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Abstract

Background: Most HIV infections originate from individuals who are undiagnosed and

unaware of their infection. Estimation of this quantity from surveillance data is hard be-

cause there is incomplete knowledge about (i) the time between infection and diagnosis

(TI) for the general population, and (ii) the time between immigration and diagnosis for

foreign-born persons.

Methods: We developed a new statistical method for estimating the incidence of HIV-1

and the number of undiagnosed people living with HIV (PLHIV), based on dynamic model-

ling of heterogeneous HIV-1 surveillance data. The methods consist of a Bayesian non-

linear mixed effects model using multiple biomarkers to estimate TI of HIV-1-positive indi-

viduals, and a novel incidence estimator which distinguishes between endogenous and

exogenous infections by modelling explicitly the probability that a foreign-born person

was infected either before or after immigration. The incidence estimator allows for direct

calculation of the number of undiagnosed persons. The new methodology is illustrated

combining heterogeneous surveillance data from Sweden between 2003 and 2015.

Results: A leave-one-out cross-validation study showed that the multiple-biomarker

model was more accurate than single biomarkers (mean absolute error 1.01 vs �1.95).

We estimate that 816 [95% credible interval (CI) 775-865] PLHIV were undiagnosed in

2015, representing a proportion of 10.8% (95% CI 10.3-11.4%) of all PLHIV.
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Conclusions: The proposed methodology will enhance the utility of standard surveillance

data streams and will be useful to monitor progress towards and compliance with the

90–90-90 UNAIDS target.
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Introduction

The majority of new HIV-1 infections originate from indi-

viduals who are undiagnosed and unaware of their infec-

tion, especially in countries with good access and

adherence to antiretroviral therapy (ART), which greatly

reduces infectiousness.1–4 Thus, knowledge about the size

of the undiagnosed HIV-1 population is highly relevant for

public health and HIV prevention. In 2014, the Joint

United Nations Programme on HIV and AIDS (UNAIDS)

launched the 90–90-90 target, which states that by 2020:

(i) 90% of all persons living with HIV (PLHIV) should

know their status; (ii) 90% of all diagnosed HIV cases

should receive ART; and (iii) 90% of all people receiving

ART should have achieved viral suppression.5 The

European Center for Disease Prevention and Control

(ECDC) estimates that one in seven (14%) PLHIV in

Europe are unaware of their infection.6

Estimation of the size of the undiagnosed population is

challenging, because the time of infection usually is un-

known and the time until diagnosis (TI) is highly variable

due to differences in testing behaviour, risk awareness and

rate of disease progression. Until now, most estimates of

HIV-1 incidence and undiagnosed population have been

based on methods that classify patients as recently or long-

term infected rather than estimate TI directly. Several such

methods based on CD4þ T lymphocyte (CD4) counts,

HIV-1 antibody tests and viral sequence diversity have

been described. CD4 counts are commonly used,7 but their

rate of decline is variable8–10 limiting their utility as a

single biomarker. HIV-1 antibody concentrations increase

over time from infection approaching an asymptote

in long-term infections.11 The BED IgG-capture enzyme

immunoassay (BED assay) has been used to estimate inci-

dence12,13 by classifying recent and long-term infections.

Sequence-based methods exploit the increase in intra-

patient sequence diversity following infection, which can

be approximated by the fraction of polymorphic nucleoti-

des in the partial HIV-1 pol gene sequences that are used

for detecting drug resistance mutations (referred to as pol

polymorphisms).14,15

Fewer studies have attempted to estimate TI continu-

ously, rather than distinguishing between recent and

long-term infections, and to account for individual varia-

tions. Sommen et al.16 used antibody levels to two HIV-1

antigens (IDE and V3) to calculate the posterior distribu-

tion of HIV-1 infection times and incidence in France.

Romero-Severson et al.11 used BED assay results to

combine a model of within-host time-continuous IgG

dynamics17 with a Bayesian estimator for the incidence

of HIV-1 in Sweden in 2002–09. However, these studies

neither explicitly accounted for immigration of infected

persons, nor attempted to estimate the size of the undiag-

nosed HIV-1-infected population.

