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Abstract

During extracorporeal membrane oxygenation (ECMO), a delicate balance is required to titrate systemic
anticoagulation to prevent thrombotic complications within the circuit and prevent bleeding in the patient. Despite
focused efforts to achieve this balance, the frequency of both thrombotic and bleeding events remains high.
Anticoagulation is complicated to manage in this population due to the complexities of the hemostatic system that
are compounded by age-related developmental hemostatic changes, variable effects of the etiology of critical
illness on hemostasis, and blood-circuit interaction. Lack of high-quality data to guide anticoagulation management
in ECMO patients results in marked practice variability among centers. One aspect of anticoagulation therapy that is
particularly challenging is the use of antithrombin (AT) supplementation for heparin resistance. This is especially
controversial in the neonatal and pediatric population due to the baseline higher risk of bleeding in this cohort.
The indication for AT supplementation is further compounded by the potential inaccuracy of the diagnosis of
heparin resistance based on the standard laboratory parameters used to assess heparin effect. With concerns
regarding the adverse impact of bleeding and thrombosis, clinicians and institutions are faced with making difficult,
real-time decisions aimed at optimizing anticoagulation in this setting. In this clinically focused review, the authors
discuss the complexities of anticoagulation monitoring and therapeutic intervention for patients on ECMO and
examine the challenges surrounding AT supplementation given both the historical and current perspectives
summarized in the literature on these topics.
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Background
During extracorporeal membrane oxygenation (ECMO),
anticoagulation is required to prevent thrombotic com-
plications, and unfractionated heparin (UFH) remains
the predominant anticoagulation agent in this setting
[1–3]. Heparin binds to antithrombin (AT) to potentiate
its effect to inhibit thrombin 1000- to 2000-fold. The
reduced ability of heparin to inhibit thrombin and fibrin
formation is often termed “heparin resistance” and repre-
sents an alteration of heparin dose responses. Heparin
resistance is recognized when there is a need for increasing

doses of heparin to achieve the desired anticoagulation
effect. Heparin resistance is a specific concern for patients
on ECMO since AT activity is commonly decreased [2]. In
addition, neonates have developmentally low AT levels,
which may further contribute to the development of
heparin resistance [4]. However, the minimal AT activity
required for adequate heparin effect is unknown and
validated, and age-appropriate thresholds for maintaining
specific AT activity in ECMO patients do not exist. This
has been difficult to establish because the relationship
between AT activity and the resultant effect on reducing
thrombin and fibrin formation with patient outcomes is
dependent on multiple factors [5–7]. As such, AT supple-
mentation for patients on ECMO in the setting of heparin
resistance is controversial both in the pediatric and adult
populations [8]. Table 1 demonstrates some of the chal-
lenges associated with achieving optimal anticoagulation in
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both neonatal and pediatric populations. These challenges
are further compounded by the potential inaccuracy of the
diagnosis of heparin resistance based on the use of single
standard laboratory parameters used to assess heparin
effect.

Bleeding and thrombosis during ECMO
Extracorporeal life support (ECLS) or ECMO use is
expanding worldwide, with growth in both patient volume
and total number of centers reporting to the Extracorporeal
Life Support Organization (ELSO) [9]. According to the
most recent report, survival to hospital discharge rates for

adults requiring ECMO are 57% for patients with respira-
tory illnesses and 42% for cardiac disease [9]. Pediatric
ECMO cases have also increased 24% from 2009 and 2015
with a concurrent 55% growth in pediatric ECLS centers
[10]. In 2015, survival rates were approximately 61% for
neonatal respiratory, pediatric respiratory, and pediatric
cardiac ECMO cases, compared to approximately 42% in
neonatal cardiac as well as neonatal and pediatric extracor-
poreal cardiopulmonary resuscitation [10].
As seen in Fig. 1, bleeding and thrombotic complications

during ECMO are common and have a significant impact
on patient outcomes [9–11]. In a 2017 study of pediatric
ECMO cases involving 8 centers and 514 patients under
19 years, bleeding occurred in 70% of cases, including 16%
involving intracranial hemorrhage, which was independ-
ently associated with a higher risk of mortality. Thrombotic
complications occurred in 13% of pediatric patients with
31% of cases requiring circuit component change [12]. In
addition, in an autopsy series of 29 children with ECLS,
thrombosis and hemorrhage were common, with one or
both observed in 86% of patients [11]. Similar data exists
for adults showing that coagulation disorders for adult
patients on ECMO have been reported to be as high as
33% [13]. However, as a postmortem analysis of 78
consecutive adult ECMO deaths showed, there is a high
rate of clinically unrecognized venous thromboembol-
ism (VTE) and systemic thromboembolic events in up
to 32% of cases suggesting that the incidence of throm-
botic events in ECMO may be underreported when
relying on clinical evaluation alone [14].

Table 1 Challenges to use of anticoagulation in neonates and
children

◦ Developmental hemostasis
◦ Limited PK and pharmacodynamics data for anticoagulation agents
◦ Different epidemiology of thromboembolism and risks of
anticoagulation therapy
◦ Fewer pediatric formulations of common anticoagulation agents
◦ Restricted diagnostic evaluation due to need of sedation for dx
studies
◦ Irregular anticoagulation therapy monitoring due to difficult vascular
access
◦ Inadequate validation of current diagnostic and treatment
algorithms
◦ Lack of widespread experience and limited expertise
◦ Required collaborative approach with a multidisciplinary team
◦ Compliance concerns with high reliance on caregivers

Saini A, Spinella PC: Management of anticoagulation and hemostasis for
pediatric extracorporeal membrane oxygenation. Clin Lab Med
2014, 34(3):655–673
Adapted from Monagle P, Newall F, Campbell J. Anticoagulation in neonates
and children: pitfalls and dilemmas. Blood Rev 2010; 24:151–62

Fig. 1 Balance between thrombotic and bleeding complications on ECMO. Panel (a) demonstrates significant thrombus burden in the
oxygenator. Panel (b) demonstrates a bleeding complication of a large intraventricular hemorrhage
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Methods for anticoagulation monitoring
In the absence of preexisting coagulopathy, hemostatic
dysfunction during ECMO occurs as a consequence of
sheer stress and exposure of blood to the non-biologic
surfaces of the ECMO circuit [15, 16]. Mechanical forces
provoke activation of platelets and coagulation factors,
fibrinogen deposition, adherence to device surfaces, and
thrombin generation. High sheer stress also changes the
configuration of von Willebrand factor, cleaves high mo-
lecular weight fragments, and increases consumption to
increase bleeding [17]. In addition, the underlying critical
illness of the patient, including the presence or absence of
cardiogenic shock with shock liver, sepsis-induced coagu-
lopathy, and/or disseminated intravascular coagulopathy,
can directly or indirectly through immune and endothelial
activation pathways can alter hemostasis.
Numerous variables must be considered for optimal

ECMO anticoagulation. These include various patient
factors including patient age, underlying illness, duration
of ECMO, heparin dose, target antithrombin activity, and
risk of thrombotic or bleeding events. In addition, the se-
lection and schedule of diagnostic tests including platelet
count, antithrombin (AT), activated clotting time (ACT),
activated partial thromboplastin time (aPTT), anti-factor
Xa (anti-Xa), prothrombin time and international normal-
ized ratio (PT/INR), thromboelastography (TEG®), or rota-
tional thromboelastometry (ROTEM) must be carefully
considered [18]. Achieving an appropriate balance be-
tween preventing thrombosis and the risk of bleeding is
further complicated by the fact that standard diagnostic
tests are only partial functional measures of hemostasis. In
other words, while coagulation tests are used to guide
anticoagulation, they do not always accurately predict clin-
ically relevant hemostasis-related outcomes including risk
for thrombosis or bleeding. Currently available functional
hemostasis monitoring assays are imprecise and have not
been established to accurately reflect thrombin formation
or predict the risk for excessive bleeding in any patient
population or during ECMO [19, 20]. As a result, anticoa-
gulation monitoring and management remain significant
challenges for the physician managing a patient on ECMO
[21]. In order to better understand the strengths and limi-
tations of each diagnostic test and its role in anticoagula-
tion monitoring on ECMO, the most widely utilized
whole blood and plasma-based tests to assess hemostasis
for patients on ECMO will be reviewed.

