were identical to those 

described above in Experiment 1, with the only caveat being that participants in this task 

were not asked to complete a no-change block.

Results

We computed each participant's response accuracy and median reaction time for correct 

responses for both real and synthetic trials. In each case, we compared performance for real 

and synthetic textures using a two-tailed paired-samples t-test. We observed a significant 

difference in accuracy for real and synthetic textures (t(12)=15.1, p<0.001), such that 

performance with real textures (M=82.8%, 95% CI=[78.6, 86.5]) was more accurate than 

performance with synthetic textures (M=64.6%, 95% CI=[61.3, 67.8]). Similarly, median 

reaction times for correct responses were also significantly different for real and synthetic 

textures (t(12)=3.97, p=0.002) such that correct responses to real textures (M=0.68, 95% 

CI=[0.63,0.74]) were faster than correct response to synthetic textures (M=0.81, 95% 

CI=[0.71,0.91]). As in Experiment 1, the observation of poorer accuracy and slower RTs for 

synthetic textures suggest that our effects are not simply the result of a speed-accuracy 

trade-off but reflect less efficient processing of synthetic textures. We also note that the 

approximate cost of using synthetic textures in this implementation of the illumination 

change condition (∼18 percentage points) is very close to the cost observed when we did 

not closely control mean luminance and contrast (∼21 percentage points), which could be 

interpreted to mean that our initial results were not simply the result of an improved ability 

to use these properties in natural images to achieve illumination invariance. However, we 

also point out that the absolute level of performance in this task is lower than observed in 

Experiment 1, meaning that the absolute difference between conditions should perhaps be 

considered along side something like the proportional difference.

Discussion

Considered as a whole, the results from Experiments 1 and 2 suggest that invariance to 

illumination change when matching texture samples is not supported by the summary 

statistics used in the Portilla-Simoncelli model and that observers' relative success with 

natural textures does not appear to be driven by very basic low-level features. Were this the 

case, images matched for these properties by the SHINE algorithm should both be very 

difficult to match in general and also should have led to a different profile of results. Instead, 

we found in both experiments that texture synthesis incurred a significant (and large) 
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performance cost when observers were required to achieve illumination invariance, but 

incurred a smaller cost when texture sample matching could be achieved without any need 

to cope with lighting changes.

Again, we do note one limitation of the design used in both experiments that weakens our 

ability to draw strong conclusions about texture processing per se based on these data. In 

both Experiment 1 and Experiment 2, the patches of real textures presented to observers as 

sample and test stimuli were taken from the same location in the parent texture. This means 

that though illumination may change across sample and test presentation, object-like 

structures are presented in the same location. This kind of matching is not possible in the 

synthetic appearance conditions, since syntheses of the same texture under different lighting 

conditions is not at al constrained such that proto-objects or objects are generated in the 

same positions. Thus, the difference between real and synthetic appearance in the 

illumination change condition could conceivably have little to do with texture processing 

proper and instead be the result of object processing applied to the object parts and surfaces 

that are preserved across illumination changes for real textures. Such processes would be far 

less useful in the synthetic appearance condition, meaning that the differences we have 

reported may reflect the efficacy of object processing rather than properties of texture 

processing. Similarly, the use of identical texture patches in the no-change condition makes 

it possible for participants to apply both position-dependent processes using raw pixel 

intensities and object-like processes in the real texture condition. Again, the effects of 

texture appearance could be driven by the successful application of a wide range of high-

level processes in the real appearance condition. This possibility is to some extent even more 

likely given that we permitted observers to freely view the stimuli, rather than presenting 

them in the visual periphery (Balas, 2006). While peripheral presentation does not ensure 

that texture representations are all that are available to the observer, the ability to foveate 

texture patches in the current study makes a wide range of candidate mechanisms available 

to our observers. Thus, while it seems reasonable to conclude that texture processing may be 

the dominant mode when observer are viewing our synthetic textures, we concede that many 

processes may contribute when real textures were presented. We suggest that the results 

from Experiment 1 and 2 still tell us something about texture processing, since the effects of 

texture synthesis reflect the constraints imposed by a texture code, but we also acknowledge 

that it is difficult to interpret the data from our real textures given that participants could 

usefully apply many strategies and representations to these stimuli and meet with success.