Here we present a statistical method to estimate HIV-1

incidence and the number of undiagnosed PLHIV. The

method is based on: (i) a model of the joint dynamics of

multiple-biomarker levels from the time of infection that

allow a more accurate estimation of individual TIs; and (ii)

the estimation of the time from immigration to diagnosis

for exogenous infections using unlinked surveillance data.

Key Messages

• Combined heterogeneous HIV-1 surveillance data and biomarker data can be used to estimate both local incidence

and the number of undiagnosed persons living with HIV.

• Explicit modelling of the dynamics, heterogeneity and correlation of multiple biomarkers over time improved estima-

tion of time between infection and diagnosis.

• Explicit modelling of the probability that foreign-born persons were infected before or after immigration improves ac-

curacy of estimates of endogenous incidence and undiagnosed persons living with HIV.

• The endogenous incidence of HIV-1 in Sweden is declining, despite continued immigration of HIV-1 infected persons.

• The proportion of undiagnosed PLHIV decreased over 2010–15 and was estimated to be 10.8% (95% CI, 10.3-11.4%)

in 2015.
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The TI model uses BED, CD4 and pol polymorphisms, but

can be easily generalized to include other or additional bio-

markers. The estimation of the time from immigration to

diagnosis allows the assessment of how endogenous and

exogenous infections contribute to the undiagnosed

fraction.

In the application of the model to surveillance data from

Sweden, we estimated that endogenous HIV-1 infections

have decreased over 2010–15 and that 10.8% (95% CI,

10.3-11.4%) of all infected persons in Sweden were undiag-

nosed in 2015. This estimate is in line with previously

published results,18 and adds uncertainty quantification.

Methods

The methodology to estimate HIV incidence and number

of undiagnosed PLHIV was developed for countries like

Sweden, i.e. countries with reliable HIV surveillance sys-

tems, availability of biomarker data on (a subset of) newly

diagnosed patients, and non-negligible immigration.

Data

Multiple surveillance data sources in Sweden were collated

for this work. We used published data on 1357 HIV-1

infected patients diagnosed in Sweden between 2003 and

201011,17,19,20 with complete biomarker data on CD4

counts, BED levels and pol polymorphism counts at diag-

nosis. These patients represented 39% of all patients diag-

nosed in Sweden during this period. These data included

likely country of infection, transmission route, last nega-

tive and first positive HIV-1 test, laboratory evidence of

primary HIV-1 infection and plasma HIV-1 RNA levels,

but not data on time of arrival in Sweden for foreign-born

persons. A subset of 31 treatment-naı̈ve patients. having

longitudinal biomarker data and known infection times,

was used to build and validate the multiple biomarker

model.

Data on the yearly number of diagnosed HIV-1 cases in

Sweden between 2003 and 2015 were collected as part of

mandatory national case reporting, and was stratified by

reported transmission route, place of infection (Sweden or

abroad) and AIDS at HIV diagnosis. In total 5777 patients

were diagnosed in Sweden during 2003–15. Data on link-

age to care (diagnosed HIV-1 patients regularly attending

scheduled visits) were obtained from the Swedish National

Quality Assurance Registry InfCareHIV, as previously

described.18 For 2466 of 2978 (83%) of the foreign-born

patients, data on the time between first arrival and diagno-

sis in Sweden were available; however, these data were

anonymized and could not be linked to the other data. For

details on the patients and laboratory methods, see

Supplementary Table S1 and Section 1, available as

Supplementary data at IJE online.

Modelling approach

Our modelling approach to estimate the incidence of new

HIV-1 infections and the size of the undiagnosed popula-

tion consists of the following four main steps: (i) estimate

parameters of our novel multiple-biomarker model using

longitudinal biomarker data on 31 individuals with known

infection dates; (ii) apply the multiple-biomarker model to

estimate TI of the HIV-1 infected population, stratified by

transmission group and country of origin using data from

case reports, and use bootstrap for patients with missing

biomarkers; (iii) estimate HIV incidence trends over the pe-

riod 2000 to 2015, using the time distribution from TI to

diagnosis obtained in the previous step and including the

probabilistic allocation of foreign-born infected individuals

to endogenous or exogenous infections; and iv) calculation

of the undiagnosed fraction with its uncertainty using

bootstrap.

