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Breast cancer is the second most common kind of cancer worldwide and oncolytic
viruses may offer a new treatment approach. There are three different types of oncolytic
viruses used in clinical trials; (i) oncolytic viruses with natural anti-neoplastic properties;
(ii) oncolytic viruses designed for tumor-selective replication; (iii) oncolytic viruses modified
to activate the immune system. Currently, fourteen different oncolytic viruses have been
investigated in eighteen published clinical trials. These trials demonstrate that oncolytic
viruses are well tolerated and safe for use in patients and display clinical activity. However,
these trials mainly studied a small number of patients with different advanced tumors
including some with breast cancer. Future trials should focus on breast cancer and
investigate optimal routes of administration, occurrence of neutralizing antibodies, viral
gene expression, combinations with other antineoplastic therapies, and identify subtypes
that are particularly suitable for oncolytic virotherapy.
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1 INTRODUCTION

One in eight women will be diagnosed with breast cancer in their life, and breast cancer is the most
common kind of cancer in the United States. Around 90% of patients diagnosed with breast cancer
and no sign of metastases survive the first five years and 86% survive the first 10 years (1, 2).
Consequently, in comparison to other tumor entities, breast cancer has a relatively good prognosis.
However, even decades after the primary diagnosis patients can still experience a relapse in the form
of distant metastases. New therapeutic strategies such as cyclin-dependent kinase (CDK) 4/6
inhibitors, human epidermal growth factor receptor 2 (HER-2)-targeted therapy, or
immunotherapy with checkpoint inhibitors can extend the survival when a patient is diagnosed
with metastases (3–5). However, there is still no cure available (6, 7) and therefore a desperate need
for new therapies.

Two of the main reasons for the development of a tumor are the combined changes in the genetic
and epigenetic characteristics of a cell. These changes result in a higher probability of cells becoming
immortal. Parallel to these changes, the evolving tumor cell produces neo-antigens which should
cause the cell to be destroyed by the immune system. However, the cancer cell manages to
circumvent the anti-tumor response by manipulating the body’s immune reaction. This effect is due
to the decreased reaction to signals from the innate immune system, reduced expression of neo-
antigens, and prevention of immune cells from infiltrating the tumor environment (8). These
changes shield the tumor from the immune system but, interestingly, make it more vulnerable to the
infection by viruses (9).
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Oncolytic viruses represent a new approach to cancer
treatment. In contrast to classic gene therapy, where replication
incompetent viral vectors are used, oncolytic viruses are
replication competent. Oncolytic viruses selectively infect tumor
cells followed by proliferation of the viruses and destruction of
infected cells, a process that is called oncolysis. The subsequent
release of these additional infectious viruses causes the infection of
neighbouring tumor cells (10, 11). At the same time a tumor-
specific immune response is induced resulting in further
enhancement of the oncolytic effects. Therefore, a combination
of immunotherapies such as checkpoint inhibitors, that release the
brakes on the immune system, with oncolytic viruses might be a
promising therapeutic strategy; corresponding clinical trials are
currently being undertaken (NCT02919449; NCT01937117).

The treatment of breast cancer with aggressive tumor biology
such as triple-negative breast cancer (TNBC), defined by the
absence of estrogen and progesterone receptors, as well as HER2,
is challenging. Until recently, only chemotherapy was available
to treat metastatic TNBC (12). A new therapeutic strategy, which
has been shown to be effective in many solid tumors, is based on
the inhibition of so-called immune checkpoints, specifically
cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4),
programmed cell death -1 (PD-1), and programmed cell death-
ligand-1 (PD-L1), which suppress the antitumor capabilities of
the host immune system (13). Although historically breast cancer
has been considered a non-immunogenic tumor (i.e. cold),
TNBC appears more likely to respond to immunotherapy than
other breast cancers because of an increased mutational burden,
infiltration of the tumor microenvironment with immune cells
(e.g., tumor-infiltrating lymphocytes), and higher expression of
PD-L1 (14). Nevertheless, the efficacy of individual checkpoint
inhibitors in TNBC is still low, and combinations of therapies are
needed to overcome resistance to immunotherapy. Recently,
combination with chemotherapy has been shown to be more
successful (15). While some studies showed significant efficacy
and led to approval of the checkpoint inhibitors pembrolizumab
and atezolizumab in combination with chemotherapy for the
treatment of metastatic and early TNBC, other studies have not
been as successful (16–20). Although a long-lasting anti-tumor
effect is seen in some patients, the vast majority of those treated
do not respond to immunotherapy (21). Therefore, new strategies
are needed to improve the efficacy of immunotherapy in breast
cancer, which is not considered a highly immunogenic (i.e. hot)
tumor compared to other entities such as melanoma or non-small
cell lung cancer (22).

Novel treatment agents such as immune checkpoint
inhibitors are an important milestone in response to the
desperate search for novel therapeutic agents for breast cancer.
However, there is still room to improve the clinical benefit for
patients from this new treatment option (23). There are two
potential ways of increasing the success. Firstly, subtypes of
breast cancer susceptible to immune checkpoint inhibitors
could be sensitized to improve the response to these
therapeutic agents. Secondly, non-immunogenic tumors need
to be transformed into immunogenic tumors thus making them
more susceptible to immune checkpoint inhibitors. Oncolytic
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viruses may fulfil this role and offer a new way of improving
treatment with immune checkpoint inhibitors. In particular, the
activation of an immune response to the tumor cells due to viral
infection may play an important part in this approach. In a Phase
Ib clinical trial in advanced melanoma that combined the
oncolytic virus talimogene laherparepvec with the anti-PD-1
antibody pembrolizumab researchers found that this
combination enhanced the CD8+ T-cell count and elevated the
PD-L1 protein expression. The authors suggest that this creates a
changed tumor microenvironment, thereby potentially
increasing response rates to an immune checkpoint inhibitor
(24). Another study used a vesicular stomatitis virus (VSV) in
combination with an anti-PD-1 checkpoint inhibitor as a
therapeutic regime in experimental models of TNBC. The
authors found that the recruitment of CD8+ T-cells plays an
important role in enhancing the efficacy of immune checkpoint
inhibitors (25). Additional laboratory studies underline the
potential benefit of combining oncolytic viruses with immune
checkpoint inhibitors (26, 27). The induction of an immune
response to tumor cells, thereby sensitizing tumor cells to
immune checkpoint inhibitors, enables oncolytic viruses to
transform non-immunogenic tumors into more immunogenic
tumors (28). Interestingly, because the transformation includes
CD8+ T-cell recruitment, CD8-targeted positron emission
tomography (PET) imaging may prove useful in future for
evaluating oncolytic virotherapy in this context (29).

