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Many pathogens are able to manipulate the signaling pathways responsible for the generation of host immune
responses. Here we examine and model a respiratory infection system in which disruption of host immune functions or
of bacterial factors changes the dynamics of the infection. We synthesize the network of interactions between host
immune components and two closely related bacteria in the genus Bordetellae. We incorporate existing experimental
information on the timing of immune regulatory events into a discrete dynamic model, and verify the model by
comparing the effects of simulated disruptions to the experimental outcome of knockout mutations. Our model
indicates that the infection time course of both Bordetellae can be separated into three distinct phases based on the
most active immune processes. We compare and discuss the effect of the species-specific virulence factors on
disrupting the immune response during their infection of naive, antibody-treated, diseased, or convalescent hosts. Our
model offers predictions regarding cytokine regulation, key immune components, and clearance of secondary
infections; we experimentally validate two of these predictions. This type of modeling provides new insights into the
virulence, pathogenesis, and host adaptation of disease-causing microorganisms and allows systems-level analysis
that is not always possible using traditional methods.
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Introduction

Bacteria persist within their hosts by subverting phagocy-
tosis by immune cells, interfering with antigen processing or
presentation [1], or by promoting anti-inflammatory or
immunosuppressive responses that normally function to
terminate the protective effector immune responses of the
host [2]. The dynamic interplay between pathogen and host
can have one of three outcomes: death of the host, persistent
disease, or recovery. To understand and influence this
complex system, it is imperative that we identify the subset
of key components and regulatory interactions whose
perturbation or tuning leads to significant functional
changes. Mathematical modeling can assist in this process
by integrating the behavior of multiple components into a
comprehensive network model, and by addressing questions
that are not yet accessible to experimental analysis.

We used two species of the genus Bordetellae as model
organisms because (1) they are examples of pathogens that
successfully overcome the defenses of their mammalian hosts,
(2) their genomes are completely sequenced, and (3) two
closely related species of Bordetellae provide a comparative
model to understand how virulence factors modulate
immune responses. The Bordetellae are small, Gram-negative
coccobacilli, some of which colonize the respiratory tracts of
their hosts, adhering to ciliated epithelia and spreading via
respiratory droplets. B. bronchiseptica and B. pertussis are two
very closely related species that have different host ranges
and cause different diseases in their hosts. B. bronchiseptica
naturally infects wild and domesticated animals, including
leopards, koala bears, cows, dogs, rabbits, and mice [3–5], and
causes a persistent disease typified by atrophic rhinitis in pigs
and by kennel cough in dogs. B. pertussis, which evolved from a
B. bronchiseptica–like progenitor, causes whooping cough

(pertussis) in humans and is endemic in much of the world.
Whooping cough is an acute illness characterized by severe
coughing that can become spasmodic, and in some cases leads
to death. Although the human pathogen does not cause
persistent infection, its rapid spread within relatively dense
and mobile human populations is apparently sufficient to
allow transient infections to circulate on an ongoing basis,
allowing the bacteria to survive within a population.
The different persistence strategies of B. bronchiseptica and

B. pertussis are surprising in light of their high genetic
relatedness. The Bordetella strains mainly evolve through loss
of genes and acquisition of insertion sequences. The two
strains of Bordetellae studied in this paper share 3,394 genes
with a synonymous substitution rate of 0.021 [6]. The majority
of known virulence factors, including adhesins (filamentous
hemagglutinin [FHA], pertactin, and fimbriae) and toxins
(adenylate cyclase toxin [ACT] and dermonecrotic toxin) are
expressed by both B. bronchiseptica and B. pertussis. Despite this,
the genome of B. pertussis is 30% smaller than that of B.
bronchiseptica, due in part to the loss of numerous sizable
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multigenic regions (e.g., the 22-kb genomic region required
for the assembly of a predominant antigen, O-antigen).
Interestingly, there also appear to be a number of genes
present but not expressed by one pathogen or the other (e.g.,
the genes encoding pertussis toxin [PTX] are only expressed
by B. pertussis; see Table 1 [7–12]). Though limited, the genetic
variation between B. bronchiseptica and B. pertussis allows
substantial differences in their pathogenesis mechanisms.

Mouse infection models with the Bordetellae provide an
excellent experimental setup in which specific interactions
between the host and pathogen can be discovered and
manipulated. Both B. bronchiseptica and B. pertussis efficiently
colonize the upper and lower respiratory tracts of their hosts
and increase in numbers rapidly in the first few days after
inoculation. The inflammatory infiltrate, leukocytosis, grad-
ual generation of antibody and T cell responses, and the
delayed bacterial clearance from the lower respiratory tract
are qualitatively similar to aspects of the clinical pertussis
disease. The major aspects of Bordetellae virulence and host

response have been identified and quantified in the past 20
years, and a wealth of data is available in the literature.
The immune response to a pathogen includes a sequence of

processes that are activated by immune cells after sensing
bacteria. Here, we construct a network model synthesizing
these processes activated in response to the sequenced strains
of B. bronchiseptica and B. pertussis. We analyze the differences
in host immune responses due to the exclusive virulence
factors present in the two species by developing separate
dynamic models for the infection of the lower respiratory
tract by these two species. Discrete dynamic simulation based
on the available time course data allows us to monitor the
progression of infection in time and to determine the
dynamic outcome of Bordetellae lung infections. We use the
model to predict the outcome of infection scenarios not yet
studied and experimentally verify two such predictions.

Results

Network Assembly
We started by synthesizing the available data from the

literature and from our own experiments (Table S1) into an
interaction network (Figure 1). Bacteria and the components
of the immune system (i.e., immune cells and cytokines) were
represented as network nodes; and interactions, regulatory
relationships, and transformations among components were
represented as directed edges starting from the source
(regulator) node and ending in the target node. We
incorporated regulatory relationships that modulate a proc-
ess (or an unspecified mediator of a process) as edges directed
toward another edge. The regulatory effect of each edge was
classified into activation or inhibition, and is represented by
an incoming black arrow or an incoming red blunt segment,
respectively, in the figures. Since not all processes involved in
natural B. pertussis clearance are known or addressable
through the mouse infection model, we extended the set of
known interactions by putative interactions based on general
immunological knowledge.
We assumed that the bacteria activating the chain of

immune responses shown in Figure 1 express the generic
adhesins and toxins (Table 1) of the sequenced Bordetella
strains; we did not assign independent nodes for these
virulence factors. However, we did separately include the

Table 1. Virulence Factors Expressed by Two Closely Related Bordetellae

Bacterial Virulence Factors B. bronchiseptica B. pertussis

Adhesins Filamentous hemagglutinin E E

Pertactin E E

Fimbriae E E

Tracheal colonization factor N E

Serum resistance protein (Brk) ? E

Toxins Pertussis toxin N E

Adenylate cyclase toxin E E

Dermonecrotic toxin E E

Tracheal cytotoxin (only nonprotein) E E

LPS/endotoxin E þ O-antigen E

Secretion system TTSS E N

E, expressed; N, not expressed; ?, present but not known whether expressed or not.
doi:10.1371/journal.pcbi.0030109.t001
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Author Summary

The immune response is a complex network of processes activated
in a host upon infection. Pathogens seek to disrupt or evade these
processes to ensure their own survival and proliferation. This article
provides a systems-level analysis of the immune response against
two related bacterial species in the Bordetella genus, B. bronchisep-
tica and B. pertussis. B. pertussis, the causative agent of whooping
cough, has lost many of the virulence factors of its B. bronchiseptica–
like progenitor, and is using different strategies for the modulation
of the immune system. We have synthesized two separate network
models for the interaction of these pathogens with their hosts. Each
network is then translated into a predictive dynamic model and is
validated by comparison with available experimental data. The
model offers predictions regarding cytokine regulation and the
effects of perturbations of the immune system, as well as the time
course of infections in hosts that had previously encountered the
pathogens. We experimentally validate the prediction that con-
valescent hosts can rapidly clear both pathogens, while antibody
transfer cannot substantially reduce the duration of a B. pertussis
infection. This type of modeling provides new insights into the
virulence, pathogenesis, and host adaptation of disease-causing
microorganisms and can be readily extended to other pathogens.