To help constrain the processes observers can usefully apply to this task more closely, in 

Experiment 3 we minimized the potential for object-like processing and position-dependent 

processing to contribute to matching performance by drawing sample and test patches in all 

conditions from different locations in the parent image. This manipulation makes it 

substantially less useful for participants to use object parts as a means of matching textures 

across illumination changes and rules out strongly position-dependent representations as 

well. To the extent that we are able to replicate the results of our prior tasks using this 

method choosing image patches, we may draw stronger conclusions regarding the properties 

of texture processing in particular.
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Experiment 3

In our final experiment, we attempted to replicate the results of Experiment 1 using patches 

of sample and test textures that did not come from the same location in the original parent 

image. This manipulation was designed to minimize the contribution of position-dependent 

strategies and object-like processing that could potentially have supported performance in 

Experiment 1 by using non-overlapping patches from the parent texture images. As such, 

this final experiment makes it possible for us to comment on observers' ability to match 

texture properties, rather than samples, across an illumination change.

Subjects—We recruited an additional 12 observers (8 female) to participate in this task. 

None of these participants had taken part in either Experiment 1 or Experiment 2. All 

participants reported either normal or corrected-to-normal vision and also reported that they 

were free of neurological or visual impairments. As in Experiments 1 and 2, we obtained 

written informed consent from all participants prior to their participation in the task.

Stimuli—We used the same stimuli described in Experiment 1, with the exception of the 

procedural differences in selecting sample and test patches described below.

Procedure—All testing procedures were identical to those described in Experiment 1, save 

for the selection of sample and test images on each trial. To help ensure that participants 

were completing the task using texture-like processes rather than either position-dependent 

mechanisms or object-like processes, we chose the sample image and its corresponding test 

image such that they did not overlap. This required the use of larger parent images than 

those used for Experiment 1 (these were 768 × 512), from which samples 256×256 in size 

were sampled such that patches did not overlap. In this way participants were not able to 

identify specific local features or object parts that would be present in both the sample image 

and its matching test image. To further minimize the extent to which position-dependent 

mechanisms might be used to support performance in this task, we also rotated all test 

images 45 degrees clockwise relative to the sample, further reducing the possibility that 

observers would be able to use pixel-based strategies to support performance. Aside from 

these manipulations, display parameters and task design were unchanged.

Results

As in Experiment 1, we computed the average accuracy per stimulus condition for all 

participants as well as their average response time for correct responses. In each case, we 

submitted these values to a 2×2 repeated-measures ANOVA with texture category (real vs. 

synthetic) and illumination condition (illumination change vs. no change) as within-subject 

factors.

Accuracy—This analysis revealed main effects of texture category (F(1,11)=115.7, 

p<0.001, partial eta-squared = 0.91) and of illumination condition (F(1,11)=81.9, p<0.001, 

partial eta-squared =0.88). We also observed a significant interaction between these factors 

(F(1,11)=53.5, p<0.001, partial eta-squared = 0.83). The main effect of texture category was 

driven by greater accuracy for real textures (M=0.94, s.e.m.=0.01) than synthetic textures 
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(M=0.76, s.e.m.=0.02), while the main effect of illumination condition was driven by greater 

accuracy in the no-change condition (M=0.93, s.e.m.=0.01) than in the illumination 

condition (M=0.78, s.e.m.=0.02).

To examine the interaction between these factors more closely, we first carried out post-hoc 

comparisons between the results obtained from real and synthetic textures in each 

illumination condition. In both cases, we observed significant differences favoring real 

textures (Illumination change condition: t(11)=9.56, p<0.001, two-tailed, paired-samples t-

test); No change condition: t(11)=7.06, p<0.001, two-tailed paired-samples t-test). Next, we 

compared participants' accuracy in the illumination-change vs. no-change condition for both 

real and synthetic textures. This analysis revealed significantly poorer performance in the 

illumination change condition when synthetic textures were used (t(11)=-9.16, p<0.001) but 

only a marginal difference (after applying a Bonferroni correction for multiple tests) when 

real textures were used (t(11)=-2.63, p=0.023). We suggest that the interaction we observed 

is thus the result of substantially poor performance in the synthetic condition when 

illumination changes. To facilitate comparison across all three experiments, the accuracy 

scores in each condition, along with accompanying 95% confidence intervals are displayed 

in Table 1, along with the scores we observed in Experiments 1 and 2.