It is important to differentiate between oncolytic viruses with
natural or intrinsic anti-neoplastic characteristics and oncolytic
viruses that have been genetically modified (30). During the 20th

century wild-type oncolytic viruses were used and their effects on
tumor cells were investigated. In the 1990s the next step was to
genetically engineer these viruses for selective replication in
tumor cells (31). The hope was to increase the oncolytic
potential of such viruses. Herpes simplex virus type 1 (HSV-1)
was the first oncolytic virus to be genetically modified by creating
a thymidine kinase-negative mutant of HSV-1 (32). Many
studies followed this development resulting in a variety of
viruses which were found to exhibit tumor-selective replication
(31, 33). More recently, an activated immune response against
tumor cells caused by oncolytic viruses is understood to be
important for their action (34–36). Importantly, a large
randomized clinical trial phase III trial was undertaken using
talimogene laherparepvec (T-VEC; Imlgygic®) in patients with
advanced melanoma (37). A therapeutic benefit was shown (38).

Selective killing of tumor cells forms the first pillar of
oncolytic virotherapy (Figure 1). Specific targeting of cancer
cells is a necessary pre-requisite for successful virotherapy.
Indeed, many naturally occurring viruses, such as parvovirus,
measles virus, reovirus and Newcastle disease virus (NDV)
exhibit a natural preference for cancer cells. However other
viruses, such as adenovirus, VSV, vaccinia virus (VV) and
HSV need to be engineered to make them cancer specific (30,
39). Four broadly different ways have been used to engineer
oncolytic viruses to selectively target tumor cells. The first of
these approaches utilizes virus-specific, receptor-mediated cell
targeting based on addressing cell markers that are expressed in
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tumor cells, such as epidermal growth factor receptor (EGFR)
and HER-2 (39). The second approach is based on the rapid cell
division in tumor cells, which leads to high metabolic activity
and replication rate, thereby supporting increased viral
replication compared to normal quiescent cells (33). Moreover,
mutations in tumor drivers or other enzymes such as protein
kinase R (PKR) can increase the selectivity of virus replication in
tumor cells (9, 36). Thirdly, many cancer cells exhibit deficiencies
in normal antiviral interferon (IFN) or tumor necrosis factor
(TNF) responses (30, 33) which encourage selective virus
Frontiers in Oncology | www.frontiersin.org 3
replication (39). Fourthly, normal cells respond to viral
infection by inducing apoptosis or suppressing translational,
transcriptional and/or transductional targeting to prevent the
lysis of cells, which may limit the propagation of the virus (39).

The second pillar of oncolytic virotherapy is based on the
immune response against tumor cells (Figure 2). The infection
with oncolytic viruses results in a release of cell debris and
antigens which stimulate the immune system (33). Normally the
oncolytic virus would trigger an immune response in the cell
leading to limitation of the viral infection. A combination of
FIGURE 1 | Four different ways used to engineer oncolytic viruses to selectively target tumor cells. Selective killing of tumor cells forms the first pillar of oncolytic
virotherapy and requires specific targeting of cancer cells as a necessary pre-requisite for successful virotherapy. Although many naturally occurring viruses exhibit a
natural preference for cancer cells, other viruses, need to be engineered to make them cancer specific.
FIGURE 2 | Triggering an immune response through infection with oncolytic viruses. The infection of tumor cells with oncolytic viruses results in viral replication and
subsequent cell lysis. The debris and new antigens that are released through cell lysis result in a stimulation of the immune system.
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several factors - viral infection, oncolysis, new antigens and an
activation of pathways normally signaling cell danger - may
prevent the tumor in its microenvironment from evading the
immune system and, thereby resulting in an immune
response (33).

Oncolytic viruses are promising agents for the treatment of
cancer because they selectively infect and destroy cancerous
tissues without harming normal tissues (9). They also offer an
attractive combination of tumor-specific cell lysis and immune
stimulation. The first oncolytic virus approved in the US and EU
was, talimogene laherparepvec, a genetically modified, live-
attenuated, HSV-1-based vector, for the treatment of advanced
melanoma, and unresectable metastatic melanoma respectively
(38). Many more oncolytic viruses are currently being tested in
clinical trials.

In this review, we highlight recent progress that has been
made with oncolytic viruses specifically in the treatment of breast
cancer with a focus on published clinical trials (Figure 3 and
Table 1). We have also searched unpublished clinical trials found
on Clinical Trial Research: Trial Trove using oncology, breast as
keywords for disease and lytic virus/virus, lytic as the keywords
for therapeutic class.
2 PUBLISHED CLINICAL TRIALS
WITH ONCOLYTIC VIRUSES IN
BREAST CANCER

There have been several previous publications that have listed
oncolytic viruses in ongoing or completed trials, but none of
these provide a systematic review of the published clinical trials
(60–63). Our review provides for the first time an in-depth
systematic review of all published clinical trials with oncolytic
viruses that included breast cancer patients.
Frontiers in Oncology | www.frontiersin.org 4
In total, 14 different oncolytic viruses have been tested in 18
published clinical trials for the potential treatment of breast
cancer as of 26 November 2021 (Table 1). S1 Supplementary
Information provides more details on the mechanisms of the
used oncolytic viruses used in the clinical trials and the results of
these studies. As of 17 April 2021, there were 62 ongoing clinical
trials with oncolytic viruses in patients with breast cancer (S2
Supplementary Information). The search found another 2 clinical
trials with therapeutic agents not classified as oncolytic viruses.