Network Analysis of Immune Responses



set of virulence factors identified in the literature as
modulating immune responses in a species-specific manner.
The resulting network had 18 nodes common in B.
bronchiseptica and B. pertussis; two species-specific nodes in B.
bronchiseptica (O-antigen and the type III secretion system
[TTSS]), two species-specific nodes in B. pertussis (PTX, and a
combined node for FHA and ACT). Here, we first describe the
network common to both species, illustrating the sequence of
processes activated after bacterial invasion (Figure 1),
followed by a description of the species-specific nodes in
the two bacteria.

The first immune mechanisms that respond to Gram-
negative bacterial pathogens are Toll-like receptor 4 (TLR4)–
mediated recognition of bacteria and the alternative comple-
ment pathway. Both species express lipopolyssacharide (LPS)

that is recognized by TLR4 receptors on respiratory epithelial
cells and dendritic cells (DCs). TLR4-mediated signaling in
response to pathogen-associated molecular patterns such as
LPS activates the production of cytokines and chemokines.
Many of these, including IL-1, IL-6, TNF-a, and TNF-b, are
proinflammatory and recruit polymorphonuclear leukocytes
(PMNs) to the site of infection [13]. Complement-activated
PMNs produce cytokines, which in turn recruit more
phagocytes. Following the commencement of phagocytosis,
DCs (the main antigen-presenting cells included in the
network) present antigens to T0 cells (naive T cells). Signal
transduction networks activated during this interaction
induce cytokines, leading to the differentiation of T0 cells
into either T helper type 1 (Th1) cells or Th2 cells. Th1/Th2
cells also produce the cytokines required for T cell differ-

Figure 1. The Consensus Network of Immunological Steps and Processes Activated upon Invasion by Bordetellae Species

Network nodes denote components of the immune system, and edges represent interactions and processes. Edge labels give a brief biological
description of the underlying process. The edges are classified into two regulatory effects, activation and inhibition, and are represented by incoming
black arrows and incoming red blunt segments, respectively. Similar notations are used in all network figures.
doi:10.1371/journal.pcbi.0030109.g001
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entiation, leading to a positive feedback in the differentiation
process. We denote the common cytokines inducing differ-
entiation of T0 cells to Th1 (or Th2) cells and produced in
turn by Th1 (or Th2) cells as Th1 (or Th2)–related cytokines
(Th1RCs or Th2RCs). These cytokines are mutually inhibitory
in that Th1RCs (such as IFN-c and IL-12) inhibit the
production and function of Th2RCs (for example, IL-4 and
IL-10), and vice versa. Some Th2RCs, such as IL-10, are anti-
inflammatory, and inhibit the production of proinflamma-
tory cytokines (PICs), reducing the recruitment of PMNs. The
balance between the production of Th1RCs and Th2RCs plays
an important role in the time course of the immune
responses.

Th2 cells activate the clonal expansion of B cells, which in
turn produce antibodies against bacterial antigens. Opsoni-
zation of bacteria by complement-fixing antibodies leads to
the activation of the classical complement pathway. PMNs
express complement receptors that recognize complement-
coated bacteria as well as Fc receptors that recognize the Fc
region of antibodies bound to bacterial antigens; both
mechanisms result in the activation of PMNs. In general,
the classical complement pathway can directly lyse bacteria;
however, this mechanism is found to be weak for Bordetellae
[14,15]. Therefore, we did not include bacterial lysis in the
network. Th1 cells produce a set of cytokines such as IFN-c,
TNF-b, and IL-2, which activate phagocytes to ingest and kill
bacteria. PICs and Th1RCs attract more phagocytes to the site
of infection, where they are activated and eliminate antibody-
bound bacteria. Thus, the Th2- and Th1-mediated adaptive
responses constitute a positive feedback to phagocytes for
antigen-specific elimination of the pathogen. We assume that
the main mechanism of natural clearance of the Bordetellae is
via phagocytosis by activated phagocytes [14,15].

Bacterial virulence factors such as LPS, PTX, TTSS, FHA,
and ACT modulate these host immune processes at several
levels. The B. bronchiseptica LPS contains long repeats of O-
antigen that inhibit the activation of the alternative comple-
ment pathway [16]. B. bronchiseptica expresses a TTSS that
induces the necrosis of PMNs [17,18]. The TTSS is known to
inhibit the activation of Th1RCs [17]; specifically, the TTSS in
association with ACT [19] inhibits IFN-c production during
the first week of the infection, thus inhibiting the differ-
entiation of T0 cells into Th1 cells [20,21]. Consequently, IL-
10 (a Th2RC) is produced, facilitating the differentiation of
T0 cells into Th2 cells. In a B. pertussis infection, the
alternative complement pathway is active [22]; however, early
recruitment of PMNs is inhibited by the activity of PTX, and
thus PMN activation and phagocytosis are delayed [23]. Like
B. bronchiseptica, B. pertussis has also developed mechanisms for
the suppression of Th1-related responses. FHA [24] and ACT
[25], in association with LPS, stimulate IL-10 production by
DCs, transiently inhibiting IL-12 and Th1 responses [26]. ACT
also enhances DC activation and maturation, promoting the
early differentiation of T0 cells into T regulatory 1 (Tr1) and
Th2 cells [25,27]. As Tr1 and Th2 cells have a functionally
similar role, we represent them as a single node. Note that
although the immunomodulation due to the synergistic
activity of TTSS and ACT (in B. bronchiseptica) and FHA and
ACT (in B. pertussis) appear similar, their exact target of
action is different [20,21,27]. Thus, both pathogens have
evolved strategies to suppress antigen-specific Th1 responses

during the acute phase of infection [28], modulating the
balance between Th1 and Th2 responses to their favor.

Dynamic Model
During the course of infection, the time-dependent

expression of specific virulence factors and/or immune
components results in a differential infection time course
in the two species. We integrated the known temporal
information with the interaction network and developed
dynamic models for B. bronchiseptica and B. pertussis inter-
actions with their hosts. The models incorporate (1) the
interactions and regulatory relationships between compo-
nents (i.e., the interaction network of Figure 1, augmented
with the relevant virulence factors), (2) how the strength of
the interactions depends on the state of the interacting
components (i.e., the transfer functions, given in Table 2), and
(3) the initial state of each component in the system. Given
the above inputs, the model generates the time evolution of
the states of the components of the network (e.g., the time
course of bacterial presence, of cytokine concentration, or of
immune cell activity).
Given the scarcity of kinetic and quantitative character-

izations of the processes involved in the bacteria–immune
system interaction network (Figure 1), we used a discrete
dynamic modeling approach. The network’s nodes were
assumed to have two qualitative states: 0 (off) and 1 (on),
corresponding to a baseline (below-threshold) and high
(above-threshold) concentration or activity, respectively.
The state change of each node was described by a Boolean
transfer function F that depends on the state of the nodes
connected to it by directed edges and on its own state. The
transfer functions were developed from the knowledge of the
nodes directly upstream of each target node in the network,
and augmented with dynamic information from the literature
and basic immunology when available. The state of target
nodes having a single activator and no inhibitors follows the
state of the activator with a delay. Often, the target node is
regulated by more than one pathway. We used the AND
operator whenever synergy between two (or more) nodes is
absolutely necessary to activate the target node. When either
of nodes connected to the target node could activate it, the
OR operator was used. For inhibition, we used the AND NOT
operator, requiring a low level or inactivity for the inhibitor
in order for the activation of the target node. Table 2 lists the
transfer functions of each node, and a detailed justification of
each transfer function is available in Text S1.
The transfer functions define a discrete dynamic system in

which iteration determines the evolution of the state of
nodes. We employed both the frequently used method of
synchronous update [29], using the hypothesis that all
regulatory processes have the same duration, and as a more
realistic alternative, we used random asynchronous update,
where the time scales of each regulatory process are
randomly chosen [30–32]. Both methods assume that time is
quantized into regular intervals (time steps). The synchronous
update can be described as Xt

i ¼ Fi(Xt�1
a ;Xt�1

b ;Xt�1
c ; . . .), where

Xt
i represents the state of node i at time step t, and Fi is the

Boolean function associated with the node i and its upstream
regulators a, b, c, . . . . The asynchronous method entails
updating the nodes in a randomly selected order during each
time step, and interprets the time step as the longest duration
required for a node to respond to a change in the state of its

PLoS Computational Biology | www.ploscompbiol.org June 2007 | Volume 3 | Issue 6 | e1091025

Network Analysis of Immune Responses



regulator(s) (also called a round of update) [30]. In the
asynchronous algorithm, the Boolean updating rules are
written as Xt

i ¼ Fi(Xta
a ;X

tb
b ;X

tc
c ; . . .), where ta, tb, and tc are the

time points corresponding to the last change in the state of
the input nodes a, b, and c and could be either in a previous or
the current time step. Asynchronicity does not change the
steady states of the dynamic system, but induces a variability
(stochasticity) in the steady states reachable from an initial
condition and in the time courses necessary to reach these
steady states [31,32].