Activated clotting time
The ACT is a whole blood test used to measure the anti-
coagulant effect of heparin [2, 22]. The ACT is per-
formed by adding whole blood to a tube containing a
surface activator, either kaolin or diatomaceous earth,
which stimulates the contact activation pathway. The
ACT is a clot-based assay that measures either the

mobility of a magnet during clot formation or the change
in velocity of movement through blood as it clots. The
time for initial fibrin formation within the tube is mea-
sured in seconds. Multiple factors can prolong the ACT
independent of UFH dose, including hemodilution, plate-
let function and number, hypothermia, hypofibrinogen-
emia, and coagulation factor deficiencies [23, 24]. In
contrast to the 400–800-s target for cardiopulmonary by-
pass, an ACT range of 180–200 s has been suggested for
ECMO [25]. However, different ACT platforms and their
relationship to measured heparin levels and aPTT are
inconsistent, especially in the lower ACT target ranges for
ECMO [26, 27]. As a result, ACTs have a poor correlation
with heparin concentrations within the dose range typic-
ally used for ECMO [28–31]. In addition, Bembea et al.
demonstrated poor correlation with ACT and anti-Xa
activity (r = 0.02) in 34 ECLS pediatric patients despite a
good correlation between ACT and heparin infusion dose
within each patient (r = 0.77) [32]. While there was no
association with discordant ACT to anti-factor Xa values
in patients who experienced thrombotic complications
requiring a circuit change, there was a significant discord-
ance between ACT and anti-factor Xa values in patients
who had a hemorrhagic complication compared to those
who did not (ACT < 180 s and concomitant anti-factor
Xa > 0.7 IU/mL) [32]. This suggests that the anti-Xa assay
is a better correlate of heparin levels when compared to
aPTT or ACT in pediatric ECMO [33]. Similar results
have also been demonstrated in adult ECLS patients. In a
retrospective analysis of ACT measurements taken during
ECMO procedures, there was a poor correlation (r =
0.11–0.14) between ACT values and heparin dosing [34].
The authors also reported no association between ACT
and aPTT when paired samples were divided into subther-
apeutic, therapeutic, and supratherapeutic groups, and
concluded that ACT is an unreliable tool to monitor UFH
during ECLS in adults.

Activated partial thromboplastin time
The aPTT test is a plasma-based assay of clot formation
used to monitor UFH. Therapeutic ranges for ECMO
are 60 to 80 s in the setting of standard bleeding risk
versus targets of 40 to 60 s in patients at an increased
bleeding risk [18, 35, 36]. The PTT test is performed by
mixing citrated plasma with silica, a synthetic phospho-
lipid (ellagic acid), and calcium to initiate clot formation.
Different analytic methods exist based on either optical
or mechanical clot detection. In the optical method, clot
formation is measured by a change in optical density,
whereas mechanical clot detection monitors the move-
ment, or oscillations, of a steel ball within the test solu-
tion. As fibrin is formed, the rate of oscillation slows
and it is at this time that the PTT is measured. Similar
to the ACT, an aPTT test evaluates contact activation in
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the intrinsic pathway and is affected by fibrinogen and
factor VIII levels [37]. A standard laboratory-based
aPTT uses plasma, but whole blood point of care tests
are available. There are more than 300 laboratory
methods used to monitor aPTT with different results
obtained depending on the method utilized [38]. For
example, at a plasma heparin concentration of 0.3 IU/
mL measured by factor Xa inhibition, aPTT results can
range from 48 to 108 s depending on the reagent used
[39]. As a result of this wide variation, the PTT target
range used at one ECMO center should not be trans-
lated to other centers without confirming the type of
assay used for aPTT.
Currently, 94% (109/116) of ELSO-reporting centers

check aPTT daily at varying frequencies [2]. Several investi-
gators have examined the correlation between aPTT, ACT,
and anti-Xa activity. In neonates, Khaja et al. demonstrated
an improved correlation of aPTT with anti-Xa results when
compared with ACT [31]. Similar results were observed in
the adult ECMO population. A retrospective study of 46
patients demonstrated little or no correlation between ACT
and heparin dose, a moderate correlation between aPTT
and heparin dose, and a weak correlation between ACT
and aPTT [34]. However, another study demonstrated that
despite improved correlation of aPTT to anti-Xa activity,
44.2% of measurements were discordant [33]. This argues
against the use of aPTT alone in assessing the adequacy of
anticoagulation or as an accurate measure of heparin effect
in the context of diagnosing heparin resistance.

Anti-factor Xa
The anti-Xa concentration directly measures heparin inhib-
ition of factor Xa and is increasingly used to measure hep-
arin effect, especially in pediatric patients. Target values
during ECMO range from 0.3 to 0.7 IU/mL [31, 40]. Anti-
Xa assay kits can be affected by hyperbilirubinemia and
high plasma free hemoglobin which can occur in ECLS
patients and falsely lower anti-Xa activity. For example,
ECMO samples with plasma free hemoglobin samples of
50mg/dL or greater had significantly lower anti-Xa activity
compared with normal: 0.33 (0.25–0.42) versus 0.4 (0.31–
0.48) IU/mL [31, 40, 41].
As previously noted, the anti-Xa assay correlates bet-

ter with heparin concentration than with ACT or aPTT
[33, 42]. In a single-center study of 12 neonatal ECMO
patients, there was a strong correlation between anti-
Xa assays and heparin dose (r = 0.75; p < 0.0001), while
the ACT did not correlate with either anti-Xa assays or
heparin dose [30]. An observational cohort study of 34
pediatric ECMO patients further confirmed these ob-
servations demonstrating a moderate correlation with
heparin concentrations when measured simultaneously
(r = 0.33) while also showing poor correlation with
ACT and aPTT (r = 0.02 and 0.17, respectively) [32].

Criticism of using anti-Xa values in isolation to titrate
heparin for anticoagulation is that while it is a direct
measure of heparin effect, it does not represent the overall
hemostatic state of the patient. Anti-Xa values represent
the amount of inhibition, not the amount of thrombin and
fibrin that is able to be generated in the patient. One view
is that the amount of inhibition needs to be put in context
with the amount of thrombin and fibrin being produced
in a patient. For example, a patient who before heparin
therapy is highly prothrombotic may still be prothrombo-
tic with what is considered to be a therapeutic effect of
heparin based on anti-Xa levels. Anticoagulation titration
may be more effective when it is titrated according to the
net amount of thrombin and fibrin formation instead of
how much Xa is being inhibited.

Viscoelastic tests
Thromboelastography (TEG®) and rotational thromboe-
lastometry (ROTEM) are viscoelastic tests of hemostasis
in whole blood that have been used to monitor anticoa-
gulation with ECMO [43]. TEG®/ROTEM parameters
inform time to initial fibrin formation, crosslinking of
fibrin, clot firmness, platelet function, and fibrinolysis.
Paired TEG®/ROTEM samples with and without the
addition of heparinase allow for the underlying assess-
ment of hemostasis in the presence of UFH. As a result,
UFH responsiveness can be evaluated with TEG®/
ROTEM by examining the difference in R or clotting
time (CT) between tests with and without heparinase,
which may be beneficial when there is concern for hep-
arin resistance.
In a series of 27 pediatric ECLS patients, TEG® measure-

ments were performed alongside ACT and aPTT [44]. In
171 paired results, aPTT correlated with all TEG® parame-
ters (R time, K time, and α angle), but given that they both
measure time to initial fibrin formation, the strongest
correlation was between aPTT and TEG® R time (r = 0.31).
In contrast, ACT correlated weakly with all TEG® parame-
ters. Similar results have been published comparing
ROTEM with conventional coagulation tests [45]. To date,
there are no large multicenter trials comparing viscoelastic
tests with conventional coagulation measures and their
ability to guide anticoagulation therapy. One small pilot
RCT was performed indicating that it is feasible to con-
duct such a trial [46].
TEG has been reported to be useful in identifying various

