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Fragile X syndrome (FXS) is an inheritable neuropsychological disease caused by silence of the fmr1 gene and the deficiency of
Fragile X mental retardation protein (FMRP). Patients present neuronal alterations that lead to severe intellectual disability and
altered sleep rhythms. However, the neural circuit mechanisms underlying FXS remain unclear. Previous studies have suggested
that metabolic glutamate and gamma-aminobutyric acid (GABA) receptors/circuits are two counter-balanced factors involved in
FXS pathophysiology. More and more studies demonstrated that attenuated GABAergic circuits in the absence of FMRP are
critical for abnormal progression of FXS. Here, we reviewed the changes of GABA neural circuits that were attributed to
intellectual-deficient FXS, from several aspects including deregulated GABA metabolism, decreased expressions of GABA
receptor subunits, and impaired GABAergic neural circuits. Furthermore, the activities of GABA neural circuits are modulated
by circadian rhythm of FMRP metabolism and reviewed the abnormal condition of FXS mice or patients.

1. Introduction

Fragile X mental retardation protein (FMRP) is widely
expressed in neurons and glia in the brain and acts as an
“interactor” regulating ribosome stalling, translational con-
trol, and synaptic plasticity in brain circuits [1–3]. FMRP
contributes to cognition, emotions, and memory through
the referred “interactor” role as well. Fragile X syndrome
(FXS) patients are deficient of FMRP due to fmr1 gene silence
caused by a CGG trinucleotide amplification on Xq27.3 in
the 5′-UTR on chromosome [4]. According to CGG trinucle-
otide expansion and clinical symptoms, FM allele mutation-
related syndromes could be divided into FXS (>200 repeats)
and FXTAS (55–199 repeats) during early diagnosis of
FXS. For example, methylation-specific quantitative melt
analysis (MS-QMA), respectively, identified methylation
mosaicism in an additional 15% and 11% of patients in
the Chilean and Australian reports, suggesting the presence

of a cryptic FM [5, 6]. Other methods include a variety of
polymerase chain reaction (PCR) techniques, such as high
polymorphism markers for preimplantation genetic diagno-
sis (PGD) of FXS [7] and two PCR analyses (PCR screening
and PCR premutation) [8]. However, it is difficult to draw a
solid criterion due to different inclusive criteria, diagnostic
methods, and sample sizes within each study. Although
frequencies of clinical characteristics were different between
ethnicities, especially in Asian and African people, which
provided evidence for genetic counseling [9], FXS is still dif-
ficult to be diagnosed on the account of a lack of an obvious
phenotype at birth and during prepuberty in clinic.

Previous studies have illustrated that FXS is caused by
the alteration at multiple levels from mRNA shuttling to
synaptic plasticity and behavioral phenotypes [10]. For
example, FMRP regulated proteins in the modulation of
synaptic plasticity, which maintain spine shape and dynam-
ics [11–13]. The retardation of FMRP leads to abnormal
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group I metabotropic glutamate receptor (mGluR) signaling,
together with the loss of AMPA and NMDA receptors [2],
although recently clinical trials targeting on mGluR1 failed
in FXR patients [14]. Specifically, the enzymes for GABA
synthesis and degradation, GABA membrane transporters,
and a GABA receptor scaffolding protein are downregulated
in the absence of FMRP [15]. Besides, FMRP absence
GABAA receptor α1 and δ subunits were downregulated in
fmr1 gene knockout mouse andDrosophila [15–17]. All these
studies suggest a perplexing, yet not well understood, link
between GABAergic signaling, abnormal neuronal circuits,
and dysfunctional behaviors in both FXS animal models
and patients. Among all alterations of phenomenal function
deficits, dendritic abnormalities are the most evident struc-
tural changes in FXS. FMRP regulates neuronal branching
as well as dendritic spine morphology and density [18, 19].
However, it remains unclear whether plastic changes of
inhibitory circuits may cause abnormal spine morphology
in FXS or vice versa. In this review, we summarized mecha-
nisms on the effects of inhibitory synapse alteration from
circuits to molecular interaction.