We extended the general Boolean framework to incorpo-
rate known quantitative information by introducing decay
rates for cytokines (Th1RCs and Th2RCs) and virulence
factors (FHA/ACT and TTSS) and a threshold for the
duration of DC activity required for T0 cell differentiation
and the duration of phagocytosis necessary for clearance (see
Materials and Methods). We performed a systematic search in
parameter space to determine the parameter regions that
satisfy the following two criteria derived from the literature:
(1) reaching bacterial clearance under normal conditions and
(2) association of bacterial clearance from the lower
respiratory tract with Th1-related activity (see Materials and

Methods and Text S2 for a detailed parameter analysis). The
two methods of update gave remarkably similar results; thus,
in the following we will describe the results obtained by the
asynchronous algorithm and refer to the synchronous
algorithm only to describe divergent behaviors.

Relative Duration of Regulatory Immune Processes
We started with a completely asynchronous algorithm and

studied the outcome by monitoring bacterial clearance and
the order of activation of immune processes. We performed
1,000 runs with different orders of update selected randomly
in each time step. The disease was allowed to evolve for 70 time
steps in each simulation. We obtained a distribution of the
time steps necessary for bacterial clearance with mean l¼ 24
and standard deviation r ¼ 0.97 in B. bronchiseptica, and mean
l¼22.5 and standard deviation r¼1.2 in B. pertussis (Figure 2).
Next, we aimed to incorporate existing knowledge on the

relative duration of the processes represented by single edges
in the network. These processes include ligand–receptor
binding, signal transduction, cytokine production, cell differ-
entiation, and cellular chemotaxis, and span a range of time
scales. We incorporated inequalities between two process
durations as updating one node before the other in each

Table 2. Boolean Functions Used in the Model

Nodes Boolean Functiona

Host nodes Bacteria Bacteria* ¼ (NOT [Pmax
i¼0 Phagocytosist�i) AND Bacteria

Epithelial cells Epithelial cells* ¼ Bacteria

Complement Complement* ¼ Bacteria OR (Ag–Ab complex AND Complement-fixing Ab)

Antigen–antibody (Ag–Ab) complex Ag–Ab complex* ¼ Bacteria AND (Other Abs OR Complement-fixing Ab)

Complement-fixing antibodies (Ab) Complement-fixing Abs* ¼ B cells OR Complement-fixing Ab

Other antibodies (Ab) Other Abs* ¼ B cells OR Other Abs

Antibody-producing B cells B cells* ¼ Th2 Cells

Proinflamatory cytokines (PIC) PIC* ¼ Epithelial cells OR ActPhagCells AND NOT Th2RC

Th1-related cytokines (Th1RC) Th1RC* ¼ (Th1 cells OR (DC AND T0 cells)) AND NOT Th2RC AND NOT

Th1RCt�sTh1RC

Th2-related cytokines (Th2RC) Th2RC* ¼ (Th2 cells OR (DC AND T0 cells)) AND NOT Th1RC AND NOT

Th2RCt�sT2RC

Recruited PMNs Recruited PMNs* ¼ PIC

Activated phagocytes (ActPhagCells) ActPhagCells* ¼ ((Recruited PMNs OR Macrophages) AND ((Complement AND

Complement-fixing Ab) OR Ag–Ab complex))

Macrophages Macrophages* ¼ PIC OR Th1RC

T0 cells T0 Cells* ¼ [dcmax
i¼1 DCt�i

Th1 cells Th1 cells* ¼ DC AND T0 cells AND Th1RC

Th2 cells Th2 cells* ¼ DC AND T0 cells AND Th2RC

Dendritic cells (DC) DC* ¼ (Th1RC OR Th2RC OR PIC) AND Bacteria

Phagocytosis Phagocytosis* ¼ ActPhagCells AND Bacteria

B. bronchiseptica–specific nodes TTSS TTSS* ¼ Bacteria AND NOT TTSSt�sTTSS

O-antigen (OAg) OAg* ¼ Bacteria

Dead PMNs Dead PMNs* ¼ Recruited PMNs AND TTSS

PIC PIC ¼ Epithelial cells OR ActPhagCells OR Dead PMNs AND NOT Th2RC

Th1 cells Th1 cells* ¼ (DC AND T0 cells AND Th1RC) AND NOT TTSS

Th1RC Th1RC* ¼ (Th1 cells OR (DC AND T0 cells)) AND NOT Th2RC AND NOT

Th1RCt�sTh1RC AND NOT TTSS

Complement Complement* ¼ (Bacteria AND NOT O-Ag ) OR (Ag–Ab complex AND Comple-

ment-fixing Ab)

B. pertussis–specific nodes Pertussis toxin (PTX) PTX* ¼ Bacteria AND NOT (Complement-fixing Ab or Other Ab)

FHA/ACT FHA/ACT* ¼ Bacteria AND NOT FHA/ACTt�sFHAACT

Recruited PMNs Recruited PMNs* ¼ PIC AND NOT PTX

Th1RC Th1RC* ¼ (Th1 cells OR (DC AND T0 cells)) AND NOT Th2RC AND NOT

Th1RCt�sTh1RC AND NOT FHA/ACT

aThe state update is performed at time t. For simplicity, the state of each node at time t is represented by the node name. The next state of the target node (indicated on the left side of
the equation) is denoted by an asterisk on the target node’s name.
doi:10.1371/journal.pcbi.0030109.t002
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round of update. Candidate inequalities were accepted only if
the resulting dynamics of the model did not contradict
experimentally known temporal information (e.g., that B.
bronchiseptica and B. pertussis infections of mice with an initial
dose of ;5 3 105 colony-forming units [CFUs] are reprodu-
cibly cleared from the lung by days 70 and 50, respectively;
see Figure S1 and Tables S2 and S3 for a compilation of
known temporal information). First, to incorporate the fact
that the residential epithelial cells are first to recognize
bacteria, epithelial cells were always updated before DCs in
both species. The implementation of this criterion decreased
the standard deviation of the clearance time distribution to
0.88 in B. bronchiseptica (l¼ 24) and 1.07 in B. pertussis (l¼ 22)
(see Figure S2A).

