Clinical Case Reports

CLINICAL IMAGE

Giant splenic artery aneurysm rupture

Alessandro Robaldo¹, Fabrizio Gramondo¹, Fabio Beccaria² & Patrizio Colotto¹

¹Vascular and Endovascular Unit, Public Imperia Hospital, 56, Sant'Agata Street, Imperia 18100 (IM), Italy ²Department of Radiology, Public Imperia Hospital, 56, Sant'Agata Street, Imperia 18100 (IM), Italy

Correspondence

Alessandro Robaldo, Vascular and Endovascular Unit, Public Imperia Hospital, 56, Sant'Agata Street, Imperia, 18100 (IM), Italy. Tel.: +39-0183537214; Fax: +39-0183537317; E-mail: robaldo.alessandro@gmail.com

Funding Information

No sources of funding were declared for this study.

Received: 7 February 2016; Accepted: 17 April 2016

Clinical Case Reports 2016; 4(6): 620-622

doi: 10.1002/ccr3.578

An 85-year-old white female with a history of heart failure was admitted to the emergency room with a complaint of sudden and severe left flank pain that radiated to the back. A thoracoabdominal CT scan revealed a giant ruptured splenic artery aneurysm (SAA) with active bleeding and hematoma spreading widely through the parasplenic spaces into the left peritoneum (Figs. 1 and 2). Additional findings included a horseshoe-shaped kidney. Hemodynamic instability appeared suddenly after the exam. The intubated patient was taken to the operating room with a severe hypotension (40/20 mmHg). Based on the life-threatening condition, a compliant aortic occlusion balloon catheter (Reliant; Medtronic, World Medical Manufacturing Corp: Santa Rosa, CA, USA,) was inserted percutaneously from the femoral artery and inflated in the suprarenal aorta, supported by an introducer sheath (12F, 45 cm; Flexor, Cook, IN, USA) (Fig. 3). After instant increase in the blood pressure, the patient underwent successful emergency surgical obliteration of the aneurysm with a suture ligation of the splenic artery orifice and splenectomy, because of the dimension of the lesion and the large peritoneal hematoma. A final angiogram showed the complete exclusion of the SAA with no signs of bleeding (Fig. 4).

Key Clinical Message

Little exists on treatment for SAAs rupture which may require a fast bleeding control because of the hemodynamic instability and a large perisplenic/peritoneal hematoma. This case shows the use of endovascular clamping and mid-line laparotomy to perform the splenectomy because of the severe hypotension and the dimension of the lesion.

Keywords

Endovascular repair, splenectomy, splenic artery, visceral aneurysm.

The SAAs, which constitute 60% of all splanchnic aneurysms, are mostly asymptomatic. The incidence is

Open Access

Figure 1. Giant rupture of splenic artery aneurysm (SAA) with patency of the proximal segment of vessel.

© 2016 The Authors. *Clinical Case Reports* published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Figure 2. (A) coronal plane. (B) sagittal plane – maximum intensity projection (MIP).

Figure 3. Emergency percutaneous supraceliac endovascular clamping with a compliant aortic occlusion balloon catheter.

higher in females. The precise etiology of SAAs remains unknown. Aside from pregnancy, SAAs also have a strong association with portal hypertension, connective tissue disorders, atherosclerosis, pancreatitis, trauma, and liver

Figure 4. A final angiogram showed the complete exclusion of the SAA with no signs of bleeding.

transplantation [1]. The risk of rupture, which occurs in 10% of the cases, is higher in pseudoaneurysms as compared to true aneurysms. The life time risk of rupture is 2-10% for small and 28% for giant aneurysms [2]. Thus, once the diagnosis is made, immediate definite

intervention is mandatory for symptomatic and bigger, >2 cm, aneurysms. The treatment choice is governed by the clinical conditions, the aneurysm morphology, and the availability of the resources. Endovascular techniques are a good alternative to surgical approach with 80-92% success rate, especially for poor surgical candidates [3]. However, due to the potential severe tortuosity of the vessel, delivery of devices to a mid-splenic or distal-splenic artery may be technically unattainable. The surgical treatment with aneurysm exclusion, artery reconstruction, and spleen preservation is the best goal for repair of extraparenchymal SAAs which has well-documented efficiency and durability [4]. However, in the case of rupture, this may be idealistic because exposure of the splenic artery can be difficult in the presence of a large perisplenic and peritoneal hematoma, often associated with severe hypotension. A surgical or endovascular supraceliac aortic control with a splenectomy should be considered to control the hemorrhage and prevent death in those cases.

Conflict of Interest

None declared.

References

- 1. Dave, S. P., E. D. Reis, A. Hossain, P. J. Taub, M. D. Kerstein, and L. H. Hollier. 2000. Splenic artery aneurysm in the 1990s. Ann. Vasc. Surg. 14:223–229.
- Abdulrahman, A., A. Shabkah, H. Mazen, and M. Aljiffry. 2014. Ruptured spontaneous splenic artery aneurysm: a case report and review of the literature. Int. J. Surg. Case Rep. 5:754–757.
- Tulsyan, N., V. S. Kashyap, R. K. Greenberg, T. P. Sarac, D. G. Clair, G. Pierce, et al. 2007. The endovascular management of visceral artery aneurysms and pseudoaneurysms. J. Vasc. Surg. 45:276–283.
- 4. Zubaidi, A. 2009. Rupture of multiple splenic artery aneurysms: a common presentation of a rare disease with a review of literature. Saudi J. Gastroenterol. 15:55–58.