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Abstract: To improve the detection ability of infrared small targets in complex backgrounds, an
improved detection algorithm YOLO-SASE is proposed in this paper. The algorithm is based on
the YOLO detection framework and SRGAN network, taking super-resolution reconstructed images
as input, combined with the SASE module, SPP module, and multi-level receptive field structure
while adjusting the number of detection output layers through exploring feature weight to improve
feature utilization efficiency. Compared with the original model, the accuracy and recall rate of the
algorithm proposed in this paper were improved by 2% and 3%, respectively, in the experiment, and
the stability of the results was significantly improved in the training process.

Keywords: infrared small target detection; super-resolution reconstruction; adaptive channel attention

1. Introduction

Compared with visible light, infrared imaging is less affected by fog, smoke, and
other atmospheric obstacles and provides clear images in all weather conditions. It has
been widely used in both civil and military fields [1]. For the small objects, due to the
long distance between the targets and the detector, the imaging size is extremely small,
occupying only dozens or even several pixels on the imaging plane. It also lacks detailed
information such as color and texture, which increases the difficulty of target detection.

The task of the detection algorithm is to distinguish the target from the background and
noise by extracting various features of the image, such as spatial domain features, frequency
domain features, time-domain features, etc. Spatial and frequency domain features can be
extracted from a single frame, while time-domain features must be extracted from multiple
frames. At present, single-frame methods commonly used in infrared detection of small
targets include filtering, local contrast, and frequency-domain transformation. When the
background is complex or the target SNR (Signal Noise Ratio) is low, they often lead to
more false alarms and require more parameter adjustment.

Deep learning methods have achieved good results in the field of target detection in
terms of detection speed and accuracy. At present, object detection networks represented
by Faster R-CNN [2], YOLO [3], SSD [4], etc., have shown fine performance with various
datasets. However, the detection effect of infrared weak and small targets in complex
backgrounds is not ideal in general. It is necessary to improve the characteristics of small
targets with few features and little information. In the field of infrared small target detection,
a batch of research using deep learning methods has appeared. Ju et al. [5] proposed an
image filtering module is proposed to obtain the confidence map, aiming to enhance the
response of infrared small targets and suppress the response of the background. Huang [6]
et al. used multiple well-designed local similarity pyramid modules to improve the capture
ability of infrared small target multi-scale features. Zhang et al. [7] proposed a method to
generate synthetic TIR data from RGB data in infrared tracking. Wu et al. [8] transformed
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the detection of small targets into the classification of their distribution and proposed a
classification network structure of a fully convolutional network domain. Ding et al. [9]
proposed a multi-scale deformable convolution SSD network structure by combining
pipeline filtering, and it performs better in multi-frame detection. Zhang et al. [10] used
the traditional image preprocessing method to make the infrared image closer to the RGB
image. To further improve the detection accuracy on the mainstream target detection
network but makes training more difficult.

To further improve the detection precision and recall of tiny targets, we propose a
multi-receptive field adaptive channel attention network based on the YOLO network and
image super-resolution reconstruction method. The main contributions of this paper are:

(1) The super-resolution model is used to reconstruct the fuzzy image, and the recon-
structed image is input into the network for detection. The experiment verifies that
the super-resolution reconstruction can improve the accuracy of target recognition.

(2) A novel Self-Adaption Squeeze-and-Excitation (SASE) module is proposed. The SASE
module can adaptively adjust the importance of different data channels in the training
process and improve the stability of the model.

(3) Drawing on the idea and method of multistage mixed dilatation convolution, the
high-level features and low-level features of the image are fused by adding the RFB
(Receptive field block) module, which increases the Receptive field and the expression
ability of the feature image.

2. Proposed Approach

In the mainstream target detection network, the repeated downsampling in the convo-
lutional layer is easy to cause the feature loss of small targets. We use the super-resolution
method to upsampling a small target with a few pixels. By increasing the number of pixels
of the small target before entering the convolutional layer, it can perform better in feature
extraction and target detection. The target detection process is shown in Figure 1.
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Figure 1. Target detection process.

2.1. Infrared Image Super-Resolution Reconstruction Method Based on Generative
Adversarial Network

The main information of infrared small targets in the complex background is high-
frequency information. The signal of small targets can be retained in the super-resolution
reconstruction process by using the generative adversarial network, which improves the
detection precession of the model for small targets.