Second, because cytokine regulation is important in
directing the course of infection and because only limited
information was available on the timing of cytokine produc-
tion and decay, we explored all possible relative durations for
the synthesis of the three cytokine classes (PICs, Th1RCs, and
Th2RCs), and found that updating Th1RCs before Th2RCs
and Th2RCs before PICs led to a significant narrowing of the
clearance time distributions (l ¼ 27, r ¼ 0.62 in B.
bronchiseptica and l ¼ 22, r ¼ 0.64 in B. pertussis; see Figure
S2B). The first part of this condition implies that either the
Th1RCs are produced faster than the Th2RCs or Th1RCs are
sensed faster than Th2RCs during the interaction between T0
cells and DCs. The validity of this assumption is supported by
the experimental observation that in the absence of the
immunomodulating virulence factors TTSS/ACT and FHA/
ACT, IFN-c (a Th1RC) is produced before IL-10 (a Th2RC)
[20,21,27]. The condition on PICs was necessary only for their

second, adaptive immunity–related activation, and implies
that the inhibition of proinflammatory cytokines by Th2-
related cytokines is released later than their inhibition of
Th1RCs (Th1-related cytokines) [22]. The cytokine timing
criterion described above was also necessary to reproduce the
known earlier clearance of certain mutant bacteria (described
in Table S3; see Systemic Effects of Deletions and Compar-
ison with Experimental Results for more information).
Third, to incorporate the fact that the activation of the

recruited phagocytes and consequent phagocytosis of bac-
teria are complex multistep processes, the corresponding
nodes were updated penultimately and last, respectively, in
each step. After the implementation of these conditions, B.
bronchiseptica and B. pertussis were cleared on a single time
step, the 26th and 21st, respectively, in all 1,000 simulations.
Thus, the sequence of update orders incorporated in the
model offers predictions on the population level differences
in the relative time scale of the immune processes. Exper-
imental testing of the timing inequalities expressed by our
update criteria can potentially elucidate the possibilities for
variation in the clearance time scale of natural infections.
The next step was to analyze the activity of each node during
our in silico pathogenesis.

Three Phases in the In Silico Pathogenesis
To represent a previously uninfected host encountering

bacteria, we started the dynamic simulation with initial state
(at time step t¼ 0) of all nodes at 0 (off), except for bacteria
that were assumed to be at 1 (on). We observed three distinct
temporal patterns common to all 1,000 simulations with
asynchronous update, allowing us to identify three phases in
the course of infection: innate responses, including PIC
production and the recruitment of PMNs and DCs (phase I); B
cell– and antibody-mediated responses (phase II); and Th1-
related responses leading to a significant activation of
phagocyte recruitment and activation, and ultimately leading
to bacterial clearance (phase III). To illustrate these phases of
pathogenesis, in Figures 3–5 we present subsets of the
network of Figure 1, additionally including species-specific
virulence factors; these figures delineate the processes that
are most active in the three infection stages within each of the
two organisms and indicate timing information whenever an
estimate was available (see also Table S4 for a compilation of
active nodes in each phase). The experimental data support
the existence of distinct responses in these three phases. For
example, in the bacterial growth curves shown in Figure 6, the
bacterial numbers increase exponentially in the first 7 d of
infection (our phase I), after which an immune-mediated
decline is observed. While the second and third phases do not
clearly separate on the bacterial growth curves, there is ample
evidence for the existence of both humoral (Th2-related)
adaptive immunity (our phase II) and cellular (Th1-related)
adaptive immunity (our phase III) in in vivo infections by
wild-type strains. Moreover, both for B. bronchiseptica and B.
pertussis, recovery from infection was associated with the
development of pathogen-specific Th1 cells [33,34]. The long-
term steady state of our model after the clearance of bacteria
indicates all immune components in an unperturbed (sub-
threshold) state, with the exception of the two antibody
nodes. This steady state is a simplified representation of
immunological memory. In the following, we present the in
silico time course by focusing on the activity of seven selected

Figure 2. The Distribution of B. bronchiseptica and B. pertussis Clearance

Time Steps in the Completely Asynchronous Model

The frequency (incidence) of bacterial clearance is plotted as a function
of the time step of clearance.
doi:10.1371/journal.pcbi.0030109.g002
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nodes (see Figure 7, wild-type [WT]), and we describe the
experimental observations supporting our results.

B. bronchiseptica. In phase I, PICs are produced by epithelial
cells after bacterial invasion (Figure 7; B. brochiseptica [Bb],
WT, PIC). PICs then recruit PMNs to the site of infection
(Figure 7; Bb, WT, Recruited PMNs). Indeed, peak cytokine
production is observed 2 h after inoculation [13], followed by
neutrophil infiltration by 7 h after inoculation in B.
bronchiseptica [35,36]. TTSS causes necrosis of PMNs [17,18];
however, dying cells induce more PICs, increasing PMN
recruitment during the first three time steps. The O-antigen
of B. bronchiseptica inhibits the activation of the alternative
complement pathway, preventing immediate complement-
mediated phagocytosis (Figure 7; Bb, WT, Complement). This
phase was five time steps long in the simulation. In phase II of
B. bronchiseptica infection, Th1RCs are suppressed due to
immunomodulation by the TTSS (Figure 7; Bb, WT, Th1RC),
resulting in the production of Th2RCs (Figure 7; Bb, WT,
Th2RC). This induces the differentiation of T0 cells to Th2
cells, which facilitates antibody production by B cells (Figure
7; Bb, WT, Ag–Ab complex). Due to the activation of
complement-fixing antibodies, complement is active in this
phase (Figure 7; Bb, WT, Complement). Th2RCs suppress the

production of PICs, inhibiting PMN recruitment (Figure 7;
Bb, WT, PIC, Th2RC). Indeed, IL-10 (a Th2RC)–producing
cells are observed in B. bronchiseptica–infected mice in the
second week after inoculation, due to the inhibition of IFN-c
(a Th1RC)–producing cells by TTSS [20]. The Th1-inhibiting
activity of the TTSS decreases below threshold on the 21st
time step (see Materials and Methods and Text S2 for more
details). This phase lasts 15 time steps in B. bronchiseptica. In
phase III, the removal of TTSS and Th2RCs results in the
production of Th1RCs (Figure 7; Bb, WT, Th1RC; see Figure
S1A for the experimental time course of IFN-c), followed by
the activation of phagocytes (Figure 7; Bb, WT, Phagocytosis).
In vivo Th1-related immune responses take over around the
third week of B. bronchiseptica infection due to the production
of IFN-c [20] (Figure S1). B. bronchiseptica are cleared on the
26th time step (Figure 7; Bb, WT, Bacteria).
B. pertussis. In phase I, PICs are produced by epithelial cells

in response to LPS (Figure 7; B. pertussis [Bp], WT, PIC).
Unlike in the case of B. bronchiseptica infection, the alternative
complement pathway is active (Figure 7; Bp, WT, Comple-
ment), but it cannot clear the bacteria (see Text S2). Indeed,
TLR4 signaling has been shown to induce PICs in the first 24
h [37], and the alternative complement pathway, although
active, was shown to be ineffective in a B. pertussis infection
[15]. In the simulation, PTX inhibited the recruitment of
PMNs (Figure 7; Bp, WT, Recruited PMNs). Indeed, in mouse
models neutrophil infiltration is significantly delayed, and
reaches its peak 10 to 14 d after infection [23]. Phase I was
three time steps long in the simulation. Phase II starts earlier
in B. pertussis than in B. bronchiseptica due to the earlier
activation of Th2 cells by FHA/ACT in the model (Figure 7;
Bp, WT, Th2RC; refer to Text S2 for the parameter analysis
associated with this earlier activation). Indeed, IL-10 is
produced through TLR4 signaling in response to ACT and
peaks at 24 h after infection [26]. B cells are activated by Th2
cells on the fourth or fifth time step, which is followed by the
production of antibodies. The production of Th1RCs is
inhibited (Figure 7; Bp, WT, Th1RC) due to the presence of
Th2RCs. Antibodies produced in this phase neutralize PTX;
however, PMNs are not recruited yet due to the Th2RCs’
inhibition of PICs and of Th1RCs. Macrophage activity is also
below threshold due to the same inhibition, indicating a
lesser pathology of B. pertussis than of B. bronchiseptica in the
simulation. In B. pertussis infection, two DC infiltrates have
been observed, one in the first week and the other in the
second week [38]. We can thus infer that due to the Th1RC
inhibition by FHA/ACT, the first DC infiltrate leads to T0 cell
differentiation into Th2 cells. Phase III starts on the 15th time
step in the simulation. Following Th1RC production, macro-
phages and PMNs are recruited (Figure 7; Bp, WT, Recruited
PMNs) and activated by antibody-opsonized bacteria, leading
to B. pertussis clearance on the 21st time step (Figure 7; Bp,
WT, Bacteria; see Figure S1B for the experimental time
course of PMNs). Phase III also begins earlier in B. pertussis
than in B. bronchiseptica because the decay time of FHA/ACT
activity, sFHA/ACT, is shorter than the decay time of the TTSS,
sTTSS (see Text S2 for a detailed analysis of the decay rates).
Indeed, the increased recruitment of natural killer cells
stimulates earlier secretion of IFN-c in B. pertussis infections
(explaining the condition sFHA/ACT , sTTSS), shifting the
balance from Th2 responses to Th1 responses in the
beginning of the third week (around the 20th day) of the

Figure 3. Phase I of In Silico Pathogenesis

Depicts innate immune responses leading to activation of DCs,
phagocytes, and PICs during the first week of the infection by B.
bronchiseptica or B. pertussis. Bacterial virulence factors are shown as red
squares, and edges corresponding to inhibition are in red.
doi:10.1371/journal.pcbi.0030109.g003
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infection [38]. The earlier clearance of B. pertussis is consistent
with the notion that B. pertussis infection is rapid and
transient and can be sustained in dense populations.