hypercoagulable conditions including those associated with
major surgery and malignancy [47–51]. Thromboelastome-
try analyses are increasingly included in the evaluation of
global clotting function and monitoring of hemostatic
treatment in various clinical situations including liver
transplantation, cardiac surgery, obstetrics, trauma, and
hemophilia [52–63]. It is also commonly used to guide
transfusion management [64, 65]. In regard to patients
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supported on ECMO, multiple studies have evaluated the
safety and feasibility of a TEG-driven strategy to titrate
heparin versus the “conventional” approach based on aPTT
monitoring with a trend toward improvement in adverse
outcomes. For example, a recent multicenter, randomized,
controlled trial was performed involving adult patients with
acute respiratory failure treated with venovenous ECMO
who were randomized to manage heparin anticoagulation
using a either a TEG-based protocol (target 16–24min of
the R parameter, TEG group) or a standard of care aPTT-
based protocol (target 1.5–2 of aPTT ratio, aPTT group).
While underpowered to detect statistically significant dif-
ferences between the groups (N = 42), patients in the aPTT
group tended to bleed more compared to the TEG group
(15 vs. 10, p = 0.21). In addition, heparin dosing was lower
in the TEG group compared to the aPTT group (12 IU/kg/
h vs. 16 IU/kg/h, respectively, p = 0.03) with no increase in
thrombotic complications. While a larger trial is needed,
the results are encouraging that a TEG-driven protocol is
both safe and feasible in adult patients requiring V-V
ECMO [46]. In a recent pediatric study, a retrospective
chart review of patients requiring venovenous (VV) and
venoarterial (VA) ECMO was performed within a single-
center, tertiary care children’s hospital. The study evaluated
optimal values for citrated kaolin TEG R time and anti-Xa
activity that would minimize both bleeding and thrombotic
complications in pediatric and neonatal patients. The study
concluded that an anti-Xa activity greater than .25 IU/mL
(sensitivity 81%, specificity 67%, PPV 81%, and NPV 58%)
and a TEG R time greater than 17.85min (sensitivity 84%,
specificity 68%, PPV 82%, and NPV 59%) may minimize
the risk of thrombosis in pediatric and neonatal ECMO
patients. An optimal target to minimize the risk of bleeding
events was unable to be identified in this study [66].

Antithrombin
Antithrombin (AT), a plasma alpha-2 glycoprotein, plays a
central role in the physiologic plasma anticoagulation
system. Normal plasma concentration is 15–20mg/dL and
circulates at 2.4 μM concentrations [67]. Its action includes
the irreversible inhibition of multiple clotting factors in-
cluding thrombin (factor IIa), factor Xa, and to a lesser
extent factors IXa, XIa, XII, tissue plasminogen activator,
plasmin, and kallikrein. In its natural form, AT has a low
level of anticoagulant activity. However, in the presence of
heparin, anticoagulant activity is enhanced 1000–2000-fold
[68]. Independent of its anticoagulant properties, AT also
has important anti-inflammatory attributes when binding
to the endothelium via heparin-like glycosaminoglycans
resulting in prostacyclin release [69, 70]. Prostacyclin in-
hibits leukocyte activation by inhibiting tumor necrosis
factor-alpha production, and limits neutrophil activation
and adhesion to endothelial cells [71].

In general, young children have decreased physiologic
concentrations of anticoagulant proteins, including anti-
thrombin. This is most pronounced in children less than
1 year of age as compared with older children and ado-
lescents. Antithrombin levels reach adult levels by the
age of 7–12 months; however, reference ranges for anti-
thrombin levels even in healthy children differ signifi-
cantly by age and can vary depending on the reagents
and analyzers utilized [72].
In addition, children have reduced activity of procoagu-

lant proteins (factors II, VII, IX, XI, and XII) and inhibitors
of coagulation (protein C, S, antithrombin) compared to
adults while fibrinolytic activity is decreased, particularly in
neonates, due to the slow activation kinetics of tissue plas-
minogen activator (t-PA) on neonatal plasminogen coupled
with normal to elevated levels of plasminogen activator
inhibitor (PAI) at birth [73, 74]. As a result, because the
balance of pro- and anticoagulant proteins is different in
adults, children, and infants, it is difficult to ascertain the
effect of AT activity on overall hemostatic function in isola-
tion. This further complicates both the interpretation and
decision-making surrounding supplementation in patients
on ECMO.
When AT is supplemented for patients with hereditary

AT deficiency, the hemostatic system is otherwise normal.
As a result, the hemostatic effect of AT can be more easily
predicted. This is in contrast to the patients on ECMO
where both their underlying illness and the blood-circuit
interaction can alter the underlying hemostatic balance.
This makes the effect of AT supplementation less predict-
able. In pediatric and neonatal patients, hemodilution can
further decrease AT levels due to the volume of blood in
the ECMO circuit relative to patient blood volume [75].
As a result, timely assessment of antithrombin activity
with other functional measures of hemostasis should be
considered, and perhaps, a systems biology-based ap-
proach is needed for interpreting functional measures of
hemostasis in critically ill patients on ECMO.

Limitations of hemostasis monitoring and their
interpretation
The goal of heparin anticoagulation is to reduce throm-
botic events in the ECMO circuit and patient by redu-
cing thrombin and fibrin formation. The goal of heparin
anticoagulation is not to achieve a specific heparin effect
in isolation of the patients’ overall hemostatic capacity
or clinical state. As such, the heparin effect must be
interpreted in the context of the amount of thrombin
and fibrin that is being produced before heparinization
is initiated. In addition, the overall hemostatic capacity
of the patient based on measures of fibrinogen and
platelet function should also be considered when inter-
preting the effect of heparin on a patient.
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As this review suggests, assays such as anti-Xa provide
an accurate result for heparin effect, but do not provide
information on the overall functional effect of thrombin
and fibrin formation. ACT, aPTT, and viscoelastic values
do provide more global measures of hemostasis but are
limited by their lack of incorporating high sheer stress and
biological surfaces, such as collagen or endothelial cells,
that are essential for hemostasis. It is the overall net effect
of thrombin and fibrin formation reduction with
heparinization that is clinically important, not the amount
of inhibition of factor Xa or direct heparin effect.
In an era of goal-directed therapy, the goal of

heparinization is to reduce thrombin activity and fibrin for-
mation to decrease thrombotic events without causing
bleeding. To accomplish this, the titration of anticoagula-
tion therapies should include global measures of thrombin
and fibrin formation with viscoelastic assays, not only the
amount of inhibition of factor Xa or the aPTT in isolation.
In addition, caution should be used when interpreting ana-
lyses that assess a correlation between hemostatic assays,
including anti-Xa, as there is no data to suggest that main-
taining an anti-Xa concentration within a particular range
is associated with improved outcomes.
Similar issues exist when interpreting AT activity and

heparin resistance, particularly in isolation without the
context of the overall hemostatic state of the patient. For
example, the isolated use of anti-Xa values to determine
heparin resistance may result in AT replacement in situa-
tions where there is already adequate suppression of
thrombin/fibrin formation which can increase the risk of
bleeding. Conversely, the measurement of AT activity in
isolation can also lead to inadequate AT supplementation
if the patients are in a hypercoagulable state with high
thrombin/fibrin formation despite an anti-Xa that is “in
range” and considered to be therapeutic.
The following sections discuss AT replacement ac-

cording to AT activity since it is the current standard
practice. The future of heparin anticoagulation manage-
ment and AT supplementation may change with the
advent of improved hemostatic monitoring that can
more accurately provide a comprehensive assessment of
the patient’s overall hemostatic function that reflects an
accurate assessment of thrombin/fibrin formation.

Antithrombin replacement in ECMO
Available products
In the United States (US), antithrombin is available in
either human plasma-derived form (Thrombate III®;
Grifols, Research Triangle Park, NC) [76] or recombin-
ant form (ATryn®; LFB, rEVO Biologics, Framingham,
MA) [77]. Thrombate III® is prepared from pooled donor
plasma with a multistep purification process whereas
recombinant antithrombin (ATryn®) is prepared from
the milk of genetically engineered goats. Thrombate III®

is approved for the treatment and prevention of thrombo-
embolism in patients with hereditary antithrombin defi-
ciency, whereas ATryn® is indicated for the prevention of
perioperative and peripartum thromboembolic events in
hereditary antithrombin-deficient patients. Acquired anti-
thrombin deficiency is more common than congenital
antithrombin deficiency requiring off-label use of AT con-
centrate. A review of the US Pediatric Health Information
System database noted that 97% of children who were
treated with AT received it off-label, with neonates as the
largest population (46%). The most common diagnosis as-
sociated with off-label use was congenital heart/lung prob-
lems (36%), and the most common procedure was ECMO
(44%) [78].
The elimination half-life of plasma-derived AT con-

centrate (Thrombate III®) is 2.5–3.8 days vs. 12–18 h for
recombinant human AT concentrate (ATryn®). Throm-
bate III® is administered by intravenous bolus infusion,
whereas ATryn® is administered as an initial intravenous
infusion loading dose followed by continuous infusion.
Table 2 profiles the dosing formulae for both products.
Once reconstituted, plasma-derived AT concentrate
must be administered within 3 h vs. 8–12 h for recom-
binant AT concentrate. As with any factor concentrate,
Thrombate III® has the potential to transmit infectious
agents particularly variant Creutzfeldt-Jakob disease
(vCJD) and theoretically Creutzfeldt-Jakob (CJD) disease.
However, no cases have been reported [77, 79].