We have divided the oncolytic viral agents into three different
sections for the purpose of our review. The first section describes
oncolytic viruses with natural anti-neoplastic properties. The
second section focuses on oncolytic viruses that are designed for
tumor-selective replication. The third section describes the
clinical trials with oncolytic viruses genetically modified to
activate the immune system (armed oncolytic viruses).

2.1 Oncolytic Virus With Natural
Anti-Neoplastic Properties
2.1.1 Newcastle Disease Virus
Newcastle disease virus (NDV) causes Newcastle disease (also
called Ranikhet disease) and is characterized by a single-
stranded, negative sense, non-segmented RNA with the
diameter reaching 200-300 nm. It possesses a pleomorphic
envelope and the genome encodes seven essential genes,
namely nucleocapsid protein, phosphoprotein, matrix protein,
fusion protein, haemagglutinin-neuraminidase (HN) protein, the
RNA-dependent RNA polymerase, and the V protein (64, 65).

In birds, many different avian species and manifestations of
NDV have been reported (65). NDV can be differentiated into
three categories. The first category is characterized by a low
virulence and is therefore called lentogenic. The second category
exhibiting moderate or intermediate virulence is named
mesogenic. Finally, the third category of NDV is velogenic and
is characterized by high virulence and is further classified
FIGURE 3 | Clinical trials of oncolytic viruses in breast cancer. Oncolytic viruses selectively infect tumor tissue, undergo viral replication and cause tumor cell lysis.
Currently, 14 different oncolytic viruses have been investigated in 18 published clinical trials. These oncolytic viruses fall into three different groups; (i) oncolytic viruses
with natural anti-neoplastic properties; (ii) oncolytic viruses designed for tumor-selective replication; (iii) oncolytic viruses modified to activate the immune system. All
published trials demonstrate that oncolytic viruses are well tolerated and safe for use in patients.
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TABLE 1 | Published clinical trials with oncolytic viruses involving breast cancer patients.

Oncolytic
virus

Modification Type of study Delivery/Combination Ref. Findings

Vaccinia Virus

Western
Reserve
strain JX-
929/vvDD

Deletion mutations of viral
genes encoding VGF and
TK

Phase I dose-
escalation

Intratumoral injection in 16
patients with advanced solid
tumors

(40) No dose-limiting toxicity, selective infection of injected and
non-injected tumors, antitumor activity.

Reovirus

Pelareorep
(Reolysin®)

Purified live replication-
competent form of reovirus
serotype 3 Dearing strain

Phase I dose-
escalation

Intravenous administration in 18
patients

(41) Safe and well tolerated. All patients developed neutralizing
antibodies, 6 exhibited viral shedding.

Phase I dose-
escalation

Intratumoral injection in 19
patients with advanced tumors

(42) Safe and well tolerated, (local erythema and flu-like
symptoms. Tumor response in 7/19 patients.

Randomized
Phase II safety
and efficacy

Intravenous administration with
paclitaxel, 74 patients with
metastatic breast cancer

(43) Well tolerated, no difference in the primary endpoint of PFS,
but overall survival was prolonged by combination.

Adenovirus

Ad5/3-D24-
GMCSF
(CGTG-102)

Serotype 5/3 capsid-
modified adenovirus
encoding GMCSF

Phase I Single/subsequent intratumoral
injection, 115 patients solid
tumors

(44) Well tolerated. Correlation between antiviral and anti-tumor T
cells observed.

Phase I in
combination with
cyclo-
phosphamide

Intratumoral and/or intravenous
or intraperitoneally in combination
with oral or intravenous
cyclophosphamide in 16 patients

(45) Well tolerated. Co-treatment with cyclophosphamide
showed possible antitumor activity with evidence of tumor
shrinkage in 3 of 14 imaged patients

Ad5/3-E2F-
D24-GMCSF
(CGTG-602)

Tumor-specific E2F1
promoter for enhanced
tumor selectivity and
GMCSF

Phase I Intratumoral injection in 13
patients

(46) Well tolerated, frequent tumor- and adenovirus-specific T-cell
immune responses. Efficacy seen in 9/12 evaluable patients
based on tumor marker or radiological responses.

Ad5-D24-
GMCSF

Serotype 5 adenovirus
encoding GMCSF

Phase I dose
escalation

Intratumoral injection in 20
patients advanced solid tumors

(47) Well tolerated with induction of tumor-specific adenovirus
virus-specific immunity. Evidence of clinical response

Phase I
combination with
cyclophosphamide

Intratumoral injection of
adenovirus with intravenous and/
or oral cyclophosphamide

(48) Well tolerated. Co-treatment with cyclophosphamide
resulted in higher disease control than virus alone

Ad5-RGD-
D24, Ad5-
RGD-D24-
GMCSF

RGD-4C modification for
viral entry and GMCSF

Phase I Intratumoral/intraperitoneal and
intravenous injection, 16 patients
with solid tumors

(49) Well tolerated, 10/13 measurable viral circulation after 2
weeks, evidence of disease stabilization in some patients

ICOVIR-7 RGD-4C modification and
24-bp deletion in the E1
region conferring cancer
cell specificity

Phase I dose-
escalation

Intratumoral injection, 21
patients with various advanced
metastatic solid tumors (3 breast
cancer patients)

(50) Tolerated, neutralizing antibody titre induced in 4 weeks in
16/18 patients, viral genomes were detected in 18/21
patients and 7/15 patients were still positive 2-4 weeks later.
Antitumor activity seen in 9/17 evaluable patients.