For further validation of the model, we examined the
effects of components’ deactivation (loss) on the states of
other nodes and on the clearance of infection from the lower
respiratory tract. The deactivation of components corre-
sponds to loss-of-function mutations: for example, the
deactivation of the node TTSS depicts infection by mutant
B. bronchiseptica that do not have a functional TTSS. As we
discuss below, comparison of such node deletions with the
corresponding experimentally studied mutants demonstrates
the reliability of the model.

Systemic Effects of Deletions and Comparison with

Experimental Results
We tested the contribution of individual components/

nodes on bacterial clearance by simulating their knockout
mutants. For each deletion, we set the affected node’s state to
off (0) and kept it in this state during the simulation. The
asynchronous algorithm was run 1,000 times, in each time
step generating a new order of update satisfying the three
conditions described in Relative Duration of Regulatory
Immune Processes. We determined the effect of the node’s
knockout by monitoring the time step when bacteria are

cleared (if at all) and the behavior of other nodes. Figure 7
represents the pattern of active nodes in one representative
simulation. The constraints on the relative duration of
immune processes led to bacterial clearance during the same
time step in all simulated disruptions as well; however, the
activation pattern of individual nodes varied slightly depend-
ing on the randomly selected order of update.
Deletion of TTSS and FHA/ACT. TTSS in B. bronchiseptica

and FHA/ACT in B. pertussis inhibit the production of Th1RCs
in phase II (Figure 7; WT, Th1RC). Though the exact
mechanism of the inhibition is unknown, it is fairly well
established that this inhibition leads to the differentiation of
T0 cells to Th2 cells in phase II because of the production of
Th2RCs by DCs [19,21]. Deletion of the node TTSS from B.
bronchiseptica led to oscillations of Th1RCs and Th2RCs
(Figure 7; Bb, TTSS deletion, Th1RC, Th2RC), followed by
the activation of antibodies and phagocytes and bacterial
clearance on the 16th time step instead of the 26th (Figure 7;
Bb, TTSS deletion, Bacteria). This simulation could repro-
duce the two peaks of Th1RCs, exemplified by IFN-c, in the
experimental time course (compare Figure 7 [Bb, TTSS
deletion, Th1RC] with Figure S1A). The early clearance of
TTSS-deficient B. bronchiseptica observed in the simulation
accurately depicts experimental results with TTSS knockout
mutants (see Table S3) [20,21]. The deletion of the node FHA/

Figure 4. Phase II of In Silico Pathogenesis

Depicts Th2-related responses, including antibody production and humoral responses to the infection by B. bronchiseptica or B. pertussis infections.
Bacterial virulence factors are shown as red squares, and inhibition is denoted by red edges.
doi:10.1371/journal.pcbi.0030109.g004
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ACT from B. pertussis led to the clearance of bacteria on the
14th time step instead of the 21st (Figure 7; Bp, FHA/ACT
deletion, Bacteria). The combined disruption of FHA and
ACT has not yet been performed experimentally, but the
model result is consistent with known information on FHA
and ACT [27]. Figure S3A shows the distributions of bacterial
clearance time steps in case of TTSS or FHA/ACT deletion in
the completely asynchronous model (without the timing
inequalities described in Relative Duration of Regulatory
Immune Processes). The distributions are much broader than
the clearance time distributions of the respective WT bacteria
(compare with Figure 2), and indicate a considerable chance
for the defective mutants being cleared later than WT
bacteria, a clearly unrealistic result. Thus, the TTSS and
FHA/ACT deletion studies provide additional support for the
identified timing inequalities between Th1RCs, Th2RCs, and
PICs, and also suggest that in infections by WT Bordetellae, the
processes activated by Th1 and Th2 cells switch reproducibly
due to antigen-specific responses.

Deletion of B cells. The deletion of B cells results in the lack
of antibody production. In our model, neither B. bronchiseptica

(Figure 7; Bb, B cell deletion) nor B. pertussis (Figure 7; Bp, B
cell deletion) was cleared in this disruption, although three
distinct infection phases were still observed. B. bronchiseptica
showed two peaks of recruited PMNs and PICs, first in phase I
and then in phase III (Figure 7; Bb, B cell deletion, Recruited
PMNs, PIC). In B. pertussis infection, there was no recruitment
of PMNs because the PTX node remained active in the
absence of antibodies (Figure 7; Bp, B cell deletion, Recruited
PMNs). Complement activation was absent in B. bronchiseptica
(Figure 7; Bb, B cell deletion, Complement) in contrast to B.
pertussis, where the alternative complement pathway was still
active (Figure 7; Bp, B cell deletion, Complement). Produc-
tion of Th1RCs and Th2RCs was unaffected when compared
with WT (Figure 7; Bb, Bp, B cell deletion, Th1RC, Th2RC).
Note that although Figure 7 stops at the 26th and 21st time
steps in B. bronchiseptica and B. pertussis, respectively, the
observed absence of clearance was independent of the length
of the simulation. Experiments show that B. bronchiseptica
persists indefinitely in the trachea and lungs of B cell–
deficient mice [39]. Also, in the case of B. pertussis, although

Figure 5. Phase III of In Silico Pathogenesis

Depicts Th1-related responses to the infection by B. bronchiseptica or B. pertussis.
doi:10.1371/journal.pcbi.0030109.g005
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bacterial numbers decrease, no clearance is observed [39], in
agreement with our results.

Absence of adaptive immunity. Deletion of T0 cells in the
model led to the absence of Th1, Th2, and B cells (Figure 7;
Bb, Bp, T0 cell deletion, Th1RC, Th2RC), resulting in
bacterial persistence. Although there were no T and B cells,
the other immune components responded to the bacteria.
During B. pertussis infection, complement was constitutively
active due to the active alternative complement pathway
(Figure 7; Bp, T0 cell deletion, Complement). PICs were
constitutively active in both species (Figure 7; Bb, Bp, T0 cell
deletion, PIC), whereas recruitment of PMNs was observed
only in B. bronchiseptica infection (Figure 7; Bb, T0 cell
deletion, Recruited PMNs). There were no discernible phases
for this deletion. The node phagocytosis was off in both
species, implying that if there is any phagocytosis, it is under
threshold levels. Experiments with defective adaptive im-
munity in mice indicate that adaptive immunity is indeed

required to clear both organisms from the lower respiratory
tract [22].
Deletion of other immune components. When DCs were

deleted, the response was very similar to the deletion of T0
cells, as DCs are essential for the maturation and differ-
entiation of T0 cells. Note that in our model we have
attributed all antigen presentation functions to this node,
which therefore represents other potential antigen-present-
ing cells as well. In the absence of Th2 cells, B cells were not
activated; hence, the bacteria were not cleared due to the
absence of antibodies (similar to Figure 7; Bb, Bp, B cell
deletion). Deletion of Th1 cells did not affect clearance
because Th1RCs, the only effector elements of Th1 cells, are
produced during DC–T0 cell interaction, and these nodes are
unaffected by the disruption. Our model cannot incorporate
the quantitative increase in Th1RCs produced by Th1 cells; it
remains to be seen whether this increase is required. In the
absence of macrophages, B. bronchiseptica and B. pertussis were
cleared on the same time step as in the WT infections. This
suggests that phagocytes activated only by Th1RCs are not
absolutely required for clearance because the second wave of
PICs produced after the decay of Th2RCs is able to activate
recruited PMNs. Further quantitative experimental informa-
tion will be necessary to analyze the relative contribution of
Th1RCs and PICs in phagocyte recruitment. Note that Th1
cell deletion and macrophage deletion in the completely
asynchronous model (without timing inequalities) broadened
the clearance time distribution (compare Figures S3B and
S3C with Figure 2); thus, some variability is expected if the
timing inequalities are not completely satisfied.
Treatment with antibodies prior to infection. Antibody