Multiple-biomarker model

The K biomarkers Yk
ij, k ¼ 1; . . . ;K are modelled jointly as

a function of TI as follows:

Yk
ij ¼ f kðtij � ui;b

k
i Þ þ �ij

where i denotes the individual with biomarkers measured

at calendar time tij after infection date ui. The dynamics

are described by biomarker specific curves f k �ð Þ, fixed and

random effects bk
i and �kij; as i.i.d. error terms such that

�kij � N 0; r2

�k

� �
. The model is formulated in a Bayesian

framework and fitted using Markov chain Monte Carlo

(MCMC) to longitudinal data with known TI. Full specifi-

cation on the prior distributions assigned to the unknown

parameters can be found in Supplementary Section 2.1,

available as Supplementary data at IJE online. The bio-

marker model used data from three biomarkers and was

trained on a subset of 31 treatment-naı̈ve patients having

longitudinal biomarker data and known infection times.

For comparison, the three biomarkers were also modelled

separately. To assess the representativeness of the dataset,

we compared the estimated parameter values with values

reported in the literature.

Estimation of TI and handling of foreign-born

cases

The Bayesian formulation allows us to use our model to es-

timate directly the unknown time of infection of new
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individuals, by treating their TI as a ‘latent’ variable, de-

scribed by a prior distribution. This approach was used in a

leave-one-out cross-validation analysis using the 31-patient

longitudinal dataset (where TI was represented by any of the

tij � ui), as well as in the prediction of TI for newly infected

individuals (1357 patients between 2003 and 2010), with

biomarkers measured only at time of diagnosis, i.e. j ¼ 1.

To estimate HIV-1 incidence and undiagnosed PLHIV,

foreign-born persons infected before first arrival should

only be counted after arrival to the country of investiga-

tion, e.g. Sweden. As immigration dates were not available

for the above-mentioned 1357 patients, we first estimated

a typical distribution for the time interval between

immigration e and HIV diagnosis using independent and

unlinked surveillance data, and then applied this distribu-

tion to foreign-born patients among the 1357 patients.

Incidence estimation

We extended the model proposed by Sommen et al.16 to esti-

mate HIV-1 incidence, defined as the number of new infec-

tions. Our modifications allow us: i) to consider all reported

cases within a moving window of size m (i.e. [t; t þm�) in

the incidence estimation at time t, denoted as It (rather than

only cases reported at time t); and (ii) to account for

imported infections. Typically, the time period of interest is

1 year, and we denote the incidence as I s1;s2½ � where

s2 ¼ s1 þ 1. The incidence is expressed as a weighted sum of

posterior densities of infection (or entry) times:

I s1;s2½ � ¼ Iendo
s1;s2½ � þ Iexo

s1;s2½ � ¼

X
fi2Nendog

ðminðs2;tiÞ

minðs2;liÞ
xendo uið Þp uitið Þdui

þ
X

fi2Nexog

ðminðs2;tiÞ

minðs2;liÞ
xexo eið Þg eitið Þdei (1)

where Nendo and Nexo denote the number of endogenous

and exogenous infections diagnosed in s1; s1 þm½ �, respec-

tively, and xendo and xexo are equal to the inverse of the

probability of being diagnosed in s1; s1 þm½ � for individuals

infected at ui or immigrated at ei, respectively. Here,

p uijtið Þ represents the posterior distribution of the infection

time for an individual i (diagnosed at ti) obtained using ob-

served biomarkers, and g eijtið Þ is the ‘backward’ distribu-

tion used to generate an entry time ei for a foreign-born

case given diagnosis at ti in the country (by year of diagno-

sis). The time of the latest negative test that individual i

may have is denoted by li. The second term in (1) is evalu-

ated only when the generated immigration time ei is more

recent than the infection ui time as estimated by the

biomarkers. This comparison allows for the definition of

the sets Nendo and Nexo. For unobserved years (i.e. upper

end of the moving window falls after the present time) the

number of diagnoses is assumed to follow a Poisson distri-

bution with mean equal to the reported cases in the last ob-

served year.