2. Altered GABA Metabolisms in FXS Animal
Models and Patients

There have been great progresses in the altered GABA
metabolism underlying FXTAS/FXS pathogenesis. Mito-
chondria provides energy for the cell and the brain using
most of the energy among all organs. There is mounting
evidence that mitochondrial dysregulation systemically
contributes to the decreased cell function, even during the
neonatal period of mice, first reported by Rizzo et al. [20].
It is reported that premutated hippocampal neurites con-
tained significantly fewer mitochondria and reduced mito-
chondria mobility at early stage of differentiation, despite
the presence of appreciable FMRP expression [21]. Together,
similar significant deficits of mitochondrial dysfunction,
induced by Zn levels, were observed in the Zn-rich regions
(the hippocampus and cerebellum of premutation carriers),
with some of these effects lasting into adulthood [22, 23].
Particularly, in dysregulated GABAergic circuits, mito-
chondrial dysfunction plays vital role from the aspects of
mitochondrial structure, number, membrane permeability,
transport, fusion, and fission [21, 24–27]. It is noteworthy
that abnormality of mitochondrial structure and function is
regulated aberrant expression of microRNAs (miRNA)
[28], while few report functions of miRNAs on GABA
metabolism in Fragile X syndrome. More work should be
needed to illustrate the perplexing role of deregulated
miRNA expression profiles within uncommon GABA neural
circuits. In a word, abnormalities of mitochondrial dysfunc-
tion induced by FMRP deficits altered GABA metabolism,
contributing to the etiology of FXS/FXTAS.

In addition, glutamic acid decarboxylase (GAD) or
vesicular GABA transporter protein (VGTA) and vesicular
glutamate transporter protein (VGLUT) consist of two
components of synaptic balance. Increased expression of
VGAT relative to VGLUT expression was shown within the
medial nucleus of the trapezoid body (MNTB) in FXS [29].

Their mechanisms are necessary to be further explored.
In FXS patients, a reduced release of GABA from the
GABAergic terminals to the presynaptic GABAB receptors
might induce a decreased inhibition of neurotransmitter
spillover, which conversely activated mGluR signaling [30].
One mechanism of modulating GABA release involves the
synthesis and mobilization of endocannabinoids. Activation
of GroupImGluRs enables mobilization of endocannabinoids
in the postsynaptic neuron and negatively modulates GABA
release through a mechanism known as depolarization-
induced suppression of inhibition (DSI) [31]. Therefore, in
consideration of endocannabinoid mobilization in the FXS,
it is reported that alterations in eCB signaling could contrib-
ute to the cognitive dysfunction associated with FXS [32]. But
it only demonstrated DHPG-induced eCB-iLTD, without
affecting DSI, at low concentrations. Together, relatively high
concentrations of cannabinoids could affect neuropsychiatric
disorders via inhibition of monoamine oxidase activity [33].
Therefore, the loss of FMRP may selectively affect specific
inhibitory circuits and more evidence is needed in exploring.
In the developing and mature brain, it is critical for cortical
balance of excitatory and inhibitory neurons to be properly
synchronized at behaviorally relevant frequencies. And thus,
alteration of mGluR signaling and GABAmetabolisms in this
specific type of interneuron is likely to have wide-reaching
effects in developing and mature cortical networks.

3. Decreased Expression of GABA Receptor
Subunits in FXS Models

The anomalous functions of mGluR-dependent synaptic
plasticity have been observed in the hippocampus of
fmr1-KO mice. Activity-dependent synthesis of FMRP in
maintaining forms of synaptic plasticity may be induced by
augmented mGluR-LTD in hippocampal neurons [34, 35],
while the initiation of long-term potentiation (LTP) is a
qualitatively different functional consequence of mGluR1-
stimulated protein synthesis at the synapses of the hippocam-
pus where LTD can be induced. Besides, the mGluR theory
proposes that stimulation of mGluR1 induces local mRNA
translation, resulting in protein synthesis that subsequently
enhances the internalization of AMPA receptors [36]. This
model predicts that in the absence of FMRP, the increased
translation of a subset of mRNAs disturbs receptor internal-
ization dynamics and then exaggerates internalization of
AMPA receptors and weakens the synapse. Interestingly,
GABAB1 and GIRK2 internalization also is reported to cause
rapid and persistent weakening of GABAB-activated GIRK-
mediated (GABAB-GIRK) currents in FXS [37]. Clearly, the
fate of internalized GABAARs will therefore play a critical
role in controlling cell surface receptor levels and hence the
efficacy of synaptic inhibition. This may suggest that GABA
receptors take internalization process, but its underlying
complicated mechanisms still need to be explored. Further-
more, FMRP absence increased steady state surface levels of
GABAARs, showing a dramatic functional effect of increased
surface receptor number. The mechanism underlying post-
endocytic GABAAR sorting remains to be demonstrated,
and FMRP’s particular role in this process is also an area of
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active research. The impact of FMRP regulation of GABAARs
was recently shown in the hypothalamus, causing decreased
food intake and loss of body weight [38]. An unresolved issue
is whether FMRP acts to promote recycling of GABAARs or
prevents their lysosomal degradation.