Telomelysin hTERT promoter and
replacement of
transcriptional element of
viral E1B gene by an IRES
sequence

Phase I Single intratumoral injection, 16
patients with solid tumors

(51) Well tolerated with injection site reactions and fever/chills.
hTERT expression in 9/12 patients and viral DNA in 13/16
patients. 7 patients with stable disease 56 days after
treatment

H103 Overexpression of Hsp70 Phase I, dose-
escalation

Intratumoral injection, 27
patients with various advanced
solid tumors

(52) 2 patients developed dose-limiting toxicities (fever and
thrombocytopenia), otherwise mild to moderate. 3/27
patients complete/partial responses.

ONYX-015,
dl-1520,
lontucirev

Deletion of E1B-55K and
E3B regions

Phase I does-
escalation

Intravenous infusion in
combination with etanercept, 9
patients with various advanced
solid tumors

(53) No significant adverse events attributed to the experimental
regimen. 2/3 patients had detectable viral DNA at days 3
and 8 post-ONYX-015 infusion. 4/9 patients showed stable
disease.

Newcastle Disease Virus

PV701 Purified, naturally
attenuated, replication
competent isolate

Phase I Intravenous injection of single/
repeated doses, 79 patients with
various advanced solid tumors

(54) Flu-like symptoms commonest side effect together with
injection site reactions. Desensitization to adverse events
with subsequent doses.

Phase I dose-
escalation

Intravenous injection, two-step
desensitization, 16 patients with
advanced solid tumors

(55) No dose-limiting toxicities, mild flu-like symptoms diminished
with repeated dosing. 1 patient partial response, 4 patients
with disease stabilization.

(Continued)
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according to its predilection site, i.e. whether it is neurotropic or
viscerotropic (66). Only the mesogenic and the velogenic
pathotype exhibit an oncolytic potential (64).

NDV is a paramyxovirus (65) and innately grows in cells with
deficient interferon (IFN) signaling, like many tumor cells (67). The
V protein is essential for the interaction and inhibition of IFN,
thereby resulting in an increased virulence. The HN protein
increases the apoptosis rate in infected tumor cells (65). PV701 is
a naturally occurring NDV (55) which is both velogenic and lytic
(65). It originates from an avian paramyxovirus thereby making it
suitable for use in humans. A Phase I trial concluded that adverse
effects (flu-like symptoms) were common and of higher intensity
after the first application of PV701 (54). A following Phase I clinical
trial tested the effect of a two-step desensitization with intravenous
administration of PV701 on the side effects (55). Sixteen patients
with incurable solid tumors including two patients with breast
cancer were eligible. The treatment scheme included two cycles of
six PV701 applications each over a period 15 days with a subsequent
6-day rest. The first dose was lower than the following ones. As a
result, the maximum tolerated dose was not reached. The most
commonly observed adverse reactions were flu-like symptoms. The
intensity of these symptoms decreased with each additional
application of PV701. One patient showed a partial response and
four patients with progressive disease at the time of enrolment
displayed disease stabilization ≥ 6 months (55).

2.1.2 Pelareorep
Pelareorep (Reolysin) is another naturally occurring oncolytic virus.
Pelareorep originates from a double-stranded RNA reovirus
serotype 3 Dearing strain (41). The term reovirus (respiratory
enteric orphan virus) was used to describe a group of
cytopathogenic viruses that have three distinct human serotypes
and cause mild gastrointestinal or upper respiratory infections in
humans (68). The inhibition of the cellular double-stranded RNA-
activated protein kinase in tumor cells with an activated RAS-
pathway causes tumor selective oncolysis (41). Moreover, there is
evidence that EGFR mutations facilitate infections even of tumor
cells without activated RAS (69). In a Phase I trial of patients who
suffered from advanced or metastatic solid cancer that did not
respond to current available treatment, different doses of pelareorep
were applied intravenously every four weeks. Eighteen patients were
eligible including two patients with breast cancer. No maximum
Frontiers in Oncology | www.frontiersin.org 6
tolerated dose was found and treatment was well tolerated (one
patient experienced fatigue and another patient fever). One patient
displayed a partial response (anthracycline and taxane refractory
breast cancer), showing necrosis and viral shedding in a biopsy
taken from her chest wall. The clinical benefit rate was 45%. As
effectivity was higher in patients with viral shedding (in serum,
saliva, stool, or urine) this may be indicative of a higher replicative
activity in these patients, thereby paving the way to clinical
response (41). A subsequent Phase I study investigated escalating
intratumoral doses of pelareorep in patients with advanced tumors
including three with breast cancer. Pelareorep was well tolerated in
this study with only local grade 2 erythema and flu-like symptoms
observed. There was some evidence of local target tumor response
activity in 7 of 19 patients with one breast cancer patient exhibiting
stable disease after six or more weeks (42).

The combination of pelareorep and paclitaxel to treat metastatic
breast cancer was evaluated in a multicenter randomized Phase II
trial. A total of 81 patients that had received chemotherapy for
advanced disease were enrolled in the study. Seven patients were
part of a safety-run. The remaining 74 patients either received a
combination of paclitaxel and pelareorep (n=36) or paclitaxel
mono-treatment (n=38). The primary endpoint was progression-
free survival, and secondary endpoints included objective response
rates, overall survival, circulating tumor cell counts and safety.
Pelareorep was well tolerated. After a median follow-up of 29.5
months, progression-free survival was 3.78 months in the
combination arm and therefore not significantly different as
compared to 3.38 months (HR 0.8; 80% CI 0.54–2.22; p=0.87) for
paclitaxel alone. Although there was also no difference in response
rates, median overall survival was slightly, but not significantly
better: 17.4 for the combination versus 10.4 months (HR 0.65; 80%
CI 0.46–0.91; p=0.1) for paclitaxel alone (43). Currently, there are
14 ongoing clinical trials using pelareorep to treat metastatic breast
cancer including three Phase III trials (S2).