Heparin resistance
Heparin resistance occurs when there is a need for increas-
ing doses of heparin to achieve the desired anticoagulation
effect based on anti-Xa, PTT, or ACT. Conventional treat-
ment of heparin resistance includes administering increas-
ingly higher doses of heparin to bind all available AT,
supplementing with exogenous AT concentrate, or trans-
fusing fresh frozen plasma (FFP) as a source of AT [24].
Additional heparin may prove ineffective if AT is severely
deficient, and ceiling effects have been reported [80]. Al-
though FFP can be used as a source of antithrombin, it
requires cross-matching and carries the potential risk of
transfusion-transmitted infectious disease. In addition, FFP
contains only 1 U/mL of AT, so doses of approximately 20
mL/kg could be required to restore AT to normal levels
[81]. This can lead to transfusion-associated circulatory
overload (TACO) or transfusion-related acute lung injury
(TRALI) [82].

Review of data surrounding antithrombin replacement
strategies and controversies
Traditionally, AT dosing is based on patient weight and
desired AT activity level expressed as a percent between
80 and 120% (see formula in Table 2) [76, 77]. However,
the optimal target threshold for antithrombin during
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ECMO has not been clearly defined or validated, par-
ticularly when patients are fully heparinized. In a recent
international survey of anticoagulation management dur-
ing ECLS, respondents reported highly variable target
AT ranges from as low as 30% to as high as 120%. Fur-
thermore, antithrombin level monitoring is also highly
variable with levels checked routinely in 60 centers, oc-
casionally in 26, and never in 21 centers [2].
In patients with congenital AT deficiency, continuous

infusions have been reported to stabilize AT blood levels
and reduce bleeding complications when compared to
bolus dosing [83]. However, no data exists indicating if
bolus or dosing by continuous infusion affects clinical out-
comes for patients on ECMO. A recent pediatric retro-
spective case-controlled study examined continuous
infusion of antithrombin (ATryn®) compared to intermit-
tent bolus doses (Thrombate III®) on ECMO. This study
suggested that AT administered by continuous infusion
increased the time that ACT stayed within goal range,
lowered the heparin dose, did not increase hemostatic
complications, demonstrated a trend toward fewer heparin
dose adjustments, and lowered blood product usage. How-
ever, this study was limited by small sample size (n = 14)
and historical case control design [83].
A review of the literature discussing AT supplementa-

tion based on an AT target activity level is summarized

in Additional file 1. The table shows variability in AT levels
and in the patient population studied. In most studies, AT
was given at the discretion of the physician with no explan-
ation of the indication. In others, AT administration was
protocol driven. There was also high variability in the dose
of antithrombin administered and the outcomes studied. In
addition, it was not clear if the indication for AT replace-
ment was based on a single AT activity value or a panel of
hemostasis results. This makes generalizing data from the
current literature on AT supplementation difficult. Simi-
larly, the relationship between AT activity and global
hemostatic function has not been examined closely. An
investigation into interactions between AT and other pro-
and anticoagulant factors, including their effect on throm-
bin formation and platelet activity, is needed to improve
the interpretation of AT supplementation and activity.
Prospective multicenter studies are needed to identify and
evaluate clinical and diagnostic indications for the adminis-
tration of AT, including threshold, dose, duration, and
outcomes.

Outcomes in ECMO relating to AT
supplementation
Overall, there are limited studies evaluating anticoagula-
tion management, antithrombin replacement, and out-
comes for patients on ECMO. In a retrospective study of

Table 2 Dosing for antithrombin

Surgical dosing Obstetrical dosing

Plasma-derived AT concentrate [56]

Initial loading dose (IU) ([desired % AT activity − baseline % AT activity] × body
weight in kilograms) ÷ 1.4
Infuse IV over 10–20 min

Same formula

Maintenance dose (IU) 60% of the initial loading dose, given every 24 h for
2–8 days

Dose adjustments Adjust maintenance dose and/or interval to maintain
AT activity levels of 80–120%
Measure AT activity levels 20 min postinfusion of initial
dose,
every 12 h, and before each infusion

Recombinant AT concentrate [57]

Initial loading dose (IU) ([100 − baseline % AT activity] ÷ 2.3) × body weight (kg)
Administer loading dose as a 15-min intravenous
infusion and immediately follow it by a continuous
infusion of the maintenance dose

([100 − baseline % AT activity] ÷ 1.3) × body weight (kg)
Administer initial dose as a 15-min intravenous infusion
and immediately follow it by a continuous infusion of the
maintenance dose

Maintenance dose (IU/h) ([100 − baseline % AT activity] ÷ 10.2) × body weight
(kg) given per hour

([100 − baseline % AT activity] ÷ 5.4) × body weight (kg)
given per hour

Dose adjustments Adjust based on the % AT activity level 2 h after
initiation of treatment
For AT activity level < 80%, increase dose by 30% and
recheck 2 h after each dose adjustment
For AT activity level 80–120%, do not adjust and
recheck 2–6 h after initiation of treatment or dose
adjustment
For AT activity level > 120%, decrease dose by 30% and
recheck 2 h after each dose adjustment

AT antithrombin, IU international unit, % percentage, IV intravenous, kg kilogram, h hour
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22 pediatric ECMO patients, O’Meara and colleagues used
an anti-Xa guided protocol to manage anticoagulation
compared to an historical ACT-based control group. All
patients received AT using the following criteria: (a) when
AT is < 50% or (b) when AT is less than 100% and heparin
requirements exceed 45U/kg/h. The control group using
ACT fell outside of the target goal 22% of the time com-
pared to 9% in the anti-Xa group. Bleeding complications
occurred in 27% of the anti-Xa cases vs. 50% in the ACT
group. The authors concluded that consistent management
of anti-Xa levels within the therapeutic range (0.4–
0.8 IU/mL) might decrease the incidence of thrombus
formation [84].
These observations are consistent with research con-

ducted by Irby and colleagues who retrospectively analyzed
62 pediatric ECMO patients using daily anti-Xa measure-
ments. Two groups were identified: a group requiring no
circuit change (mean anti-Xa concentration 0.20 IU/mL)
and a group requiring circuit change due to thrombus for-
mation (mean anti-Xa concentration 0.13 IU/mL). The
study demonstrated that each 0.01 IU/mL decrease in anti-
Xa activity increased the odds for a circuit or oxygenator
change by 5%, suggesting that the low anti-Xa group dis-
played 41% increased odds for risk of circuit change [85].
In 2011, a tertiary care academic children’s hospital al-

tered their anticoagulation protocol to include anti-Xa,
thromboelastography, and AT. Goal anti-Xa levels were
0.3 to 0.7 units/mL, and antithrombin was replaced if
the AT level was low for age and heparin requirements
were > 60 U/kg/h. Following implementation of the new
protocol, cannula and surgical site bleeding decreased
from 22 to 12%, and 38 to 25%, respectively, with de-
creased transfusion of red cells, fresh frozen plasma,
platelets, and cryoprecipitate. Median membrane circuit
life increased from 3.6 to 4.3 days, and survival to hos-
pital discharge increased from 43 to 55% (p = 0.06) [86].
In a retrospective cohort study by Kessel et al. [87], 18

pediatric patients received ECMO support between
January 2004 and March 2013. For the duration of each
ECMO circuit use, a new, multifactorial approach using
ACT, aPTT, PT/international normalized ratio (INR),
anti-Xa level, and AT activity was used to titrate the
heparin infusion dose. Nine patients were age and diag-
nosis matched with nine patients based on ACT only.
The modified monitoring regimen slightly increased the
amount of time that anticoagulation parameters were
within range compared to the ACT-only group.
Finally, a recent retrospective study analyzed the influ-

ence of antithrombin levels on aPTT, ACT, INR, bleed-
ing, thrombus formation, kaolin + heparinase TEG alpha
angle, kaolin TEG reaction time, heparin dose rate
(HDR), anti-Xa, bivalirudin dose rate, argatroban dose
rate, interventions, and transfusions. Thirty-five infant-
pediatric patients underwent ECLS between January

2013 and January 2016 who remained on ECLS for at
least 5 days. No significant correlation between optimal
aPTT and HDR at various AT levels was found. How-
ever, receiver operating characteristic (ROC) analysis
suggested that to maintain an aPTT above 60 s, an AT
threshold of 42% or higher was observed when the HDR
was > 12 U/kg/h. ROC analysis also determined that no
thrombus was associated with an aPTT > 64 s and de-
creased bleeding was associated with a kaolin TEG reac-
tion time below 30 min [7].