Estimation of undiagnosed fraction

The calculation of the HIV-infected undiagnosed individu-

als in a specific year follows directly from the incidence es-

timation (both endogenous and exogenous). Here, we

define more generally the incidence of infection at time t as

It and the number of undiagnosed individuals U at time s3

can be written as:

Us3
¼
ðs3

s1

Iendo
t P½ðt0 � tjtÞ > ðs3 � tÞ�dt

þ
ðs3

s1

Iexo
t P½ðt0 � tjtÞ

> ðs3 � tÞ�dt

where t0 are the diagnosis times for individuals estimated

to have been infected (or immigrated) at time t. That is, the

number of undiagnosed patients in year s3 is the cumula-

tive sum of the product of the number of endogenous/exog-

enous infections that occurred/were imported t years ago

and the probability of being not yet diagnosed after s3 � t

years. This calculation is stratified by transmission route.

Credible intervals are obtained by generating 100 boot-

strap samples of size 1000 from the distributions of infec-

tion times. All statistical analyses were carried out using R

version 3.3.21 and JAGS.22 For further details on the model

and parameters, see the Supplementary Section 2 and

Section 3, available as Supplementary data at IJE online.

Results

The multiple-biomarker model improved estima-

tion of TI

The multiple-biomarker model for estimating TI based on

BED levels, CD4 counts and pol polymorphisms, was

trained on longitudinal data from 31 HIV-1 patients with

known infection times. The parameter values describing

the growth or decline of the biomarkers for the training

data (Supplementary Figures S1–S3 and Table S2, available

as Supplementary data at IJE online) agreed with pub-

lished values,7,14,23–25 which justified the use of the model

on biomarker data from other HIV-1 patients. A leave-

one-out cross-validation analysis showed that the multiple

biomarker model gave more accurate estimates of TI than

each of the single biomarkers according to four different

measures of precision (Table 1). TI estimates were more
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precise if biomarkers were measured sooner after

infection (MAE¼ 0.91 at <1 year; 1.20 at 1–2 years; 1.40

at >2 years, see Supplementary Table S3, available as

Supplementary data at IJE online). Biomarker measure-

ments at two or three time points, rather than a single

time point, only slightly improved TI estimation

(Supplementary Table S4, available as Supplementary data

at IJE online). This motivated the use of single time point

biomarker measurements in the application to newly diag-

nosed patients in Sweden.

Time between infection and diagnosis varied by

transmission route

Figure 1 shows the distribution of the estimated time from

infection until diagnosis in the three main transmission

groups [men who have sex with men (MSM), intravenous

drug users (IDU) and heterosexual transmission route

(HET)] broken down by place of origin (Sweden or

abroad). For MSM and IDU, the estimated time between

infection and diagnosis showed similar distributions, with

around 60% of individuals being diagnosed within 1 year

after infection and 8% being diagnosed >5 years after in-

fection. Heterosexually infected persons had longer time

until diagnosis, with around 31% and 19% being diag-

nosed within 1 year and after >5 years after estimated TI,

respectively. As expected, persons reported to have been

born abroad also had longer time between estimated TI

and diagnosis in each transmission group, as some of them

are likely to be exogenous infections, i.e. infected before

first arrival to Sweden (overall median 2.0 years vs

0.89 years, Mann-Whitney test, P<0.05).

Decreasing HIV-1 incidence in Sweden

To estimate HIV-1 incidence in Sweden, we explicitly

modelled the impact of migration so that patients esti-

mated to have been infected before immigrating to Sweden

contributed to incidence only from the estimated date of

first entry into the country (Figure 2). Figure 3 shows that

the incidence of endogenous infections decreased in all

three transmission groups, especially among MSM and

IDU. We estimate that 150 (95% CI, 112-187) infections

occurred in Sweden in 2015 (41 MSM, 7 IDU and 102

HET), compared with 284 (95% CI, 255-312) in 2010

(112 MSM, 13 IDU and 159 HET), P<0.01. In contrast,

the incidence of persons entering Sweden already infected

(i.e. exogenous infections) was estimated to have been sta-

ble or slightly increasing, with 257 (95% CI, 218-305) per-

sons in this category in 2015 (82 MSM, nine IDU and 166

HET), compared with 242 (95% CI, 221-262) in 2010

(P¼ 0.15).