treatment before or shortly after infection can be used as a
prophylaxis. Hence, we simulated its effect by activating the
‘‘antibodies’’ node during the first time step. The earlier
treatment with antibodies results in the opsonization of
bacteria soon after they invade the host. Antibody treatment
led to immediate activation of the node phagocytosis in B.
bronchiseptica infection (Figure 7; Bb, Antibody treatment,
Phagocytosis). During B. pertussis infection, PMNs are re-
cruited following the PTX’s neutralization by antibodies;
however, this recruitment is transient (Figure 7; Bp, Antibody
treatment, Recruited PMNs) and cannot sustain sufficient
phagocytosis (Figure 7; Bp, Antibody treatment, Phagocyto-
sis). B. bronchiseptica was cleared by the sixth time step (Figure
7, Bb, Antibody treatment, Bacteria), but the pre-initiation of
antibodies did not lead to early clearance of B. pertussis
(Figure 7; Bp, Antibody treatment, Bacteria). In agreement
with our model, experimental studies indicate that the
adoptive transfer of serum antibodies results in the clearance
of B. bronchiseptica by day 3 after inoculation, but B. pertussis is
not cleared earlier [39]. Our results are also consistent with
human clinical trials, where serum antibody titers could not
be correlated with protection against B. pertussis [23,40,41].
The bacterial clearance time steps upon antibody treatment
in the completely asynchronous model (Figure S3D) have a
broader distribution but agree with the fundamental differ-
ence between the time scales of antibody-mediated clearance
in B. bronchiseptica and B. pertussis.

Modeling of Secondary Infection
To analyze the efficiency of immune responses in detecting

and clearing a second challenge with pathogens, we

Figure 6. Growth Curves of the Bacteria in Naive and Convalescent Mice

Indicating Three Phases of Pathogenesis

Open triangles represent the experimentally observed mean 6 standard
error of bacterial number time courses of B. bronchiseptica (top) and B.
pertussis (bottom) infection in naive mice. Vertical lines delineate the
three pathogenesis phases, which we identify as phase I: innate immune
responses (0–7 d); phase II: activation of Th2-related responses and
inhibition of Th1-related responses (8–21 d); and phase III: commence-
ment of Th1-related responses and clearance (22–70 d). Open circles
represent mean 6 standard error of bacterial numbers in a secondary
challenge, by the same species, of convalescent mice on day 49
postinoculation with B. bronchiseptica (top) and B. pertussis (bottom). For
each case, four mice from each group were killed on the indicated days,
and bacterial burden in the lungs was determined. The dotted line
denotes the experimental detection limit.
doi:10.1371/journal.pcbi.0030109.g006
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performed simulations of secondary infections. The secon-
dary infection with the same or different species (cross-
infections) allowed us to better understand the complex
pathogen–host interplay and to generate testable predictions.
The secondary infection was modeled by a ‘‘secondary’’ initial
state comprising the state of all nodes in the stage of the
primary infection when the host encountered the second
challenge. This representation of the secondary challenge is
not simply a continuation of the primary infection. Although
the state of the node ‘‘bacteria’’ does not change at the time
of the second challenge (it already is on), the second challenge
can lead to the reactivation of certain cytokines and virulence
factors that have previously decayed during the primary
infection. We modeled three scenarios: first, reinfection of
diseased hosts, by using a secondary initial state correspond-
ing to time step 9, in phase II, for both B. bronchiseptica and B.

pertussis. Second, we modeled the infection of convalescent
hosts by a secondary initial state corresponding to time step
21 for B. bronchiseptica and time step 18 for B. pertussis, in phase
III (refer to Figure 7 for the state of key nodes at these time
steps). Third, we modeled the reinfection of hosts with
immunological memory by a secondary initial state that has
antibodies on. In summary, the ‘‘secondary’’ initial state
indicates the state of the host when the second bacterial
invasion takes place (see Materials and Methods), and is
different from the initial state of the primary infection
(where only bacteria are on) and from a continuation of the
primary infection. Correspondingly, the in silico patho-
genesis of the secondary challenge showed a different pattern
of node activation than the time course of a primary
infection (compare Figure 8 with Figure 7).
We first studied secondary infections by the same species.

Figure 7. The Pattern of Activation of Key Nodes in the In Silico Pathogenesis

Comparison of the time course patterns of key nodes (indicated at the left) in mice infected with B. bronchiseptica or B. pertussis in case of WT, TTSS
deletion/FHA/ACT deletion, B cell deletion, T0 cell deletion, and for treatment with antibodies prior to infection. Each colored pattern is a square grid
representing the state of the nodes on the y-axis versus time steps on the x-axis. The colored squares correspond to active nodes (having state 1) at the
time step represented on the x-axis. One time step of the simulation corresponds to 1 d to 2 d of the real infection.
doi:10.1371/journal.pcbi.0030109.g007
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We simulated the secondary initial state in phase III by
preserving the states of TTSS and FHA/ACT off, assuming
that the host recognized those virulence factors of the new
bacteria and removed them (or became desensitized).
Secondary dosage given in a particular phase generally reset
the pathogenesis to the beginning of the same phase of the
combined infection, with a few notable exceptions. When the
secondary dosage was given in phase II of the primary
infection, the antigen–antibody complex was active starting
with the first time step of the secondary infection, and phase
II of the combined infection was one time step shorter than
phase II of the primary infection for both species. When the
dosage was given in phase III, the recruited PMN peak was
delayed compared with the primary infection in B. pertussis,
but phagocytosis was immediately activated. We found that
the secondary infection was cleared faster than a single
(primary) infection in both species and both initial con-
ditions. Secondary infection in phase II (i.e., of diseased hosts)
took longer to clear (21 time steps in B. bronchiseptica and 18
time steps in B. pertussis; Figure 8, third column), whereas
secondary infection in phase III (i.e., of convalescent hosts)
was cleared faster (six time steps in B. bronchiseptica and in B.
pertussis; Figure 8, fourth column). The clearance was always
associated with Th1-related responses (phase III). Thus,
immune components active in phase III led to early clearance
of a secondary infection. In conclusion, the phase of the
primary infection when the host encountered a second dose
of Bordetellae had an important effect on the progression of
the second infection.

We simulated B. pertussis after B. bronchiseptica and B.
bronchiseptica after B. pertussis cross-infections exploring
scenarios with or without antibody cross-reactivity (see Text
S3 and Table S5). We found that the only case of faster
clearance is secondary infection of convalescent hosts in the
presence of antibody cross-reactivity, a result confirmed by
preliminary experiments (Wolfe DN and ETH, unpublished
data).