2.1.3 HF10
Herpes simplex Virus (HSV) is a double-stranded DNA virus
that causes a variety of diseases ranging from mild skin disorders
to fatal encephalitis. HF10 is a spontaneously occurring oncolytic
mutant of HSV-1 with a unique genomic structure that has non-
engineered genetic deletions and insertions (70). The genomic
alterations result in an incomplete UL56 gene product thereby
TABLE 1 | Continued

Oncolytic
virus

Modification Type of study Delivery/Combination Ref. Findings

Herpes Simplex Virus

HF10 Mutant, incomplete UL56
gene product

Phase I Intratumoral injection, 6 patients
with recurrent metastatic breast
cancer

(56–
58)

Well tolerated, no adverse events. Possible tumor regression
and infiltration of CD8+ and CD4+ T cells

OncoVEXGM-

CSF
Deletion of ICP34.5 and
ICP-47, and insertion of
GMCSF

Phase I Intratumoral injection of single
and multiple doses, 30 patients
with metastases from solid
tumors (14 breast)

(59) Well tolerated, local inflammation, erythema, febrile
responses. Virus replication, local reactions, GMCSF
expression, and HSV-associated tumor necrosis. Some
histopathological anti-tumor effects.
GM-CSF, Granulocyte-macrophage colony-stimulating factor; hTERT, human telomerase reverse transcriptase gene; IRES, Internal Ribosomal Entry Site; Hsp70, Heat shock protein 70;
VGF, vaccinia growth factor; TK, thymidine kinase; ICP, infected cell protein; PFS, progression-free survival.
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leading to a reduced capability to invade the central nervous
system which enhances safety significantly. Six patients
diagnosed with breast cancer with > 10 metastases at
cutaneous or subcutaneous sites were enrolled in a Phase I
clinical trial. HF10 was injected into one tumor nodule and
saline solution was injected into a different nodule of the same
patient once daily over a period of three days. After 14 days the
nodules were removed for histopathologic examination. The
application of HF 10 was well tolerated. Histopathological
evaluation showed that cell death occurred in 30 to 100% of
malignant cells in patients injected with HF10, whereas no cell
death was observed in the saline-injected nodules (56).

2.2 Oncolytic Viruses Designed for
Tumor-Selective Replication
2.2.1 Vaccinia Virus
Vaccinia virus (VV) is a linear, double-stranded DNA virus
belonging to the genus Orthopoxvirus of the family Poxviridae
(71). Typically, VV infection produces four different virions that
have different abundance, structure, location and roles in the
virus life-cycle: (i) the intracellular mature virus (IMV), (ii)
extracellular enveloped virus (EEV), (iii) intracellular
enveloped virus (IEV), and (iv) the cell-associated enveloped
virus (CEV) (71). Cell lysis results in the release of large numbers
of IMV which are more stable than EEV and easily detected by
the immune system. The additional membrane of EEV
originating from the host cell results in enhanced immune
evasion and a greater spread (72). JX-929 (vvDD) is a
genetically engineered Western Reserve strain VV with two
gene deletions (40, 73). Through the deletion of the thymidine
kinase gene the viral DNA synthesis is dependent on thymidine
triphosphate from dividing cells such as tumor cells. The deletion
of the vaccinia growth factor (VGF) gene stops neighbouring
cells from dividing (74). JX-929 includes a homologous
recombination of the cytosine deaminase that enables infected
cells to convert 5-flurocytosin to 5-flurouracil (75). It also
includes the somatostatin receptor for imaging of viral spread
through imaging the accumulation of radioactivity of 111In-
pentetreoide in infected cells (73). Sixteen patients with tumors
unresponsive to current treatments were enrolled in a Phase I
clinical trial including three with breast cancer (40). The virus
was injected directly into the tumor. No dose-limiting toxicity
was found at the doses given in this clinical trial. The adverse
effects displayed included fever, malaise and pain. These
symptoms correlated with the replication of vvDD and the
immune response against vvDD. Thus, Western Reserve strain
oncolytic VV appears safe for use in patients and shows selective
replication in injected and un-injected tumors.

2.2.2 Adenovirus
Adenoviruses (Ad) contain double-stranded linear DNA of 38
kB. Over the years more than 40 different serotypes have been
discovered in humans of which serotypes 2 and 5 are the ones
currently mostly being used as oncolytic adenoviruses (76).
Adenoviruses express certain proteins that result in an evasion
of the immune system. Additionally, the suppression of apoptosis
through adenoviruses is due to proteins interacting with Fas
Frontiers in Oncology | www.frontiersin.org 7
ligand and TNF pathways. Three main mechanisms have been
shown to result in cell death after adenovirus infection. Firstly,
adenoviruses can directly cause cytotoxicity. Secondly, they can
alter the immune response to the tumor cells through increased
sensitivity to cytokines or induction of cytokine production (i.e.
TNF). Thirdly, adenoviruses can increase the response to
chemotherapies (77). Oncolytic adenoviruses can be classified
into two groups. The first group consists of adenoviruses in which
genes have been modified to reduce replication and infection in
normal cells. The second group includes adenoviruses that have
been modified to specifically target cancer cells (78). Currently,
there are 13 ongoing clinical trials investigating adenoviruses for
the treatment of breast cancer (S2).

2.2.3 ICOVIR-7
ICOVIR-7 is an adenovirus which has been genetically altered,
including a deletion allowing the regulation of a gene by a tumor-
specific promoter E2F-1 (79). E2F-1 regulates parts of the Rb-p16
pathway which is defective in many tumor cells (50). Moreover, this
modification includes a change to the serotype 5 adenovirus with
the aim of facilitating specific entry into tumor cells and improving
the infection of cancerous cells. Further modifications were made to
enhance transcription. A clinical trial evaluated the effects of
ICOVIR 7 in patients with advanced solid tumors. A total of 21
patients were enrolled including three with breast cancer. ICOVIR 7
was applied once intratumorally in different doses. The side effects
included fever, fatigue, elevated liver transaminases, chills and
hyponatremia. Grade 3 anemia was diagnosed in one patient.
Viral replication was indicated by circulating viral DNA in 18
patients and in 7 tissue samples 2 to 4 weeks after treatment. After
treatment two stable diseases, two minor responses and one partial
response occurred in 12 patients with available follow-up data. One
of the patients with breast cancer exhibited a decrease or
stabilization of tumor markers (50).