SRGAN (Super-Resolution Generative Adversarial Network) adds a discriminator
network to the residual network-based image super-resolution reconstruction method. Its
advantages are as follows: The mean square loss function (MSE) is replaced by antagonism
loss and content loss. A generative adversarial network is introduced to replace the content
loss of traditional pixel space with adversarial similarity. A deep residual network is
introduced to extract richer image details.
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The structure of the Generator Network and Discriminator Network of SRGAN is
shown in Figure 2. The generator includes multiple residual modules, as well as a Batch Nor-
malization (BN) and activation function layers. The discriminator contains eight convolution
layers, activated by the Leaky ReLU function and finally connected to the full connection
layer. SRGAN network uses perceptual loss and adversarial loss to achieve super-resolution
reconstruction, which increases the clarity and fidelity of the restored image.

Generator Network

Dense(1024)
Leaky Relu
Dense(1)

Leaky Relu
Leaky Relu

Figure 2. SRGAN generator G and discriminator D model.

2.2. Infrared Small Target Detection Network

To detect infrared tiny targets quickly and accurately in a complex environment, multi-
layer feature fusion is needed to improve the feature expression ability of the network
for targets of different scales. After comparing the speed and accuracy of target detection
algorithms based on regression, this paper adopts the YOLOvV5 algorithm as the basic
network of infrared small target detection. Darknet53 is used as the backbone network for
feature extraction, and its construction method draws on the residual structure of Resnet to
further enhance feature extraction capability [11]. The SASE module (self-adaption squeeze
and congestion) is added after the backbone network and just before the detection layer.
This improves the channel concentration of the network and makes network training more
stable. A lower dimension YOLO detection scale is added to the detection output layer,
which makes the detection layer correspond to more pixel values. Multi-layer feature
fusion and multi-scale target detection are carried out by SPP(Spatial Pyramid Pooling)
structure. A multi-receptive field module RFB (Receptive field block) composed of mixed
expansion convolution is added to the lower two detection scales. The network structure is
shown in Figure 3.

To increase the amount of information expressed by infrared image features and
further improve the ability of the network to express features, an SPP module, as shown
in Figure 4, was added to the network’s high-level semantic image detection layer. With
the SPP module, the feature images used for target detection are fused with local features
and global features, enriching the expression ability of feature images. The process is as
follows: First, the input features are convolved to halve the number of channels. Then,
the maxpooling of different sizes is carried out. The core size of pooling is 5, 9, and 13,
respectively, and the step size is 1. Finally, the three pooling layers are combined with the
original feature graph after downsampling and input to the next convolutional layer for
feature learning.
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Figure 3. Network structure diagram
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Figure 4. SPP module.

The high dimension feature graph information is obtained by the SASE modules at
each detection layer branch behind the feature extraction backbone network. The structure
of the SASE module is shown in Figure 5. It is based on the SEnet (squeeze and congestion
networks) structure widely used in residual [12] and inception networks [13]. In the
process of network training, the feature graph with a greater detection function is given
a higher weight, thus speeding up the network training and improving the ability of
the whole network to select and capture features. In the SASE module, the similarity
measure of channel weight transformation is added. The Pearson correlation coefficient
is used to measure the similarity of the two tensors x; and x;. For the transformation less
than the similarity threshold «, tensor addition of residual structure is adopted. For the
transformation greater than the similarity threshold «, direct replacement is adopted.

f—{ (x1+x2)/2, fi(x1,x2) <w )

x2, fi(x1,%2) > a

where x1 is the input tensor, x; is the output tensor, f; is the Pearson correlation coefficient
for calculating the weight of channel C in the two tensors, « is the similarity threshold.
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Figure 5. SASE module.

As shown in Figure 6, the RFB module [14] is added to the two low-level detection
output layers, referring to the idea of integrating high-level semantic features with low-
level detail features of the feature pyramid. High-level semantic information is added
to the low-level detection output layer that pays attention to detailed information, thus
strengthening the feature expression ability of the network for multi-scale targets. The RFB
module is to connect 1 x 1,3 x 3, and a5 x 5 convolution kernel, respectively, through
two 1 x 1 convolution layers and combine three 3 x 3 convolution kernels with expansion
rates of 1, 3, and 5, respectively, to achieve the effect of covering a larger area through
concatenate splicing, while the central area has a larger weight.