We also studied secondary infections of immune hosts by
using an initial condition where antibodies are active, a state
that approximates immunological memory. It is known that
memory T cells and B cells are also generated after an
infection; however, these cells require reactivation, and the
mechanisms involved are not understood. The capacity of
memory B cells to proliferate faster after priming and to
produce antibodies with increased affinity could not be
incorporated in our current qualitative model. Our approx-
imation thus serves as an upper limit of immunological
memory. We found similar results as in the case of prior
treatment with antibodies (i.e., B. bronchiseptica was cleared by
the sixth time step, but there was no early clearance of B.
pertussis). This latter result suggests the possibility of
reinfection of previously vaccinated individuals, probably
associated with a subclinical disease but a nonzero trans-
mission probability [42].
Analysis of the effect of active nodes. To find the minimum

number of immune components that must be active at the
beginning of a secondary infection by an identical or cross-
reacting species to enable early clearance, we turned off the
active nodes of the secondary initial state in phase III one by
one. We found that only one active immune component,
namely one of the two groups of antibodies, is required, since
Th1RCs produced early in the secondary infection (due to the
absence of TTSS or FHA/ACT) recruited phagocytes that
were activated by antibodies and cleared the bacteria. Thus,
the minimum condition for the early clearance is that the
node ‘‘Th1RC’’ and one of the antibody nodes are on and that
TTSS (in B. bronchiseptica) or FHA/ACT (in B. pertussis) is off.
This early clearance is based on antigen recognition by the
antibodies from the primary infection, similar to earlier
clearance in the presence of serum antibodies. Interestingly,
our model predicts that the most active phagocytes in
secondary infection of convalescent hosts are different from
the phagocytes responsible for serum antibody–mediated
clearance; namely, the former are macrophages activated by

Figure 8. The Pattern of Activation of Key Nodes during Secondary Infections

Time course patterns of key nodes (y-axis) plotted against time steps (x-axis) during secondary infection by B. bronchiseptica (Bb) and B. pertussis (Bp).
One time step corresponds to 1 d to 2 d. The initial state corresponds to the activity of immune system components at the start of the secondary
infection. Two scenarios are shown: secondary infection given in phase II of the primary infection (third column), or in phase III of the primary infection
(fourth column).
doi:10.1371/journal.pcbi.0030109.g008
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Th1RCs, while the latter are neutrophils recruited by PICs
and activated by antibodies. Thus, although macrophages are
not required for the clearance of a single infection (see
Deletion of other immune components), they play a crucial
role in the early clearance of secondary infections of
convalescent hosts.

Experimental observations validate model predictions. To
test the prediction of earlier clearance of a secondary
infection, we performed follow-up experiments where a B.
pertussis or B. bronchiseptica second challenge was given on day
49 after inoculation. This reinfection of convalescent hosts
corresponds to a secondary initial condition of phase III in
our simulations. As shown by the open circles in Figure 6, the
secondary infections of B. bronchiseptica and B. pertussis were
cleared in 15 d. Furthermore, the earlier clearance of the B.
pertussis secondary infection, as compared with a B. pertussis
time course in the presence of serum antibodies [39],
supports the prediction of distinct phagocyte subsets acti-
vated by distinct signals. Comparing these results with the
model prediction in Figure 8 (fourth column), where bacteria
were cleared on the sixth time step, indicate that the model
predictions were validated. The predictions for the secondary
infection clearance patterns for the remaining combinations
will be tested in future studies.

Discussion

Network Assembly
Immunological responses have been traditionally studied

by biochemical and molecular biology techniques. These
approaches allow us to manipulate components that are
experimentally detectable, and they increase our knowledge
about individual immune mechanisms and related responses.
In the present study, we synthesized these separate sets of
information into an integrated network (Figure 1) that gives a
comprehensive view of the system. Immunological studies
often focus on model organisms; however, the results
ultimately need to be applicable to the natural host. We
overcame such limitations by constructing unbiased (con-
sensus) networks such as that represented in Figure 1 and
adding on pathogen-specific mechanisms as specific nodes
and edges. Although the edges of the network are based on
information from experimental observations, the network is
more than the sum of its parts because it enables the
evaluation of the direct and indirect effects of perturbing
each node. Constructing such consensus models has the
potential for accelerating new discoveries in a field; such
advances are sorely needed for B. pertussis, which is still
persistent in human populations in part because the
information about human-specific immune responses is
limited. Though our network analysis is dependent on the
definition of the nodes and edges, it is flexible enough to
describe the system under study accurately.

Dynamic Simulation
The network-based dynamic model enabled us to analyze

the time course of the immunological responses and bacterial
clearance. Dynamic modeling usually employs continuous or
discrete methods. For continuous models, detailed informa-
tion about the interaction kinetics, rate constants, and
component concentrations is necessary [43,44]. Previous
models of immunological response to pathogen invasion,

mostly based on ordinary differential equations [45,46] or
cellular automata models [47], have focused on the inter-
action between a few cell types, cytokines, and pathogens. The
kinetic parameters of these models were estimated by
comparison of pathogen and/or cytokine concentration time
courses from experiments and models. By focusing on a small
subset of the immune response, these models do not reflect
the diversity, complexity, and long-range feedbacks present
in pathogen–host interactions, and thus may lead to
unrealistic results. In our comprehensive network model,
several nodes represent populations of cells or families of
cytokines, and edges represent whole signal transduction
pathways; thus, the molecular-level description of each node
would need quantitative knowledge of complex subnetworks,
knowledge that is currently missing. The fact that we have
limited knowledge, even at the coarse-grained level presented
here, does not allow us to use continuous methods.
The qualitative dynamic descriptions we use, in addition to

being the practical choice, are well suited for networks that
need to function robustly despite changes in external and
internal parameters [48,49]. Qualitative discrete modeling
such as ours has been previously successfully implemented in
gene regulatory networks and signal transduction networks
for predicting the dynamic trajectory of biological circuits
and for accessing the reliability of gene regulatory networks
in signal processing [31,32,50]. In the study of immunological
responses, this approach has been implemented in small
networks for the analysis of T cell activation and anergy [51]
and for the analysis of lymphocyte subsets [52]. Here, a
comprehensive network was constructed to study the
immunological responses at the systems level, and the
dynamic model of this network was successfully validated.
The ingredients (node states, transfer functions) of our

dynamic model refer to the node (component) level, and
there is no explicit control over pathway-level effects.
Moreover, the combinatorial transfer functions we used are,
to varying extents, conjectures, informed by the best available
experimental information. For example, FccR, C3, and Th1-
mediated activation of phagocytes might have a complex,
partly redundant, and partly synergistic relationship, as there
is a requirement for both the recruitment and activation (by
at least one mechanism) of phagocytes in the natural
clearance of both B. bronchiseptica and B. pertussis. Our
assumption for the node ‘‘activated phagocytes’’ allowed all
three processes mentioned above to contribute towards
bacterial phagocytosis, and the dynamic model allowed us
to analyze the temporal separation between contributions to
phagocytosis by these three processes. As the model’s
dynamics is an emergent, systems-level property, and our
choice of parameters was based on the normal time course,
an agreement between experimental and theoretical results
of node disruptions is not inherent, and provides a validation
of the model. Indeed, our model agrees with experimental
results on numerous negative or positive perturbations in
immune mechanisms (such as the deletion of B cells or
adoptive transfer of antibodies).
We incorporated possible stochastic differences within

individual host responses by randomly sampling update
orders, and incorporated known relative temporal informa-
tion on interactions and processes as restrictions on the
order of update; for example, epithelial cells were always
updated before dendritic cells. At a molecular level, we can
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interpret the restrictions on the order of updates either as
restrictions on the relative duration of processes or on the
time required to activate their target nodes. For example,
updating Th1RCs before Th2RCs either means that the signal
transduction pathway activating Th1RCs is faster or that
Th1RCs once produced can activate downstream processes
more quickly than can Th2RCs. Moreover, the orders of
updates also gave an insight into the regulatory processes; for
example, we find that a slow phagocytosis process ensures
better, more reproducible bacterial clearance. The model
identified two possible oscillatory behaviors of Th1RCs and
Th2RCs: short oscillations in the absence of modulating
factors, and the switch-like behavior in the presence of those
modulating factors.

Virulence Factors
Our network model gives insight into how virulence factors

change the course of innate and adaptive immune responses,
and allows the comparison of species-specific virulence
factors. For example, both the B. bronchiseptica O-antigen
and the B. pertussis PTX inhibit early immune responses,
assisting bacterial multiplication and survival. Our directed
network representation allows for tracing the sequence of
immune responses following recognition of the pathogen.
The O-antigen interacts with host components earlier in this
sequence (in the pseudodynamic sense introduced in [53])
than does PTX, as it inhibits bacterial recognition, while PTX
disables the recruitment of immune cells that recognize
bacteria. However, the inhibitory effect of PTX is ultimately
more effective since it gives B. pertussis a means to resist the
effect of serum antibodies. Comparing the way in which the B.
bronchiseptica TTSS and the B. pertussis FHA/ACT modulate T
helper cell balance gives insight into why the TTSS gene is not
expressed in B. pertussis. The TTSS causes necrosis of PMNs
[17], which is possibly a side effect of the evolution of the
TTSS’s primary role to modulate cytokines, and which
ultimately leads to a stronger immune response. Unlike B.
bronchiseptica, the milder pathology during B. pertussis infec-
tion allows it to modulate immunity silently.