Limitations
Many of the studies included in this review were retrospect-
ive, single-center studies with different endpoints, different
study designs, and different sample sizes. In order to pro-
vide a comprehensive review of the clinical controversies,
the authors included relevant neonatal, pediatric, and adult
studies. Since these patient populations have different de-
velopmental hemostatic differences and disease processes,
inferring universal conclusions to the general population is
difficult and one must take into account such differences
when reviewing and applying this data. In addition, each
study utilized different therapeutic targets, different dos-
ages, and different formulations making it difficult for phy-
sicians to infer conclusions in regard to dosing of UFH,
timing and therapeutic targets for AT supplementation,
and desired outcomes. Ultimately, if funding is available, a
meta-analysis of both pediatric and adult literature sur-
rounding anticoagulation management and AT supplemen-
tation on ECMO might prove beneficial.

Summary and recommendations
Current ELSO guidelines for anticoagulation during
ECMO recommend an initial heparin infusion rate of
7.5–20.0 units/kg/h [88]. With this large range and little
guidance regarding which laboratory tests to monitor,
many institutions have turned to literature and experi-
ence to develop their own heparin protocol for ECMO.
A survey study found that anticoagulation management
policies vary greatly by center [2], and another study
found that the use of a standardized anticoagulation
protocol is associated with a decrease in hemorrhagic
complications [86]. In addition, the guidelines suggest
supplementing AT during ECMO only when its defi-
ciency coexists with heparin resistance. As this review
suggests, this approach may not be sufficient. The actual
therapeutic AT target needed to achieve adequate antic-
oagulation is unknown, and correcting an AT level to an
arbitrary target endpoint may result in an adverse out-
come such as thrombosis or bleeding. In addition, this
review has shown that the use of one laboratory test to
monitor anticoagulation effect and determine thera-
peutic interventions is insufficient. Instead, it may be
more efficient for clinicians to examine the hemostatic
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system holistically with multiple laboratory tests that are
interpreted in the context of the patient and ECMO cir-
cuit conditions. Ultimately, increased knowledge of AT
use patterns and outcomes associated with its supplemen-
tation will help inform future trials to determine its effi-
cacy and safety. In addition, the authors recommend the
development of multicenter trials that examine outcomes
according to either AT activity-based indications or over-
all reduced effect of heparin on thrombin and fibrin for-
mation. Trials designed should include both age- and
weight-based criteria to follow for both AT dosing and
threshold recommendations. Furthermore, we would
recommend population pharmacokinetic and pharmaco-
dynamic modeling, as well as prospective trials, to delin-
eate the superior means of adjusting heparin therapy and
AT supplementation to prevent adverse clinical outcomes.
There is currently an ongoing pilot prospective random-
ized controlled, single-blinded, multicenter study that is
evaluating the efficacy of a protocol of AT supplementa-
tion in decreasing heparin dose and improving anticoagu-
lation adequacy in adult patients supported on ECMO for
respiratory failure [89]. Such studies should also be per-
formed in both children and neonates.
Overall, our current recommendations are to use mul-

tiple laboratory tests including but not limited to anti-Xa,
TEG®/ROTEM, PTT, and AT levels. At our center, we
have developed an algorithm for managing anticoagula-
tion that utilizes multiple laboratory tests along with a
specific anticoagulation team that oversees the anticoagu-
lation management of these patients and monitors for
bleeding and thrombotic outcomes. Of all the aspects of
clinical care in ECMO, anticoagulation is the least under-
stood due to the myriad of complexities of coagulation
physiology that are compounded by age-related develop-
mental hemostatic changes, variabilities in critical illness,
and changes within the blood-circuit interaction. As stated
above, more studies are needed to develop more algo-
rithms that would target different age groups including
neonates, pediatric patients, and adults.

Conclusions
Despite previously published ELSO anticoagulation
guidelines from 2014, there remains no standardized
method to achieve and monitor anticoagulation during
ECMO [88]. Significant practice variation exists across
centers concerning anticoagulation management as there
is no evidence-based consensus regarding which tests,
test thresholds, and interventions can optimize throm-
botic and bleeding complications and outcomes [2].
Certain observations are noteworthy. First, despite its

frequent use for ECMO anticoagulation, current research
suggests that using ACT alone to guide anticoagulation
may not be optimal. As a result, determining what add-
itional tests should be evaluated and in what sequence is

important to determine. In addition, our review of the lit-
erature suggests that monitoring antithrombin levels is an
important component of any anticoagulation management
protocol. Despite the heterogeneity of coagulation moni-
toring and interventions in ECMO centers, the implemen-
tation of evidence-based protocols for anticoagulation and
transfusion is needed.
We believe that optimal anticoagulation, including the

indications for antithrombin supplementation, relies on
a comprehensive and standardized evaluation of multiple
measures of hemostasis including aPTT, ant-Xa, TEG®,
AT activity, platelet count, and fibrinogen concentration.
Anticoagulation should be titrated based on the overall
hemostatic state of the patient as evidenced by labora-
tory evaluation and should be put in context with the
clinical hemostatic state of the patient and his or her
unique risk of bleeding or thrombotic complications.
Development of more accurate measures of hemostasis
that can incorporate high sheer stress and biologic
surfaces such as microfluidic models is needed to more
accurately assess the hemostatic potential of patients on
ECMO to allow for more precise titration of anticoagu-
lation and antithrombin levels when indicated [90, 91].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13054-020-2726-9.

Additional file 1. Summary of Antithrombin Studies in ECMO Patients.
A review of the literature discussing AT supplementation based on an AT
target activity level.

Abbreviations
ACT: Activated clotting time; Anti-Xa: Anti-factor Xa; aPTT: Activated partial
thromboplastin time; AT: Antithrombin; CJD: Creutzfeldt-Jakob disease;
CT: Clotting time; ECLS: Extracorporeal life support; ECMO: Extracorporeal
membrane oxygenation; ELSO: Extracorporeal Life Support Organization;
FFP: Fresh frozen plasma; HDR: Heparin dose rate; INR: International
normalized ratio; IU: International unit; IV: Intravenous; KTEG R-time: Kaolin
TEG reaction time; PAI: Plasminogen activator inhibitor; pRBCs: Packed red
blood cells; PT: Prothrombin time; ROC: Receiver operating characteristic;
ROTEM: Rotational thromboelastometry; TACO: Transfusion-associated
circulatory overload; TEG®: Thromboelastography; t-PA: Tissue plasminogen
activator; TRALI: Transfusion-related acute lung injury; U: Units;
UFH: Unfractionated heparin; US: United States; VA: Venoarterial;
vCJD: Variant Creutzfeldt-Jakob disease; VTE: Venous thromboembolism;
VV: Venovenous

Acknowledgements
Not applicable

Authors’ contributions
MMC contributed to the literature search and manuscript writing. SB
contributed to the literature search and manuscript writing. MC contributed
to the literature search and manuscript writing. JHL contributed to the
manuscript writing. PCS contributed to the constructed outline for
manuscript and manuscript writing. All authors read and approved the final
manuscript.

Authors’ information
Not applicable

Chlebowski et al. Critical Care           (2020) 24:19 Page 9 of 12

https://doi.org/10.1186/s13054-020-2726-9
https://doi.org/10.1186/s13054-020-2726-9


Funding
Support for publication fees provided by LFB-USA.

Availability of data and materials
Not applicable

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
PCS—consultant for LFB-USA and Instrumentation Labs.
JHL—research steering committees, data safety monitoring boards, or
advisory boards for Boehringer-Ingelheim, CSL Behring, Instrumentation
Laboratories, Octapharma, Leading Biosciences, and Merck.
MC—consultant for LFB-USA.
The other authors declare that they have no competing interests.