Proportion of undiagnosed HIV-1-infected persons

close to 10% UNAIDS target

Our model also provided estimates on the number of

undiagnosed PLHIV in Sweden at the end of the years

2010 to 2015. Table 2 shows that number of undiagnosed

PLHIV in Sweden was estimated to have decreased from

907 (95% CI, 880-934) persons in 2010 to 816 (95% CI,

775-865) in 2015. During the same period, the number of

diagnosed patients linked to care increased from 5281 to

6747, which means that the proportion of undiagnosed

PLHIV decreased from 14.7% (95% CI, 14.3-15.0%) in

2010 to 10.8% (95% CI, 10.3-11.4%) in 2015. Of the

undiagnosed PLHIV in 2015, 341 persons were estimated

to have been infected while living in Sweden (78 MSM,

8 IDU and 255 HET) and 475 persons were estimated to

have been infected before first entering Sweden (165

MSM, 11 IDU and 299 HET).

Discussion

In this manuscript we present a new method for estimating

HIV incidence and size of undiagnosed population which

differentiates between exogenous and endogenous infec-

tion of foreign-born cases. Our method builds on (i) a

Bayesian model to estimate time of infection (TI) using

multiple biomarkers, and (ii) an extension of the incidence

estimator proposed by Sommen et al.16 to explicitly model

the probability that an HIV-1 infection in an immigrating

person occurred before or after immigration. Our method-

ology was designed for use on heterogeneous and unlinked

surveillance data.

We applied the method to data from Sweden and esti-

mated TI using three biomarkers (CD4 counts, BED assay

results and proportion of polymorphic sites in HIV-1 pol

sequences) as well as data on main transmission route,

presence of a last negative test, AIDS at diagnosis and

Table 1. Mean predictive performance of single and multiple

biomarker models assessed with a leave-one-out cross-vali-

dation analysis evaluated by four measures of precision

Model Bias MAE RMSE Coverage

CD4 �2.62 3.12 3.77 0.81

BED �1.80 1.95 2.21 0.90

POL �2.16 2.22 3.20 0.81

MBM �0.68 1.01 1.38 0.93

CD4, CD4þ T lymphocyte count; BED, antibody levels measured using the

BED IgG-capture enzyme immunoassay; POL, fraction of polymorphisms in

HIV-1 pol gene sequences; MBM, multiple biomarker model based on CD4,

BED and pol; MAE, mean absolute error; RMSE, root mean square error. All

values are in years.
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diagnosed primary HIV-1 infection (PHI). We treated TI as

a continuous random variable rather than as a simple bi-

nary state of being recently or long-term infected, which

increases power and reduces bias. We found that a combi-

nation of the three biomarkers gave more precise TI esti-

mates than one or two of these biomarkers. Each of the

three biomarkers have certain advantages and limitations

and show considerable inter-individual variability. A well-

known disadvantage of the BED assay is that it can give

false-positive recent results for patients with low CD4

counts.26,27 This problem is reduced by our model because

the inclusion of CD4 counts and pol polymorphisms par-

tially corrects false-recent BED results, and because per-

sons with AIDS at diagnosis where assigned a prior

distribution with an average time from infection to diagno-

sis of 8 years28 (Supplementary Figure S4, available as

Supplementary data at IJE online). Furthermore, low BED

results in AIDS patients were rare in our dataset

(Supplementary Figure S7 and Table S5, available as

Supplementary data at IJE online).

Figure 2. Distribution of estimated time from arrival in Sweden to diagnosis by transmission route, modelled using anonymized data on time between

first entry into Sweden and diagnosis for 2466 patients, obtained from the Public Health Agency of Sweden. MSM, men who have sex with men; IDU,

intravenous drug users; HET, heterosexual transmission route.