® + o —
1x1 Conv I ‘
3x3 Conv ‘ t
MY £ B B
+
5x5 Conv

Figure 6. RFB module.

3. Experiment and Analysis

To verify the ability of the detection network proposed in this paper to detect small
infrared targets in a complex background, experiments were carried out on infrared target
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datasets in different backgrounds. Experiments were designed to verify the effectiveness
of the image reconstruction methods and network modules. The detection results were
compared with existing typical network models.

3.1. Experimental Details

The details of the relevant parameters of the experiment are shown in Table 1 below.
The training process is accelerated by GPU.

Table 1. Experimental environmental parameters.

Parameters

a dataset for infrared detection and tracking of dim-small aircraft

Dataset targets underground/air background [15]
Environment Ubuntu
Framework Pytorch YOLO
CPU Intel(R) Xeon(R) Gold 5218 CPU
GPU Tesla T4
Memory 32 GB
Optimal Momentum, 0.937
Learning rate Initial learning rate 0.001, cosine function
Batch Size 32
Epoch 200

The dataset covers the sky, ground, and other backgrounds as well as a variety of
scenes, totaling 22 pieces of data, 30 tracks, 16,177 frames of images, and 16,944 targets.
Considering that the total number of images is large and the time and hardware require-
ments for network training are high, this paper evenly selected one-fifth of the images as
the experiment dataset and divides it into training (90%) and test sets (10%). Part of the
infrared small target dataset is shown in Figure 7.

Figure 7. Infrared small target dataset.

3.2. Contrast Test of Reconstruction Image

To evaluate the effect of image reconstruction, Peak Signal to Noise Ratio (PSNR),
Structural Similarity (SSIM), precision, and recall rate of the target detection network are
used. Figure 8 shows the effect of bilinear interpolation, nearest-neighbor interpolation, and
SRGAN network for the quadruple upsampling reconstruction of infrared small targets.
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Origin 256+256 Bilinear 1024+1024

Nearest 1024+1024 SRgan 1024+1024

Figure 8. Image reconstruction of infrared small target by quadruple upsampling.

PSNR is inversely proportional to the logarithm of mean square error (MSE) of the
SR image, as shown in Formula (2). PSNR can reflect the noise level of the image and
represent the distortion of the reconstructed image. The larger the value is, the better the
reconstructed image will be.

W x H (2" —1)?
ZO <x< W[IHR(’W) - Iszz(x,y)]2
O<y< H

PSNR = 10 x log @)

where H and W are the height and width of the image, respectively, (x, y) are the coordinates
of each pixel point.

SSIM calculated by Formula (3) reflects the similarity of brightness, contrast, and
structure between generated image SR and high-resolution image HR.

(2unrptsr + C1)(20HR sr + C2)
(MR + Heg +C1) (0Fg + 03 +Ca)

SSIM = 3)

where y represents the gray mean value, o represents variance, C; and C, are constants
that keep the equation valid.

The evaluation indexes were calculated for the original images and reconstructed
images by different methods shown in Table 2. Compared with Bilinear and Nearest,
SRGAN had better performance in PSNR and SSIM, which means that the reconstructed
image by SRGAN is closer to the original image. At the same time, the SRGAN method has
a better value than the original image in precision and recall rate.

Table 2. PSNR results of image reconstruction and target recognition network detection results.

Methods PSNR SSIM Precision/% Recall/%
Original - - 89.07 67.53
Bilinear 30.06 0.8894 88.98 60.63
Nearest 32.31 0.8655 78.97 59.04
SRGAN 41.86 0.9836 90.03 68.08

Compared with the bilinear and nearest, the SRGAN method takes more time to
calculate, the computational cost is 0.92 s for each image in super-resolution by SRGAN.
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However, the SRGAN method has a better effect on image reconstruction and subsequent
target detection. The high time consumption is caused by the SRGAN method itself, which
is expected to be solved in the follow-up research of super-resolution methods. Moreover,
higher PSNR and SSIM results in higher confidence scores and detection performance in
the target detection network.

According to the statistics in Figure 9, the x-axis represents the target confidence scores
of different segments from 0 to 1, and the y-axis represents the number of images placed in
this segment. Compared with the original image, the confidence score of the reconstruction
image with the super-resolution has significantly improved. The number of undetected
images with confidence less than 0.1 has significantly decreased, and the number of images
with a different confidence level higher than 0.1 has increased.