2.2.4 Telomelysin
Telomelysin (OBP-301) is another genetically modified
adenovirus and is based on the serotype 5 adenovirus. This
oncolytic virus includes a promoter for the human telomerase
reverse transcript gene (hTERT) (51), which is responsible for
maintaining the lengths of telomeres at the end of chromosomes.
An upregulation in the telomerase pathway is seen in many
cancer cells (80). A total of 16 patients were enrolled in a Phase I
trial of patients with advanced solid tumors of which only one
had breast cancer. Telomelysin was applied once intratumorally
at three different doses. The application of telomelysin was well
tolerated and only mild adverse effects were seen (such as pain
and induration at the site of injection as well as fever and chills).
Post-treatment biopsies of the tumors showed hTERT expression
in 9 of 12 patients, thereby indicating a permissiveness of these
tumors to support viral replication. One partial response and 7
stable diseases occurred at a follow-up 56 days after
treatment (51).

2.2.5 ONYX-015/dl1520
The adenovirus ONYX-015/dl1520 (lontucirev) belongs to the
group C of adenoviruses. A genetic modification causes a
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deletion of the E1B-55K and E3B region. Previous clinical trials
using ONYX-015 mono-therapy rarely displayed a clinical
benefit for patients although biological activity was seen (81).
Research has shown that TNF-a is one of the most important
cytokines in the immune response towards adenoviruses and an
important pro-apoptotic factor (82, 83). Different regions in the
genome of adenoviruses encode proteins to minimize the
negative effect TNF-a has on cells infected through
adenoviruses (84). Therefore, the deletion of these regions
helps to induce apoptosis in cancerous cells when infected with
this virus. Another region contains a protein that interferes with
antigen presentation. Its deletion facilitates an immune response
directed at infected tumor cells (85).

A Phase I trial investigated the combination of ONYX-015
together with the synthetic dimer of the human TNF-a receptor
etanercept (53) in patients with solid tumors including two
patients with breast cancer. Only mild side effects were seen.
All patients developed mild to moderate fever 24 h after
treatment with ONXY-015 and in some patients, hyponatremia
and transient transaminitis were also seen. Two of the three
patients that received the highest dose of ONYX-015 expressed
measurable viral DNA. The quantity of the viral DNA was higher
in cycle 1 than in cycle 2. As etanercept was only administrated
in cycle 1, the reduced quantity could be attributed to the lack of
etanercept in cycle 2. Overall, 4 of 9 patients showed a stable
disease (53). A study with ONYX-015 concluded that heat shock
proteins facilitate the export of viral mRNA necessary for an
efficient infection of cancerous cells (86).

2.3 Armed Oncolytic Viruses
2.3.1 Serotype 5/3 Adenovirus
There are several examples of armed oncolytic adenoviruses in
clinical trials that included breast cancer patients. The serotype 5/3
adenovirus has been modified to express the granulocyte-
macrophage colony-stimulating factor (GMCSF) by creating the
constructs Ad5/3-E2F-D24-GMCSF (CGTG-602) and Ad5/3-
D24-GMCSF (CGTG-102) (44, 46). GMCSF has been shown to
activate antigen-presenting cells with the majority being dendritic
cells. Additionally, the innate immune system is activated
including a sequestration of natural killer cells and neutrophils
(46). A clinical trial using CGTG-602 enrolled thirteen patients
with metastatic tumors including three with breast cancer (46).
The adenovirus was administrated intratumorally (3 injections
per patient). At least stable disease was seen in 83% of the patients.
Response rate as demonstrated by positron emission tomography
(including minor metabolic response) was 50% including one
breast cancer patient. Post-treatment biopsies indicated an active
immune response towards the tumor through increased number
of infiltrating immune cells such as T cells. Additional RNA
expression analyses of these biopsies suggested metabolic
changes due to viral infection (46). In a subsequent study, the
induction of antitumor immunity was studied in patients with
solid tumors (16 with breast cancer) by comparing a single
intratumoral injection of Ad5/3-D24-GMCSF (CGTG-102) with
the administration of three subsequent doses 3 to 4 weeks apart
(44). The results of this study provided the first data linking
antiviral immunity with antitumor immunity. No analysis of
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efficacy according to tumor subtypes was performed in this
study. In addition, a combination of Ad5/3-D24-GMCSF and
low-dose cyclophosphamide was administered to 16 patients with
advanced breast cancer and found to be well tolerated with
evidence of tumor shrinkage in 3 of 14 imaged patients (45).