Response Times—Our analysis of response times to correct responses yielded results 

very similar to those obtained from our accuracy data. We observed main effects of both 

texture category (F(1,11)=7.99, p=0.016, partial eta-squared = 0.42) and illumination 

condition (F(1,11)=33.0, p<0.001, partial eta-squared = 0.75) and an interaction between 

these factors (F(1,11)=8.57, p=0.014, partial eta-squared = 0.44). The main effect of texture 

type was driven by slower responses to synthetic textures (M=0.64, s.e.m.=0.04) relative to 

real textures (M=0.55, s.e.m.=0.024) and the main effect of illumination condition was 

driven by slower responses in the illumination change condition (M=0.67, s.e.m.=0.04) than 

in the no-change condition (M=0.52, s.e.m.=0.02).

As above, we used post-hoc comparisons to examine the nature of the interaction we 

observed in the response time data. We compared response times in the real and synthetic 

texture conditions for both the illumination-change task and the no-change task. In the 

former case, we observed a significant difference between real and synthetic textures 

(t(11)=-3.02, p=0.012, two-tailed paired-samples t-test) but no such difference in the latter 

comparison (t(11)=-.49, p=0.64). This suggests that in this case, synthetic appearance leads 

to a performance cost in the illumination change condition, but does not affect performance 

when there is no need for illumination-invariant processing.

General Discussion

Our results demonstrate that the summary statistics implemented in the Portilla-Simoncelli 

model are not sufficient to capture observers' ability to match texture samples (Experiments 

1 and 2) or texture properties across different samples (Experiment 3) in an illumination-

invariant fashion. Were this the case, synthesizing our original images should have 

preserved the necessary similarity relationships between textures lit from overhead and from 

the side such that identifying the matching test images remained straightforward. Instead, we 
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observed both a significant cost for synthesizing textures when illumination changes needed 

to be considered and also a cost for synthesizing textures when pixel-level comparisons were 

enough to yield the right answer (our no-change condition). Both of these results were 

obtained under conditions where position-dependent processes and object-like processes 

could theoretically be used to achieve accurate performance (Experiments 1 and 2) and also 

under conditions where such mechanisms were not as useful (Experiment 3) and texture 

processing is more likely to be the primary means of completing the task. Our latter result 

(poorer performance with synthetic textures when there is no lighting change) is consistent 

with data reported in Balas (2012) describing a similar impact of synthetic appearance on 

observers' ability to detect an oddball texture patch among an array of distractors. 

Impressive sensitivity to natural texture structure is evident in several other recent studies: 

Gerhard, Wichmann, & Bethge (2013) demonstrated via a generative patch-based model of 

texture appearance that observers were able to quickly learn to discriminate model patches 

from natural patches, for example, and that current models of image structure do not 

adequately capture the high-order statistics observers appear to have access to. Similarly, 

Emrith et al. (2010) quantified observers' sensitivity to high-order statistics using a phase-

scrambling technique, identifying a critical amount of phase randomization that observes 

were able to detect. The current results from the no-change condition thus add to a growing 

literature demonstrating how high-order statistics in natural images contribute to texture 

perception in multiple settings. Whether such effects result from some aspect of texture 

processing itself or some more general property of mid-level or high-level vision remains an 

open question, but the current study offers some useful constraints on what can and cannot 

be achieved with a rich texture code for appearance.

Our data from this relatively simple task indicate that the Portilla-Simoncelli model does not 

offer an adequate description of the features that support invariant texture perception, and 

may in general not constrain synthetic textures to have sufficiently naturalistic structure for 

efficient visual processing (though see Freeman et al., 2013 for fMRI data suggesting that P-

S textures drive V2 responses). While the current study was not designed explicitly to test 

material perception, shape-from-texture, or other diverse functions texture perception 

subserves, it is nonetheless instructive to discuss these effects insofar as they also indicate 

some important cases in which it seems a purely summary-statistic code likely cannot 

capture observers' judgments about textures. Similar to the results by Ho, Landy & Maloney 

described in the introduction, a further study by the same group (Ho, Landy, & Maloney, 

2008) demonstrated confusability between perceived glossiness and surface relief, 

suggesting some further complexity between the measurements used to characterize 

glossiness and the depth information in the texture. As Fleming (2014) describes, further 

examination of this phenomenon by Marlow, Kim & Anderson (2012) revealed that 

properties of specular highlights including their size and distinctiveness appeared to account 

for the effect. This can be interpreted as evidence that besides a feed-forward summary-

statistic representation of texture appearance, segmentation processes that allow observers to 

assess features like specular highlights effectively may play a critical role in a range of 

texture tasks. These various studies suggest an important role for additional computational 

mechanisms that contribute to texture perception by integrating information about local 

shape relationships, depth information, and other properties of the texture under 
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consideration that can be derived from specific critical features following some process of 

perceptual organization. Arguably, one could imagine that a sufficiently rich set of summary 

statistics may be enough to describe the necessary properties that are relevant in these case, 

but presently, we suggest that the current study offers an important demonstration that a 

popular model of texture appearance is likely not up to this task.