Confidence scores of target detection networks

1800 1653

8

8

1600
1400
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1200
1000
800
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205 541
434
4 365 307
294 T
185 167

2 | ] M

5 = —l = —

0~01

0.1~02 02~03 03~04 04~05 05~06 06~07 07~08 08~09
m Origin m SR

Figure 9. The confidence score statistical histogram of Origin and SR images in target recognition
network detection.

The experimental results are shown in Figure 10. As can be seen from Figure 9, the
confidence score of the reconstructed images is higher than the original images, which
means it made small targets easier to be detected in images.

Origin Origin

Figure 10. Example of confidence degree of the partial original image and reconstructed image in
target recognition network detection.

3.3. Contrast Test of Network Structure

To evaluate the detection effect of infrared small targets, average precision (AP),
average recall (AR), and frame per second (FPS) were used as evaluation indexes. To verify
the effectiveness and reliability of the proposed detection algorithm, the experiment was
divided into three parts: overall effect comparison, module improvement comparison, and
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ablation experiment. Original infrared images were used in the training set. Figure 11a
shows that, compared with the origin YOLO algorithm, the accuracy of YOLO_SASE
proposed in this paper was significantly improved after training 50 epochs and finally
achieved a higher accuracy level. In Figure 11b of recall rate, the red line is the original
data of YOLO_SASE, the blue line is the original data of YOLO_origin, the green line is the
smoothed YOLO_SASE data, and the purple line is the smoothed YOLO origin data. It can
be seen that the recall rate of the YOLO_SASE is basically higher than that of the original
method; that is, the improved algorithm YOLO_SASE is superior to the original algorithm
in overall effect.

1.0
0.8
0.6
o
<
0.4
—— YOLO_SASE
o —— YOLO_SASE 1 0.2 —— YOLO origin
' —— YOLO origin smooth YOLO SASE
0.0 X , . 0.0 | = smooth YOLO origin
0 50 100 150 200 0 50 100 150 200
Number of iterations Number of iterations
(a) (b)

Figure 11. (a) accuracy comparison; (b) recall comparison.

To verify the improvement of network model training and detection performance by
the SASE module, the original YOLO network, and the standard SE module and SASE
module («x selected 0.7, 0.3, and 0) were used for the contrast test. Weight files are all
pre-weights trained by MS COCO datasets. Experimental results of detection precision
and recall rate are shown in Table 3. The standard deviation of precision and recall rate
during the training process in the grouped experiment is shown in Figure 12. Compared
with the original YOLO and standard SE modules, the SASE module improves the stability
of accuracy and recall rate during training.

Table 3. Comparison experiment of P/R effect of SASE module, training epochs were 200.

Model Precision/% Recall/% FPS
YOLO_origin 87.90 68.7 85.47
YOLO_SE 88.13 67.31 83.21
YOLO_SASE (a =0.7) 87.89 70.15 82.14
YOLO_SASE (a = 0.3) 88 68.47 81.96

YOLO_SASE (« = 0) 88.16 69.3 79.64




Sensors 2022, 22, 4600 10 of 14

0.15
0.13
0.11
0.09
0.07
0.05
0.03
0.01
0ot YOLOVS YOLOVS YOLOVS
YOLOvS-origin  YOLOVS-SE SASE(a=0.7)  SASE(a=0.3) SASE(a=0)
B P(std/%) 0.1427 0.1335 0.133 0.1296 0.127
m R(std/%) 0.117 0.1123 0.101 0.0959 0.0983

Figure 12. Stability comparison experiment of SASE module training results. Standard deviation is
taken from the last 50 data in 200 epochs.

The algorithm models for comparison were divided into 11 groups in the experiment,
and the experimental results are shown in Table 4. The first group is the original YOLO
algorithm; The second group added the standard SE module; Groups 3, 4, and 5 were SASE
modules with different thresholds. The sixth group added an SPP module; Group 7, 8,
9, and 10 were added SE and SASE modules with different thresholds based on the SPP
module, and group 11 adjusted the number of output characteristic layers and added an
RFB module based on the previous group.

Table 4. Results of ablation experiment, training epoch were 200.