2.3.2 Serotype 5 Adenovirus
The serotype 5 adenovirus has also been engineered to express
human GMCSF (Ad5-D24-GMCSF) and used to treat patients
with advanced solid tumors including two patients with breast
cancer. The results showed that intratumoral injections of Ad5-
D24-GMCSF were well tolerated and clinical responses were
frequently seen. One breast cancer patient exhibited disease
stabilization and the second demonstrated a reduction of tumor
markers to normal. Interestingly, this study also showed evidence
of both tumor-specific and virus-specific immunity (47). Another
clinical trial used the two adenoviruses Ad5-RGD-D24 and the
GMCSF-encoding variant Ad5-RGD-D24-GMCSF. These viruses
have been modified with arginine (R)–glycine (G)–aspartic acid
(D) (RGD) - targeting integrin, which allows cell entry via alpha-
v-beta-integrins often expressed in tumor cells. Moreover,
GMCSF controlled by an E3 promoter was included into Ad5-
RGD-D24-GMCSF (49). To further enhance cancer selectivity a
24 base-pair deletion was introduced into the region 2 of E1A to
induce a cytostatic effect (49, 87). In a Phase I trial using Ad5-
RGD-D24 and Ad5-RGD-D24-GMCSF 16 patients with solid
tumors including breast cancer were enrolled (49). Nine patients
were treated with Ad5-RGD-D24, of which two had breast cancer,
and 7 patients were treated with Ad5-RGD-D24-GMCSF, of
which none had breast cancer. One fifth of the dose was given
intravenously and fourfifthswere given intratumorally. Generally,
the application was well tolerated but typical side effects included
mild to moderate fatigue, fever and pain at the site of injection.
Ten of 13 patients with available data showed measurable viral
circulation two weeks after treatment. Half of the patients treated
with Ad5-RGD-D24-GMCSF showed a stable disease after one
application of the virus. Additionally, two thirds of patients
treated with Ad5-RGD-D24-GMCSF displayed stabilized or
reduced tumor marker levels. In contrast, all patients treated
with Ad5-RGD-D24 showed disease progression, while half of
these patients had temporary improvements of tumor marker
levels. Ad5-RGD-D24-GMCSF treated patients exhibited signs of
an immune response directed towards the tumor and virus (49).
Finally, a study was published that looked at the immunological
effects of low doses of the alkylating agent cyclophosphamide in
patients treated with the oncolytic adenoviruses Ad5-D24-
GMCSF, Ad5/3-D24-GMCSF, Ad5-RGD-D24-GMCSF and
ICOVIR-7 (48). A total of 43 patients with advanced solid
tumors including 3 with breast cancer received intratumoral
injections of one of the adenoviruses and some of these also
received infusions and/or oral low-dose cyclophosphamide. All
treatments were well tolerated. Antibody formation and virus
replication were not affected by the administration of
cyclophosphamide. Interestingly, oncolytic adenovirus
administered together with metronomic cyclophosphamide (i.e.
oral or oral plus intravenous regimens) increased cytotoxic T cells
and inducedTh1 type immunity in patients. All cyclophosphamide
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regimens resulted in higher rates of disease control compared to
virus alone, although it was not possible to determine the specific
affects in any of the three breast cancer patients or which patients
received which particular adenovirus (48).

2.3.3 H103
H103 is a recombinant oncolytic serotype 2 adenovirus
overexpressing heat shock protein 70 (Hsp70) (52). During
oncolysis Hsp70 is released from infected tumor cells. These
proteins then act as an epitope for antigens thereby stimulating
a systemic immune response (52, 88). A study using a Hsp70-
mediated cancer tumor vaccine resulted in a decrease of tumor
sizes and metastasis (88). Therefore, agents or mutations that
lead to an increase of heat shock proteins may result in an
improved therapeutic response (86). A Phase I clinical trial
using an oncolytic virus H103 expressing Hsp70 was initiated
with 27 patients with solid tumors non-responsive to current
available treatment options, of which one patient had breast
cancer amongst six with other tumors (52). The virus was
applied intratumorally as a single or multi-dose application.
Mainly mild adverse events were seen such as fever, pain at the
site of injection and a local reaction. Two patients showed
severe fever and transient thrombocytopenia. Three patients
showed a partial or complete response in the original tumor
and another three patients also displayed response in
metastases not injected with the oncolytic virus. It did not
appear that the single breast cancer patients exhibited any
treatment-related effects in this study (52).

2.3.4 OncoVEXGM-CSF

OncoVEXGM-CSF (other names are T-VEC and talimogene
laherparepvec (Imlgygic®)) is a recombinant herpes simplex
virus type 1 (HSV-1). It is a JS1 strain of HSV-1 with a
deletion of ICP34.5 and ICP47 (59). A mutation in the neuro-
virulence factor ICP34.5 enables greater cell killing potential
selective for tumors (89). PKR is activated through stress signals
such as viral infections. It results in a halting of mRNA
translation of viral or cellular origin. PKR is also capable of
inducing apoptosis (90). The deletion of ICP47 induces an
activation of the immune system resulting in an immune
response not just against the virus but also against infected
cells. The systemic immune response is further intensified
through the expression of the GMCSF gene which is encoded
in this virus as a therapeutic transgene (38). The CMV promoter
regulates the GMCSF gene and was added into the OncoVEXGM-

CSF genome in the place of ICP34.5. As HSV infections and sero-
positivity are common in the population it is important to note
that an effective tumor treatment with OncoVEXGM-CSF is still
achievable when applied intratumorally; as a result of this route
of application any local preformed anti-HSV-1 immune response
is overwhelmed by the huge number of locally applied infectious
viral particles (up to 108 OncoVEXGM-CSF particles). Clinical
studies conducted in melanoma patients indicated that there is a
response to OncoVEXGM-CSF not just in injected lesions but also
in distant metastases, defining a so-called abscopal effect (37, 91).
Talimogene laherparevac (T-Vec) expresses GM-CSF thereby
stimulating cytokine production and potentially activating the
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immune response, and perhaps offering itself to combinations
with immune checkpoint inhibitors (92).

A Phase I clinical study of patients with advanced solid tumors
included 13 patients in a single-dose group and 17 patients in a
multi-dose group, of which 26 patients could be evaluated (59). Of
the 30 patients enrolled in the study, 14 patients had breast cancer
and 13 of these could be evaluated. Only mild side effects such as
local symptoms (i.e. inflammation and erythema) and fever were
seen. HSV antigen-associated tumor necrosis indicated viral
replication. After treatment three patients showed stable disease,
including one patient with breast cancer, six patients experienced a
decrease of tumor size (injected and/or un-injected), including two
with breast cancer, and four patients displayed additional
inflammation in un-injected lesions. Overall, the multi-dose
regime seemed more promising than single-dose application (59).
OncoVEXGM-CSF was approved by the United States Food andDrug
Administration (FDA) in 2015 for the treatment of melanoma,
specifically for patients with lesions which are not accessible
occurring after initial surgery. The European Medicines Agency’s
(EMA) Committee for Medical Products for Human Use also
approved OncoVEXGM-CSF in 2015 for unresectable melanoma
with certain types of metastasis (38). Currently, there are nine
ongoing clinical trial using OncoVEX GM-CSF (S2).
3 CONCLUSIONS