Author details
1Department of Pediatrics, Division of Pediatric Cardiology, Cardiovascular
Intensive Care Unit, Cincinnati Children’s Hospital/University of Cincinnati
College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229, USA.
2Department of Pediatrics, Division of Critical Care Medicine, St. Joseph’s
Children’s Hospital/University of Pittsburg School of Medicine, Tampa, FL,
USA. 3LFB-USA, Framingham, MA, USA. 4Department of Anesthesiology,
Critical Care, and Surgery, Duke University School of Medicine, Durham, NC,
USA. 5Department of Pediatrics, Division of Pediatric Critical Care Medicine,
Washington University School of Medicine, St. Louis, MO, USA.

Received: 23 August 2019 Accepted: 1 January 2020

References
1. Oliver WC. Anticoagulation and coagulation management for ECMO. Semin

Cardiothorac Vasc Anesth. 2009;13(3):154–75.
2. Bembea MM, Annich G, Rycus P, Oldenburg G, Berkowitz I, Pronovost P.

Variability in anticoagulation management of patients on extracorporeal
membrane oxygenation: an international survey. Pediatr Crit Care Med.
2013;14(2):e77–84.

3. Hessel EA 2nd. A brief history of cardiopulmonary bypass. Semin
Cardiothorac Vasc Anesth. 2014;18(2):87–100.

4. Monagle P, Chan AKC, Goldenberg NA, Ichord RN, Journeycake JM, Nowak-
Gottl U, Vesely SK. Antithrombotic therapy in neonates and children:
antithrombotic therapy and prevention of thrombosis, 9th ed: American
College of Chest Physicians Evidence-Based Clinical Practice Guidelines.
Chest. 2012;141(2 Suppl):e737S–801S.

5. Garvin S, Muehlschlegel JD, Perry TE, Chen J, Liu KY, Fox AA, Collard CD,
Aranki SF, Shernan SK, Body SC. Postoperative activity, but not preoperative
activity, of antithrombin is associated with major adverse cardiac events
after coronary artery bypass graft surgery. Anesth Analg. 2010;111(4):862–9.

6. Iapichino GE, Protti A, Andreis DT, Panigada M, Artoni A, Novembrino C,
Pesenti A, Gattinoni L. Antithrombin during extracorporeal membrane
oxygenation in adults: national survey and retrospective analysis. ASAIO J.
2019;65(3):257–63.

7. Bingham KR, Riley JB, Schears GJ. Anticoagulation management during first
five days of infant-pediatric extracorporeal life support. J Extra Corpor
Technol. 2018;50(1):30–7.

8. Niebler RA, Christensen M, Berens R, Wellner H, Mikhailov T, Tweddell JS.
Antithrombin replacement during extracorporeal membrane oxygenation.
Artif Organs. 2011;35(11):1024–8.

9. Thiagarajan RR, Barbaro RP, Rycus PT, McMullan DM, Conrad SA, Fortenberry
JD, Paden ML, centers Em. Extracorporeal life support organization registry
international report 2016. ASAIO J. 2017;63(1):60–7.

10. Barbaro RP, Paden ML, Guner YS, Raman L, Ryerson LM, Alexander P,
Nasr VG, Bembea MM, Rycus PT, Thiagarajan RR, et al. Pediatric
extracorporeal life support organization registry international report
2016. ASAIO J. 2017;63(4):456–63.

11. Reed RC, Rutledge JC. Laboratory and clinical predictors of thrombosis and
hemorrhage in 29 pediatric extracorporeal membrane oxygenation
nonsurvivors. Pediatr Dev Pathol. 2010;13(5):385–92.

12. Dalton HJ, Reeder R, Garcia-Filion P, Holubkov R, Berg RA, Zuppa A, Moler
FW, Shanley T, Pollack MM, Newth C, et al. Factors associated with bleeding
and thrombosis in children receiving extracorporeal membrane
oxygenation. Am J Respir Crit Care Med. 2017;196(6):762–71.

13. Esper SAWI, Subramaniam K, John Wallisch W, Levy JH, et al. Adult
extracorporeal membrane oxygenation: an international survey of
transfusion and anticoagulation techiques. Vox Sang. 2017;112(5):443–52.

14. Rastan AJ, Lachmann N, Walther T, Doll N, Gradistanac T, Gommert JF,
Lehmann S, Wittekind C, Mohr FW. Autopsy findings in patients on
postcardiotomy extracorporeal membrane oxygenation (ECMO). Int J Artif
Organs. 2006;29(12):1121–31.

15. Saini A, Spinella PC. Management of anticoagulation and hemostasis for
pediatric extracorporeal membrane oxygenation. Clin Lab Med. 2014;34(3):
655–73.

16. Doyle AJ, Hunt BJ. Current understanding of how extracorporeal membrane
oxygenators activate haemostasis and other blood components. Front Med
(Lausanne). 2018;5:352.

17. Vincent F, Rauch A, Loobuyck V, Robin E, Nix C, Vincentelli A, Smadja DM,
Leprince P, Amour J, Lemesle G, et al. Arterial pulsatility and circulating von
Willebrand factor in patients on mechanical circulatory support. J Am Coll
Cardiol. 2018;71(19):2106–18.

18. Koster A, Ljajikj E, Faraoni D. Traditional and non-traditional anticoagulation
management during extracorporeal membrane oxygenation. Ann
Cardiothorac Surg. 2019;8(1):129–36.

19. Dzik WH. The James Blundell Award Lecture 2006: transfusion and the
treatment of haemorrhage: past, present and future. Transfus Med. 2007;
17(5):367–74.

20. Hoffman M, Monroe DM. Coagulation 2006: a modern view of hemostasis.
Hematol Oncol Clin North Am. 2007;21(1):1–11.

21. Spinella PC. The blind physicians and the elephant on extracorporeal
membrane oxygenation. Pediatr Crit Care Med. 2013;14(2):231–3.

22. Spinler SA, Wittkowsky AK, Nutescu EA, Smythe MA. Anticoagulation
monitoring part 2: unfractionated heparin and low-molecular-weight
heparin. Ann Pharmacother. 2005;39(7–8):1275–85.

23. Ammar T, Fisher CF, Sarier K, Coller BS. The effects of thrombocytopenia on
the activated coagulation time. Anesth Analg. 1996;83(6):1185–8.

24. Finley A, Greenberg C. Review article: heparin sensitivity and resistance:
management during cardiopulmonary bypass. Anesth Analg. 2013;116(6):
1210–22.

25. Lawson DS, Walczak R, Lawson AF, Shearer IR, Ing R, Schulman S, Kern F,
Jaggers J. North American neonatal extracorporeal membrane oxygenation
(ECMO) devices: 2002 survey results. J Extra Corpor Technol. 2004;36(1):16–21.

26. Despotis GJ, Summerfield AL, Joist JH, Goodnough LT, Santoro SA,
Spitznagel E, Cox JL, Lappas DG. Comparison of activated coagulation time
and whole blood heparin measurements with laboratory plasma anti-Xa
heparin concentration in patients having cardiac operations. J Thorac
Cardiovasc Surg. 1994;108(6):1076–82.

27. Colby CE, Sheehan A, Benitz W, Van Meurs K, Halamek LP, Moss RL.
Maintaining adequate anticoagulation on extracorporeal membrane
oxygenation therapy: hemochron junior low range versus hemochron 400. J
Extra Corpor Technol. 2003;35(1):35–8.

28. Chan AK, Leaker M, Burrows FA, Williams WG, Gruenwald CE, Whyte L,
Adams M, Brooker LA, Adams H, Mitchell L, et al. Coagulation and
fibrinolytic profile of paediatric patients undergoing cardiopulmonary
bypass. Thromb Haemost. 1997;77(2):270–7.

29. Owings JT, Pollock ME, Gosselin RC, Ireland K, Jahr JS, Larkin EC.
Anticoagulation of children undergoing cardiopulmonary bypass is
overestimated by current monitoring techniques. Arch Surg. 2000;
135(9):1042–7.

30. Nankervis CA, Preston TJ, Dysart KC, Wilkinson WD, Chicoine LG, Welty SE,
Nelin LD. Assessing heparin dosing in neonates on venoarterial
extracorporeal membrane oxygenation. ASAIO J. 2007;53(1):111–4.