Figure 1. Distribution of estimated time from infection (TI) to diagnosis by transmission route and country of origin, modelled using CD4, BED and pol

polymorphism data obtained at or close to diagnosis from 1357 patients diagnosed in Sweden 2003-10. MSM, men who have sex with men; IDU, in-

travenous drug users; HET, heterosexual transmission route.
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We observed a decrease in the estimated incidence of

HIV-1 infections and number of undiagnosed PLHIV in

Sweden. The proportion of undiagnosed PLHIV was esti-

mated to be 10.8% in 2015, which is close to the 10%

UNAIDS 90–90-90 target. We estimated that the incidence

of HIV-1-infections among persons residing in Sweden

decreased by almost two-thirds from 2010 to 2015. The

decrease was more pronounced in MSM and IDU than

among heterosexually infected persons. This agrees with the

fact that 87% of persons with diagnosed HIV-1-infection

Figure 3. Estimated HIV-1 incidence in Sweden 2003-15, per year and transmission route. The model explicitly accounts for exogenous infections.

Thus, persons estimated to have been infected before first entry in Sweden only contribute to incidence in Sweden from the estimated date of entry.

The upper panels show estimated incidence of HIV-1-infection among persons residing in Sweden. The lower panels show the incidence of HIV-1-

infected persons entering Sweden for the first time. MSM, men who have sex with men; IDU, intravenous drug users; HET, heterosexual transmission

route. Note the scale on the y-axis is different for IDU.

International Journal of Epidemiology, 2019, Vol. 48, No. 6 1801



were on effective ART in 2015,18 which means that they

were effectively non-infectious,29 and that the time between

infection and diagnosis was shorter among MSM and IDUs

than among heterosexuals (Figure 2). Data from InfCareHIV

shows that the coverage of effective ART is very high (87%

in 201518) and similar across transmission groups, and thus

differences in ART coverage cannot explain the difference in

incidence between transmission groups. The important dis-

tinction between endogenous and exogenous infections

would not be noted if we had not accounted for immigra-

tion, as the overall incidence was almost constant over the

observation period (Supplementary Figure S9, available as

Supplementary data at IJE online).

Despite the training dataset being relatively small (31

patients), the modelled biomarkers trajectories agreed with

previously published estimates obtained using larger data-

sets,7,14,23–25 which gives us confidence that the model de-

sign and parameter values are valid for other patients. For

the purpose of illustrating the methodology, we assumed a

constant incidence of infection before 2003, as official data

from the Public Health Institute of Sweden show that the

number of new diagnoses has been fairly stable between

1990 and 2003.30 Violations of this assumption would

have minimal impact on our estimates of incidence and

fraction undiagnosed during 2010–15, which is the focus

of the paper. However, our methodology can easily be ex-

tended to include a wider time window estimating inci-

dence in past years (e.g. before 2003).

The strengths of our approach are that it relies on rou-

tine or easy-to-collect data and provides estimates of the

size of undiagnosed population, stratified by HIV transmis-

sion group, explicitly accounting for exogenous infections.

In addition, the method considers the several sources of

uncertainty involved, such as differences in HIV-1 testing

behaviour, differences in disease progression and bio-

marker measurement error. Because the method estimates

TI for each investigated person, it allows for detailed HIV-

1 epidemiological investigations, such as the causes and

consequences of late presentation of HIV infection31 and

the effectiveness of HIV-1 prevention (e.g. pre-exposure

prophylaxis).32,33 The method can easily be adapted to

other biomarkers like the LAg avidity assay and viral

diversity.34–36

Our study suggests a way forward for generating up-to-

date reports on the key parameters (incidence and number

of undiagnosed persons) needed to understand the effec-

tiveness of HIV control methods, the application of public

health triage and the progress towards the UNAIDS 90–

90-90 targets. The global movement of people in response

to a changing world means that health systems will be

challenged with increasing numbers of foreign-born per-

sons; surveillance methods will need to correctly account

for infections in those populations which occur both before

and after migration. Integrating computational modules

into public health surveillance streams that can account

for complex, heterogeneous data with missing values will

greatly increase the utility of surveillance, not only as a

passive monitoring tool but as an active intervention aid.
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