We have reviewed the different viruses that have been
investigated in published clinical trials for the treatment of
breast cancer (Figure 1 and Table 1). We have focused
primarily on clinical trials for which results have been
published in peer-reviewed journals. Although oncolytic
viruses have been proposed as a future treatment option for
the treatment of cancer for several years, the results of the clinical
trials published so far demonstrate mixed results. There are
currently 18 published clinical trials (17 Phase I studies and 1
Phase II study) with 14 different oncolytic viruses from five
different viral families (VV, reovirus, adenovirus, NDV, HSV).
We found that the adenovirus was the most common oncolytic
virus tested in clinical studies that included patients with breast
cancer (10 of 18 clinical trials). This corresponds well with a
recent review describing the overall clinical landscape for
oncolytic viruses in all types of cancer which highlighted that
the adenovirus was the most common virus type tested in all
clinical trials for cancer (93).

The oncolytic viruses used in the published clinical trials can
be grouped into (i) wildtype/natural mutant viruses, (ii) viruses
genetically engineered for tumor-selective replication, and (iii)
viruses genetically modified to activate the immune system. The
first group includes the three following viruses: pelareorep,
PV701 and HF10) (41–43, 54–57). The second group includes
four oncolytic viruses, namely JX-929, ICOVIR-7, telomelysin
and ONYX-015). The third group includes the following seven
oncolytic viruses, namely the adenoviruses Ad5/3-D24-GMCSF
(CGTG-102), Ad5/3-E2F-D24-GMCSF (CGTG-602), Ad5-
RGD-D24, Ad5-RGD-D24-GMCSF, Ad5-D24-GMCSF, H103,
and talimogene laherparepvec (44, 46–49, 52, 59). The last group
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also includes the only oncolytic virus talimogene laherparepvec
(Imlygic®) which has been licensed by both FDA and EMA for
advanced stages of melanoma (38). Based on the available
published clinical trials adenoviruses (double-stranded DNA
virus) seem very promising because the majority of clinical
trials that include breast cancer patients have been performed
with this type of virus. Additionally, there has been broad
research into genetic engineering of adenoviruses to activate
the immune system. This makes them an ideal combination
partner for immune checkpoint inhibitors. However, pelareorep
(double-stranded RNA virus) appears very promising as this
virus was the only one to be tested in a published Phase II clinical
trial in this review. There are currently, 14 ongoing clinical trials
with pelareorep including breast cancer patients (see S2
Supplementary Information). Indeed, only time will tell
whether these oncolytic viruses prove the most promising,
especially in combination with arising immunotherapies such
as immune checkpoint inhibitors.

Overall, the results of the studies show that most oncolytic
viruses were found to be safe and well tolerated with few side
effects mostly limited to flu-like symptoms or local inflammation
at the injection sites. One study demonstrated local reactions that
dissipated with repeated dosing (54). There did not appear to be
any great differences between the various oncolytic viruses with
respect to tolerability with possibly the exception of H103 where 2
patients developed high-grade fever and thrombocytopenia (52).

The published reports described two different routes of
administration. Eleven of the studies reported intratumoral
administrations of the oncolytic virus (40, 42, 44, 46–48, 50–
52, 56, 57, 59), five described intravenous injections (41, 43, 53–
55), and one study used both routes of administration (49). This
indicates that the best routes of administration have not been
defined so far.

Four clinical studies attempted to determine whether treatment
induced antibodies to the oncolytic virus and found that they could
identify neutralizing anti-viral antibodies (41, 42, 48, 50). It remains
to be seen what effect such anti-viral antibodies will have on
subsequent treatments with the same oncolytic virus. Five trials
also documented T cell responses directed to the oncolytic viruses
(44, 46–48, 56, 57). Finally, only two studies demonstrated viral gene
expression (51, 59), whilst seven studies measured viral shedding/
DNA after treatment (41, 42, 44, 49–51, 53). Ideally, it would help
virologists if parameters such as viral gene expression, viral shedding
and neutralizing antibodies could be measured in a more systematic
pattern as more clinical trials are performed. This will help to
understand dosing and responses of the oncolytic viruses to a
greater degree. Furthermore, if the field expands more towards
armed oncolytic viruses that activate the immune system, future
trials will need to measure the effects on the body’s innate and
adaptive immune responses and potentially combine such
approaches with other cancer immunotherapies.

Finally, most of the published clinical trials investigated the
effects of oncolytic viruses in patients with advancedmetastatic solid
tumors of which only some were breast cancers. The studies were all
Phase I trials except for one. Thus, it is very difficult to draw any
reliable conclusions about efficacy especially with regard to breast
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cancer patients. Indeed, the only published randomized Phase II
trial designed to show efficacy in breast cancer was one involving
intravenous administration of the reovirus pelareorep in
combination with paclitaxel (43). Regrettably, this study failed to
show a significant difference in the primary endpoint of
progression-free survival. We are therefore only at the beginning
of our clinical journey with oncolytic viruses. Hopefully, many of
the 62 ongoing clinical trials in breast cancer that have not yet been
published will provide more information about ideal routes of
administration, neutralizing anti-viral antibodies, viral shedding
and combinations with immunotherapy and most importantly
therapeutic effectiveness.

Finally, we have no evidence from these trials whether
particular subtypes of breast cancer are particularly suitable for
oncolytic virotherapy and at which stages virotherapy could be
applied with an optimal outcome. Patient-derived breast cancer
tissue assays may help to investigate different viruses, compare the
effects of engineering tumor specificity or arming for enhanced
oncolytic effects and select the optimal subtypes of breast cancer
suitable for virotherapy (94). Such tissue assays would ideally
include immune cells within the tumor environment to investigate
interactions with the immune system or other immunotherapies.
This information will allow clinicians to prioritize the testing of the
most promising oncolytic viruses, investigate the best routes of
administration, and choose the most effective agents to combine
with oncolytic viruses in breast cancer treatment.
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