Group SPP SE S(‘(';‘;’)E s(,gg)ﬁ SASE(®)  RFB P/% RI% FPS
1 87.90 68.7 85.47
2 v 88.13 67.31 83.89
3 v 87.89 70.15 83.04
4 v 88 6847 82.26
5 v 88.16 69.3 80.94
6 v 89.07 67.53 83.95
7 v v 89.89 69.46 8321
8 v v 89.69 69.23 82.14
9 v v 89.85 7101 81.96
10 v v 90.06 69.99 79.64
11 v v v 90.22 7134 72.99

Compared with the original model in group 1, the precision and recall rate of the
algorithm proposed in this paper in group 11 were improved by 2% and 3%

To further verify the detection performance of the proposed algorithm, we compared
it with Faster R-CNN [2], RetinaNet [16], SSD [4], and YOLOv3 [11]. The test results are
shown in Table 5.

Table 5. Results of different detection networks.

Method P/% R/% FPS
Faster R-CNN 50.6 63.9 12.67

RetinaNet 79.33 61.23 97.6
SSD 88.29 53.92 69.43
YOLOv3 87.90 68.7 85.47
YOLO_SASE 90.22 71.34 72.99

It can be seen that the algorithm proposed in this paper achieves the best accuracy and
recall rate under the condition of small speed loss.
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4. Discussion

In this paper, the YOLO_SASE algorithm can improve the channel attention of the
target detection network. Compared with other networks and the original network, the
presented has better precision and recall rate. However, the calculation of super-resolution
reconstruction using SRgan is time-consuming and cannot achieve real-time detection. In
the next step, the structure of the infrared small target itself will be analyzed, and the
network parameters will be compressed to further improve the detection efficiency of the
infrared small target.

In the infrared small target dataset adopted in this paper, part of the sequence data
itself has low target SCR (signal-to-cluster ratio) and is difficult to detect. These difficult
parts limit the further improvement of the target detection algorithm, and it is difficult
to solve the problem only through the single frame target detection method. We listed
the sequence of low SCR of partial target imaging in the original dataset, and conducted
experiments on these images with different commonly used target detection networks. The
experimental results are as follows in Table 6:

Table 6. Low SCR sequence.

Sequence Frame SCR
Datal0 401 0.38
Datal3 763 1.98
Datal4 1426 1.51
Datal7 500 1.09
Data21 500 0.42

In the process of uniformly selecting all samples of the dataset, it is inevitable to
encounter several very difficult samples in Figure 13. These low SCR samples accounted
for 22.19% of the overall dataset.

Figure 13. Four kinds of hard samples.
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The first type: airplane target pixel is too few in Figure 14. For example, in the Data21
sequence image, the target occupies only two pixels in most cases.

Figure 14. Few pixels target.

The second type: target and background building highlight part fusion in Figure 15.
When the target flies over backgrounds of varying grayscale intensities, some of the high-
lighted backgrounds blend in with the highlighted target.

Figure 15. Target fusion with highlight background.

The third type: target and background building dark part fusion in Figure 16. When the
target flies over a background of different grayscale intensities, some of the low brightness
background merges with the low brightness part of the target.

Figure 16. Target fusion with a dark background.
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The fourth type: picture shooting drag shadow. In the original dataset, the shooting
target is in constant motion, and the camera shooting will move intermittently. In the
process of moving can produce a shooting drag; at this time, the small target is blurred and
may even disappear. For example, in the lower right corner of Figure 13.

Table 7 below shows the experimental results of Low SCR samples in Table 6 above.
It can be seen that for this part of the samples, several target detection networks cannot
reach a precision of more than 70%. Note some Low SCR images in the dataset are not
suitable for single-frame target detection, and these parts limit the further improvement of
the target detection algorithm.

Table 7. Method results in Low SCR sample.

Method P/% R/%
Faster R-CNN 33.97 55.38
RetinaNet 49.67 51.98
SSD 61.71 4751
YOLOvV3 56.37 58.19
YOLO_SASE 68.95 61.73

5. Conclusions

To solve the problem of infrared small target detection in complex background, this
paper designed a deep learning target detection algorithm based on the YOLO algorithm
with an image super-resolution reconstruction method. Based on the standard SE module,
an adaptive channel attention SASE module was proposed. The ability of shallow feature
extraction is improved by adjusting the number of detection output layers and adding a
multi-field fusion RFB module. Using small targets in the infrared image sequences data
as the experimental dataset, the results show that the proposed algorithm based on the
original model can effectively improve the accuracy and recall rate, stability, and increase
the training process.
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