Furthermore, different subunit combination leads to
diverse expression patterns of GABAARs at specific cell sur-
face. Most surface receptor clusters of γ2 receptor subunits
are synaptic, while GABAARs containing α5 or β3 subunit
express higher at extrasynaptic. δ subunit is exclusively
located outside the synapse at perisynaptic and extrasynaptic
locations [39, 40]. For example, it is investigated that tonic
GABAA currents in the subiculum were downregulated in
the fmr1 knockout mouse relative to wild-type animals
[41]. These results were associated with reductions in tonic
GABAA receptor subunits. Furthermore, more specific
results based on the different GABAR subunits need to be
expanded to better identify each function in FXS.

Results from all above pave the way for many interest-
ing avenues of research. First, more work is needed to
illustrate the molecular causes of impaired inhibition in
FXS. In the Drosophila model, limited research available
has demonstrated that a GABAA receptor reduction can
lead to behavioral impairments. However, other research
from FXS models indicated that the mechanism was likely
more complicated and possibly indirect due to not only
variable GABA metabolisms but also regional specificity
[40, 42, 43]. For example, vision process is modulated by
different GABA receptors in spread brain via tonic inhibi-
tion, such as temporal cortex, lateral geniculate nucleus
(LGN) of the thalamus, and vision cortex [44, 45], while tonic
inhibition is mediated via extrasynaptic α5- and δ-containing
GABAARs [40, 44]. Future research will examine that specific
subunits of GABA receptor encode these vision information
computations. And it is also worth noting that the role of
GABA in the developing CNS is dynamic and variable
between brain regions [40, 43, 46]. Another triggering idea
is that impaired inhibition comes from activity-dependent
synaptic plasticity alteration during developmentally critical
periods [43, 47]. Both mouse and Drosophila FXS models
show impaired critical period plasticity, and early activity is
critical for shaping E/I synaptic balance [48–50]. These
findings indicate that many mechanisms are to be explored
among GABAergic neurons, GABA metabolism, and GABA
receptor alteration in FXS.

4. Impaired GABAergic Neural Circuits in FXS

Dysfunctional mGluR1/5 signaling in excitatory synaptic
circuitry has been considered as one classic mechanism
underlying FXS [51–53]. But a main characteristic of the
impairment is usually attributed to a failure in the inhibition
of the central set or the need for a supervisory system to be
involved in the inhibition of predominant manners. The
increased excitability of hippocampal and neocortical circuits
in FXS, due to dysregulation of glutaminergic neurons, can in
turn disrupt the normal actions of inhibitory GABAergic
neurons [32, 54]. It has long been known that FXS models
also display reduced function in inhibitory GABAergic

circuits [55–57]. Specifically, downregulation of GABAA
receptor subunits influences both the mRNA and protein
levels, which would further increase the excitability of limbic
and cortical circuits [39].

FMRP is widely expressed in GABAergic neurons
[58, 59], and it is also involved in normal interneuron
maturation and function modulation [30, 55, 58]. Recently,
it was shown that there were lower expressions of several
genes involved in GABA metabolism, including gad1, gat1,
and gat4, in the brain of both mouse and Drosophila FXS
models [15, 58, 60]. It is well known that GABAergic neurons
can modulate neurotransmitter release in autocrine or para-
crine pattern, via presynaptic GABAA and GABAB receptors
[61–63]. It is indicated that dysfunctional GABAergic
neurons affect balance of inhibitory/excitatory circuits par-
ticularly during early developmental critical periods, via the
role of GABA attenuated regulator in FXS models [62, 64].

For now, GABAergic impairments have been reported
in FXS models of Drosophila, zebrafish, and mouse. And
GABAergic signaling is essential for regulating neuronal
migration, maturation, and circuit formation. Therefore,
defects in the GABAergic system are likely to have profound
effects on neuron development and circuit work in FXS.
Currently, a better understanding of early developmental
changes in GABAergic system in FXS would be reckoned as
the key insight into the underpinning of the FXS brain. Also,
the relationship between GABAergic systems and mGluRs
ones, as well as their overlapping plasticity alteration, is taken
as the pivotal basement to strengthen a more comprehensive
cognition of FXS.