One obvious limitation of the current study is our reliance on a specific model of texture 

appearance (the P-S algorithm). An easy criticism of these results is that the Portilla-

Simoncelli algorithm is only one example of a large class of possible appearance models for 

texture, and other models may yield different results. This is a valid point and we do not 

disagree with the main thrust of this potential criticism – indeed, we suggest that continued 

investigation with both subsets of the P-S model (see Balas, 2006 for results using this 

technique) and other parametric texture synthesis models that relate easily to the human 

visual system (e.g. Heeger & Bergen, 1995) is an important means of understanding the 

scope of summary statistic representations for texture and material processing. The P-S 

algorithm has garnered substantial attention in recent years as a candidate model of texture 

processing (Balas, 2006; 2012), peripheral vision (Balas, Nakano & Rosenholtz, 2009; 

Rosenholtz et al., 2011), and V2 functionality (Freeman & Simoncelli, 2011; Freeman et al., 

2013), making it a useful target model for the current study. However, examining other 

models may yield important insights into the capabilities and limitations of summary 

statistics as a tool for explaining human texture perception. A close consideration of a wider 

range of parameter values in the P-S model and/or texture representations that include either 

different visual features (explicit inclusion of center-surround features, or various forms of 

corner detectors, for example) or higher-order joint statistics of the same basic 

measurements that are the basis of the Portilla-Simoncelli algorithm may be an important 

avenue for understanding what image descriptors support robust performance in natural 

images that are subject to realistic variation in appearance. Similarly, the consideration of a 

wider range of ecologically valid transformations of texture appearance, such as viewpoint 

change or scale change, would also yield important information regarding how well specific 

models of texture appearance carry information sufficient for matching texture samples or 

properties in an invariant way. Finally, we also note (as we discussed in the introduction) 

that the current study does not apply synthetic textures in an attempt to approximate 

peripheral vision or to compare performance with synthetic images to peripherally-viewed 

textures. This is a potentially important avenue for further inquiry however, and whether or 

not synthetic approximations of texture appearance are adequate for explaining observer's 

abilities in the visual periphery is an open and important question.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research Highlights

• Texture synthesis impairs texture sample matching across illumination changes.

• Synthesis also impairs illumination-invariant matching of texture properties.

• Statistical properties of real images are critical for invariant recognition.
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Figure 1. 
Examples of our texture stimuli, including both original and synthetic examples made from 

images with diffuse overhead lighting and side lighting.
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Figure 2. 
A schematic representation of a single trial of our match-to-sample task. Participants were 

asked to select the test image on each trial that was drawn from the same texture as the 

sample image.
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Figure 3. 
Average proportion correct across all participants as a function of task (illumination change 

vs. no change) and texture appearance (real vs. synthetic). Error bars represent +/- 1 s.e.m.
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Figure 4. 
Examples of the power-spectrum matched textures used in Experiment 2 compared to the 

original image patches from Experiment 1.
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Table 1

Average accuracy per condition in all three experiments, with 95% confidence intervals.

Real Textures Synthetic Textures

Illumination Change – Exp 3 M=0.92; 95% CI=[0.89-0.95] M=0.63; 95% CI=[0.56-0.71]

No Change – Exp 3 M=0.96; 95% CI=[0.94-0.98] M=0.89; 95% CI=[0.87-0.92]

Illumination Change – Exp 2 M=0.83; 95% CI=[0.79-0.87] M=0.65; 95% CI=[0.62-0.68]

Illumination Change – Exp 1 M=0.92; 95% CI=[0.89-0.94] M=0.70; 95% CI=[0.68-0.72]

No Change – Exp 1 M=0.97; 95% CI=[0.96-0.98] M=0.93; 95% CI=[0.90-0.96]
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