31. Khaja WA, Bilen O, Lukner RB, Edwards R, Teruya J. Evaluation of heparin
assay for coagulation management in newborns undergoing ECMO. Am J
Clin Pathol. 2010;134(6):950–4.

32. Bembea MM, Schwartz JM, Shah N, Colantuoni E, Lehmann CU, Kickler T,
Pronovost P, Strouse JJ. Anticoagulation monitoring during pediatric
extracorporeal membrane oxygenation. ASAIO J. 2013;59(1):63–8.

Chlebowski et al. Critical Care           (2020) 24:19 Page 10 of 12



33. Liveris A, Bello RA, Friedmann P, Duffy MA, Manwani D, Killinger JS,
Rodriquez D, Weinstein S. Anti-factor Xa assay is a superior correlate of
heparin dose than activated partial thromboplastin time or activated
clotting time in pediatric extracorporeal membrane oxygenation*. Pediatr
Crit Care Med. 2014;15(2):e72–9.

34. Atallah S, Liebl M, Fitousis K, Bostan F, Masud F. Evaluation of the activated
clotting time and activated partial thromboplastin time for the monitoring
of heparin in adult extracorporeal membrane oxygenation patients.
Perfusion. 2014;29(5):456–61.

35. Sklar MC, Sy E, Lequier L, Fan E, Kanji HD. Anticoagulation practices during
venovenous extracorporeal membrane oxygenation for respiratory failure. A
systematic review. Ann Am Thorac Soc. 2016;13(12):2242–50.

36. Ranucci M, Baryshnikova E, Cotza M, Carboni G, Isgro G, Carlucci C, Ballotta
A, Group for the S, Clinical Outcome R. Coagulation monitoring in
postcardiotomy ECMO: conventional tests, point-of-care, or both? Minerva
Anestesiol. 2016;82(8):858–66.

37. Conlan MG, Folsom AR, Finch A, Davis CE, Sorlie P, Marcucci G, Wu KK.
Associations of factor VIII and von Willebrand factor with age, race, sex, and
risk factors for atherosclerosis. The Atherosclerosis Risk in Communities
(ARIC) Study. Thromb Haemost. 1993;70(3):380–5.

38. Olson JD, Arkin CF, Brandt JT, Cunningham MT, Giles A, Koepke JA, Witte
DL. College of American Pathologists Conference XXXI on laboratory
monitoring of anticoagulant therapy: laboratory monitoring of
unfractionated heparin therapy. Arch Pathol Lab Med. 1998;122(9):782–98.

39. Bates SM, Weitz JI, Johnston M, Hirsh J, Ginsberg JS. Use of a fixed activated
partial thromboplastin time ratio to establish a therapeutic range for
unfractionated heparin. Arch Intern Med. 2001;161(3):385–91.

40. Ignjatovic V, Lai C, Summerhayes R, Mathesius U, Tawfilis S, Perugini MA,
Monagle P. Age-related differences in plasma proteins: how plasma proteins
change from neonates to adults. PLoS One. 2011;6(2):e17213.

41. Kostousov V, Nguyen K, Hundalani SG, Teruya J. The influence of free
hemoglobin and bilirubin on heparin monitoring by activated partial
thromboplastin time and anti-Xa assay. Arch Pathol Lab Med. 2014;138(11):
1503–6.

42. Delmas C, Jacquemin A, Vardon-Bounes F, Georges B, Guerrero F,
Hernandez N, Marcheix B, Seguin T, Minville V, Conil JM, et al.
Anticoagulation monitoring under ECMO support: a comparative study
between the activated coagulation time and the anti-Xa activity assay. J
Intensive Care Med. 2018. p. 885066618776937.

43. De Luca L, Sardella G, Davidson CJ, De Persio G, Beraldi M, Tommasone T,
Mancone M, Nguyen BL, Agati L, Gheorghiade M, et al. Impact of
intracoronary aspiration thrombectomy during primary angioplasty on left
ventricular remodelling in patients with anterior ST elevation myocardial
infarction. Heart. 2006;92(7):951–7.

44. Alexander DC, Butt WW, Best JD, Donath SM, Monagle PT, Shekerdemian LS.
Correlation of thromboelastography with standard tests of anticoagulation
in paediatric patients receiving extracorporeal life support. Thromb Res.
2010;125(5):387–92.

45. Prakash S, Wiersema UF, Bihari S, Roxby D. Discordance between ROTEM(R)
clotting time and conventional tests during unfractionated heparin-based
anticoagulation in intensive care patients on extracorporeal membrane
oxygenation. Anaesth Intensive Care. 2016;44(1):85–92.

46. Panigada M, E Iapichino G, Brioni M, Panarello G, Protti A, Grasselli G,
Occhipinti G, Novembrino C, Consonni D, Arcadipane A, et al.
Thromboelastography-based anticoagulation management during
extracorporeal membrane oxygenation: a safety and feasibility pilot study.
Ann Intensive Care. 2018;8(1):7.

47. Hincker A, Feit J, Sladen RN, Wagener G. Rotational thromboelastometry
predicts thromboembolic complications after major non-cardiac surgery.
Crit Care. 2014;18(5):549.

48. Akay OM, Ustuner Z, Canturk Z, Mutlu FS, Gulbas Z. Laboratory investigation
of hypercoagulability in cancer patients using rotation thrombelastography.
Med Oncol. 2009;26(3):358–64.

49. Davies NA, Harrison NK, Sabra A, Lawrence MJ, Noble S, Davidson SJ, Evans
VJ, Morris RH, Hawkins K, Williams PR, et al. Application of ROTEM to assess
hypercoagulability in patients with lung cancer. Thromb Res. 2015;135(6):
1075–80.

50. Thorson CM, Van Haren RM, Ryan ML, Curia E, Sleeman D, Levi JU,
Livingstone AS, Proctor KG. Persistence of hypercoagulable state after
resection of intra-abdominal malignancies. J Am Coll Surg. 2013;216(4):580–
9 discussion 589-590.

51. Akay OM, Karagulle M, Kus G, Mutlu FS, Gunduz E. Thrombelastographic
evaluation of the influence of 2-RBC apheresis on donor's coagulation
system. Transfus Apher Sci. 2013;48(3):387–90.

52. Gorlinger KDD, Mueller-Beissenhirtz H, Paul A, et al.
Thromboelastometry-based perioperative coagulation management in
visceral surgery and liver transplantation: experience of 10 years and
1105 LTX. Liver Transpl. 2010;16:S86.

53. Shimauchi T, Yamaura K, Higashi M, Abe K, Yoshizumi T, Hoka S. Fibrinolysis in
living donor liver transplantation recipients evaluated using
thromboelastometry: impact on mortality. Transplant Proc. 2017;49(9):2117–21.

54. Romlin BS, Wahlander H, Berggren H, Synnergren M, Baghaei F, Nilsson K,
Jeppsson A. Intraoperative thromboelastometry is associated with reduced
transfusion prevalence in pediatric cardiac surgery. Anesth Analg. 2011;
112(1):30–6.

55. Straub A, Schiebold D, Wendel HP, Hamilton C, Wagner T, Schmid E, Dietz
K, Ziemer G. Using reagent-supported thromboelastometry (ROTEM) to
monitor haemostatic changes in congenital heart surgery employing deep
hypothermic circulatory arrest. Eur J Cardiothorac Surg. 2008;34(3):641–7.

56. Dunning J, Versteegh M, Fabbri A, Pavie A, Kolh P, Lockowandt U, Nashef
SA, Audit E, Guidelines C. Guideline on antiplatelet and anticoagulation
management in cardiac surgery. Eur J Cardiothorac Surg. 2008;34(1):73–92.

57. de Lange NM, Lance MD, de Groot R, Beckers EA, Henskens YM, Scheepers
HC. Obstetric hemorrhage and coagulation: an update.
Thromboelastography, thromboelastometry, and conventional coagulation
tests in the diagnosis and prediction of postpartum hemorrhage. Obstet
Gynecol Surv. 2012;67(7):426–35.

58. Huissoud C, Carrabin N, Audibert F, Levrat A, Massignon D, Berland M,
Rudigoz RC. Bedside assessment of fibrinogen level in postpartum
haemorrhage by thrombelastometry. BJOG. 2009;116(8):1097–102.