Besides the deficits in learning and memory in these
models, one consistent behavioral abnormality they share is
altered circadian rhythm behaviors, which potentially
mimics the sleep abnormalities seen in patients with fragile
X syndrome. Circadian rhythm describes the approximately
24-hour cycles generated by a master pacemaker located in
the suprachiasmatic nuclei (SCN) of the anterior hypothala-
mus of the mammalians and in the ventral lateral neurons
(LNvs) of Drosophila [65]. Also, the connections between
the SCN and other parts of the system are important for
the control of circadian rhythms in the central nervous
system [66]. Interestingly, it has been shown that the loss of
FMRP and FXR2P results in arrhythmicity resulting from
inappropriate neuronal communication within the central
nervous system [67]. Additionally, the altered expression
of the clock component has been observed in FXS animal
models [67, 68]. The upregulation of FMRP increases
PER1- and PER2-induced BMAL1–NPAS2 transcriptional
activity, suggesting that FMRP is required for regulation of
circadian behaviors. Thus, Drosophila lacking the fmr1 gene
exhibits altered circadian rhythms. Taken together, these
results indicate that fragile X-related proteins might be asso-
ciated with the induction of abnormal sleep patterns in FXS
due to alterations in circadian genes; they may also play a
critical role in the regulation of circadian output pathways.

Clinical studies have illustrated that melatonin-
dependent signaling pathways can impair vigilance, learning,
and memory abilities and may be linked to autistic behaviors
such as abnormal anxiety responses [69, 70]. Low melatonin
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levels are related with altered GABAergic system [71]. Fur-
thermore, alterations in the circadian clock mechanism due
to abnormal melatonin synthesis can affect the function of
GABA neural circuits [70, 72]. Recently, studies using
animal models of autism have indicated that clock and
clock-related genes may interact in the ASD phenotype and
studies using fmr1 KO mice have implicated clock proteins
in sleep alterations in FXS [73]. Under dysfunctional FMRP
conditions, GABA activity is altered by disruptions in intra-
cellular signaling. Recent studies have proposed the existence
of abnormalities in melatonin secretion and circadian
patterns in individuals with FXS with ASD that are likely to
be due to excessive signaling via GABA [74]. Furthermore,
melatonin is helpful for treating the physical alterations of
axons and dendritic spines [75, 76]. In addition, other
endocrine hormones, such as oxytocin and insulin, partici-
pate GABA neuronal function via abnormal biorhythmic
patterns. It is reported that oxytocin-mediated GABA
excitatory-inhibitory shift during delivery is abolished in
FXS model. During delivery and subsequently hippocampal
neurons have elevated intracellular chloride levels and ele-
vated gamma oscillations, which suggests the importance of
oxytocin-mediated GABAergic inhibition during the process
[77]. Similarly, the insulin-producing cells (IPCs) are crucial
for normal insulin release and insulin-signaling in the brain
and are sufficient to restore normal circadian behavior in
the Drosophila FXS model [78]. Moreover, IPCs have been
demonstrated to receive inputs from multiple neurotrans-
mitters and hormones, including tachykinin, leptin, GABA,
and serotonin [79]. But the specific mechanisms deserve fur-
ther investigation. In brief summary, alteration of GABA
inhibition is not simply linked to amplified mGluR signaling,
whereas they both are regulated by circadian clock and
circadian genes in depth.

Overall, current issues provide much needed in vivo
evidence for GABAergic circuit impairments in FXS and set
the foundation for future work linking molecular to circuit
level to behavioral changes. Addressing altered GABAergic
circuit function should lead to more effective treatments for
FXS patients.

5. Conclusions

In summary, deregulated GABA metabolism, decreased
expressions of GABA receptor subunits, and impaired
GABAergic neural circuits contribute to abnormal behaviors
in FXS. Importantly, it is noteworthy to be studied that
circadian clock genes regulate substantial life activities of
organism and are related to the process of growth and devel-
opment in FXS models and patients. Specifically, GABA
inhibition is modulated via dysfunctional biorhythmic pat-
terns of endocrine hormones and fmr1 gene. And better
understanding of the GABA neural circuits will support
novel therapeutic methods in FXS.
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