59. Rugeri L, Levrat A, David JS, Delecroix E, Floccard B, Gros A, Allaouchiche B,
Negrier C. Diagnosis of early coagulation abnormalities in trauma patients
by rotation thrombelastography. J Thromb Haemost. 2007;5(2):289–95.

60. Schochl H, Nienaber U, Hofer G, Voelckel W, Jambor C, Scharbert G, Kozek-
Langenecker S, Solomon C. Goal-directed coagulation management of
major trauma patients using thromboelastometry (ROTEM)-guided
administration of fibrinogen concentrate and prothrombin complex
concentrate. Crit Care. 2010;14(2):R55.

61. Shaz BH, Dente CJ, Nicholas J, MacLeod JB, Young AN, Easley K, Ling Q,
Harris RS, Hillyer CD. Increased number of coagulation products in
relationship to red blood cell products transfused improves mortality in
trauma patients. Transfusion. 2010;50(2):493–500.

62. Furukawa S, Nogami K, Ogiwara K, Yada K, Minami H, Shima M. Systematic
monitoring of hemostatic management in hemophilia a patients with
inhibitor in the perioperative period using rotational thromboelastometry. J
Thromb Haemost. 2015;13(7):1279–84.

63. Nogami K. The utility of thromboelastography in inherited and acquired
bleeding disorders. Br J Haematol. 2016;174(4):503–14.

64. Akay OM. The double hazard of bleeding and thrombosis in hemostasis
from a clinical point of view: a global assessment by rotational
thromboelastometry (ROTEM). Clin Appl Thromb Hemost. 2018;24(6):850–8.

65. Gorlinger K, Fries D, Dirkmann D, Weber CF, Hanke AA, Schochl H.
Reduction of fresh frozen plasma requirements by perioperative point-of-
care coagulation management with early calculated goal-directed therapy.
Transfus Med Hemother. 2012;39(2):104–13.

66. Henderson N, Sullivan JE, Myers J, Wells T, Calhoun A, Berkenbosch J,
Tzanetos DT. Use of thromboelastography to predict thrombotic
complications in pediatric and neonatal extracorporeal membranous
oxygenation. J Extra Corpor Technol. 2018;50(3):149–54.

67. Levy JH, Sniecinski RM, Welsby IJ, Levi M. Antithrombin: anti-
inflammatory properties and clinical applications. Thromb Haemost.
2016;115(4):712–28.

68. Rodgers GM. Role of antithrombin concentrate in treatment of hereditary
antithrombin deficiency. An update. Thromb Haemost. 2009;101(5):806–12.

69. Horie S, Ishii H, Kazama M. Heparin-like glycosaminoglycan is a receptor for
antithrombin III-dependent but not for thrombin-dependent prostacyclin
production in human endothelial cells. Thromb Res. 1990;59(6):895–904.

70. Uchiba M, Okajima K, Murakami K, Okabe H, Takatsuki K. Effects of
antithrombin III (AT III) and Trp49-modified AT III on plasma level of 6-keto-
PGF1 alpha in rats. Thromb Res. 1995;80(3):201–8.

71. Okajima K, Uchiba M. The anti-inflammatory properties of antithrombin III:
new therapeutic implications. Semin Thromb Hemost. 1998;24(1):27–32.

Chlebowski et al. Critical Care           (2020) 24:19 Page 11 of 12



72. Appel IM, Grimminck B, Geerts J, Stigter R, Cnossen MH, Beishuizen A. Age
dependency of coagulation parameters during childhood and puberty. J
Thromb Haemost. 2012;10(11):2254–63.

73. Williams MD, Chalmers EA, Gibson BE, Haemostasis, Thrombosis Task Force
BCfSiH. The investigation and management of neonatal haemostasis and
thrombosis. Br J Haematol. 2002;119(2):295–309.

74. Tarango C, Manco-Johnson MJ. Pediatric thrombolysis: a practical approach.
Front Pediatr. 2017;5:260.

75. Niimi KS, Fanning JJ. Initial experience with recombinant antithrombin to
treat antithrombin deficiency in patients on extracorporeal membrane
oxygenation. J Extra Corpor Technol. 2014;46(1):84–90.

76. Therapeutics G. Thrombate III prescribing information. In: Grifols US FDA;
Revised; 2019.

77. FDA LGBU: ATryn antithrombin (recombinant) prescribing information. 1999.
78. Wong TE, Huang YS, Weiser J, Brogan TV, Shah SS, Witmer CM.

Antithrombin concentrate use in children: a multicenter cohort study. J
Pediatr. 2013;163(5):1329–34 e1321.

79. FDA GU: Thrombate III (antithrombin III [human]) prescribing information.
Revised 2019.

80. Levy JH, Montes F, Szlam F, Hillyer CD. The in vitro effects of antithrombin
III on the activated coagulation time in patients on heparin therapy. Anesth
Analg. 2000;90(5):1076–9.

81. Ryerson LM, Lequier LL. Anticoagulation management and monitoring
during pediatric extracorporeal life support: a review of current issues. Front
Pediatr. 2016;4:67.

82. Marshall AL, Levine M, Howell ML, Chang Y, Riklin E, Parry BA, Callahan RT,
Okechukwu I, Ayres AM, Nahed BV, et al. Dose-associated pulmonary
complication rates after fresh frozen plasma administration for warfarin
reversal. J Thromb Haemost. 2016;14(2):324–30.

83. Nelson KM, Hansen LA, Steiner ME, Fischer GA, Dehnel J, Gupta S.
Continuous antithrombin III administration in pediatric veno-arterial
extracorporeal membrane oxygenation. J Pediatr Pharmacol Ther. 2017;
22(4):266–71.

84. O'Meara LC, Alten JA, Goldberg KG, Timpa JG, Phillips J, Laney D, Borasino S.
Anti-xa directed protocol for anticoagulation management in children
supported with extracorporeal membrane oxygenation. ASAIO J. 2015;61(3):
339–44.

85. Irby K, Swearingen C, Byrnes J, Bryant J, Prodhan P, Fiser R. Unfractionated
heparin activity measured by anti-factor Xa levels is associated with the
need for extracorporeal membrane oxygenation circuit/membrane
oxygenator change: a retrospective pediatric study. Pediatr Crit Care Med.
2014;15(4):e175–82.

86. Northrop MS, Sidonio RF, Phillips SE, Smith AH, Daphne HC, Pietsch JB,
Bridges BC. The use of an extracorporeal membrane oxygenation
anticoagulation laboratory protocol is associated with decreased blood
product use, decreased hemorrhagic complications, and increased circuit
life. Pediatr Crit Care Med. 2015;16(1):66–74.

87. Kessel AD, Kline M, Zinger M, McLaughlin D, Silver P, Sweberg TM. The
impact and statistical analysis of a multifaceted anticoagulation strategy in
children supported on ECMO: performance and pitfalls. J Intensive Care
Med. 2017;32(1):59–67.

88. Organization ECLS. ELSO anticoagulation guideline. The Extracorporeal Life
Support Organization (ELSO). Ann Arbor; 2014. p. 2–17.

89. Panigada M, Spinelli E, Cucino A, Cipriani E, De Falco S, Panarello G,
Occhipinti G, Arcadipane A, Sales G, Fanelli V, et al. Antithrombin
supplementation during extracorporeal membrane oxygenation: study
protocol for a pilot randomized clinical trial. Trials. 2019;20(1):349.

90. Silva R, Grabowski EF. Flow devices to assess platelet function: historical
evolution and current choices. Semin Thromb Hemost. 2019;45(3):297–301.

91. Six KR, Devloo R, Van Aelst B, Vandekerckhove P, Feys HB, Compernolle V. A
microfluidic flow chamber model for platelet transfusion and hemostasis
measures platelet deposition and fibrin formation in real-time. J Vis Exp.
2017;120:1–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Chlebowski et al. Critical Care           (2020) 24:19 Page 12 of 12


	Abstract
	Background
	Bleeding and thrombosis during ECMO
	Methods for anticoagulation monitoring
	Activated clotting time
	Activated partial thromboplastin time
	Anti-factor Xa
	Viscoelastic tests
	Antithrombin

	Limitations of hemostasis monitoring and their interpretation
	Antithrombin replacement in ECMO
	Available products
	Heparin resistance
	Review of data surrounding antithrombin replacement strategies and controversies

	Outcomes in ECMO relating to AT supplementation
	Limitations
	Summary and recommendations
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Authors’ information
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