The model also provides insight into regulatory mecha-
nisms of antigens and suggests differential regulation of
virulence factors by two distinct mechanisms: (1) immune-
mediated neutralization/elimination, or (2) decay due to
bacterial gene regulation or to a reduction in bacterial
numbers. The conclusion that the effects of the secreted
factors ACT and TTSS are longer lasting than the effects of
PTX is supported by the observation that PTX does not
modulate cytokines or chemokines [23]. The model also
predicts that the decay rates of the (effect of) Th2RCs, TTSS,
and FHA/ACT are similar. Results of new experiments will
lead to further refinement of the model; for example, the
speculations that the LPS containing O-antigen decreases
host cells’ access to other factors such as adhesins, or that it
facilitates secretion of toxins, can be incorporated if
supported by dynamic evidence.

Pathogenesis
One of the most important contributions of our model is

the identification of the pathogenesis phases. The definition
of three infection phases is preferable to using exact timing
because specific processes can have different durations in
different hosts, and timing results obtained in model

organisms might not be directly applicable to the pathogens’
natural hosts. The time scale of processes in our dynamic
model does not correspond exactly to the experimentally
observed timing in mice infections, but the transition from
one phase to another is captured. Comparing the model and
experimental time scales, we estimate that one time step
corresponds to 1–2 d of infection. The time span of the third
phase is shorter in the model than in experiments because
quantitative differences cannot be reproduced in the present
qualitative model; or equivalently, the implicit bacterial
concentration threshold of our model is higher than the
experimental detection threshold.

Implications
Models such as this allow the efficient use and logical

representation of available information. We extracted host-
and pathogen-specific processes from the experimental
literature, and used overlapping information, such as the
modulation of Th1 and Th2 cell types, from other host–
pathogen systems. Our model allows the identification of new
relationships and the making of new predictions that would
be difficult to derive from less formal analysis. First, the
logical network representation of the pathogen- and host-
related information will allow microbiologists and immunol-
ogists to see the knowledge gaps in the results from different
laboratories and appreciate the synergy between the patho-
gen and the host. For example, the role of FHA in cytokine
balance and its possible synergy with TTSS and ACT has not
been studied in the ancestral pathogen B. bronchiseptica.
Second, the timing constraints and parameters derived from
our dynamic model give predictions regarding the time scales
of several of the processes. Experimental testing of our results
on the degradation of toxins and cytokines (or their effects)
will be able to establish the mechanism responsible for this
degradation. Third, and perhaps most important, the model
is able to predict the outcome of perturbations not yet
explored experimentally and to direct future experimental
efforts. A considerable amount of sustained manual effort is
necessary to study immunological processes by traditional
techniques. Modeling leads to efficient ways for analyzing the
effect of knockout mutations, as it is straightforward to delete
certain components in the model and observe the con-
sequences on bacterial clearance and activation/inhibition of
immunological components. While our model lacks quanti-
tative kinetic and spatial detail, it can serve as a scaffold to
which experimentalists and modelers can add future results
on the regulation between immune components and bacterial
mechanisms as they become available.
Bordetella evolution is leading to the frequent emergence of

new strains and species. Our simulations of cross-infections
with or without cross-immunity constitute the first step
toward modeling the within-host effects of newly emerged
Bordetella species. Such simulations can be extended to
incorporate different combinations of known virulence
factors, or to explore putative new virulence factors,
providing reasoned expectations prior to costly and time-
consuming animal experiments. As population-level dynam-
ics are shaped by within-host interactions [42], models such as
ours can increase our understanding of the population-level
effects of specific molecular evolution. Infections by two
different strains or species can result in a similar outcome
(e.g., persistent disease) in terms of bacterial clearance, but
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have different pathological effects. These species-specific
aspects can be readily studied in our model by systematically
comparing the simulated dynamics of the immune system in
the two species. Comparison between models of different
strains and species will allow us to recognize crucial virulence
mechanisms and can give us insight into the evolution of new
virulence mechanisms.

Medical Implications
The present study led us to the identification of the three

phases in Bordetella infections. Putative medical treatments
can thus be evaluated in silico by simulating them through
adding/removing or activating/inhibiting certain nodes and
studying their effect on these three phases. Qualitative
conditions (e.g., for cytokine regulation) provided by such
models can be used in the future to detect the phase of
infection in patients, and ultimately to predict recovery and
design medication. Some of the manipulations of the model
(e.g., the deletion of FHA/ACT) result in early clearance of B.
pertussis in the simulation. Our study of minimal components
necessary for early clearance of a secondary infection
suggests that Th1RCs along with antibodies can be used as a
prophylactic measure. We believe that these and other such
observations will be useful for the control of B. pertussis and
could be applied to other diseases.

This study addresses the goals of systems biology by
effectively encapsulating prior knowledge to generate a
mechanistic and predictive understanding at the systems
level. Understanding at the network level is necessary for
formulating detailed quantitative models of within-host
disease dynamics. Our methodology can be extended to
other respiratory pathogens, and ultimately to pathogens in
general. The outputs of within-host models serve as inputs to
broader-scale epidemiological models; for example, the effect
of host immune components (intrinsic factors) was shown to
be important in cholera epidemics [54,55]. Thus, our study
has implications in epidemiological models as well.

Materials and Methods

Network assembly and dynamic simulation. The networks in
Figures 1, 3, 4, and 5 were drawn with the SmartDraw software
(http://www.smartdraw.com). The dynamic model was implemented
by custom Python code.

Boolean transfer functions. Here, we explain a few representative
logical transfer functions used in our model; a detailed justification of
all transfer functions is given in Text S1.

The Boolean rule for activated phagocytic cells is:

ActPhagCells� ¼ ðRecruited PMNs OR macrophagesÞ AND

ððComplement AND Complement fixing AbÞOR Ag� Ab complexÞ:

Here, the ‘‘AND’’ operator between phagocytes and antibody-
mediated responses describes the fact that phagocytosis requires
antigen-specific activation of phagocytes. The ‘‘AND’’ relationship
between complement and complement-fixing antibodies denotes that
only the classical complement pathway activated through antibodies
could activate phagocytes above threshold levels. In case of other
infections, the alternative complement pathway also activates
phagocytes, but in Bordetella infections in B cell–deficient mice, the
alternative complement pathway is not sufficient for significant
decrease in bacterial numbers [39], supporting the above description.
We used an OR relationship between the activation of phagocytes by
complement þ complement-fixing antibodies and antigen–antibody
complexes because PMNs and macrophages are recruited and
activated in C3-deficient mice [15,39]. The ‘‘OR’’ condition between
PMNs and macrophages is justified by the fact that both of these
major cell types contribute directly to the bacterial phagocytosis [56].
These contributions differ in their timing and extent because

different activation signals exist for these cell types [57]. Hence, for
a simplification in the model, we included separate nodes for PMNs
and macrophages and not for each cell type.

The Boolean rules for T helper cells are:

Th1 cells� ¼ DC AND T0 cells AND Th1RC
Th2 cells� ¼ DC AND T0 cells AND Th2RC:

Th cells are activated through the interaction of T0 cells with DCs in
the model. Depending on the activation of either Th1RCs or Th2RCs,
T0 cells differentiate into Th1 cells or Th2 cells, respectively. The
presence of all three components is essential for the activation of a
particular T helper cell type; hence, we used an ‘‘AND’’ relationship.

Parameters. Our model has two types of parameters. First, the
threshold parameters dcmax and pmax signify a condition for the
continuous expression of the regulator nodes DCs and Phagocytosis
to induce a state change in their respective targets T0 cells and
Bacteria. Second, the decay constants defined for certain antigens
(sFHA/ACT/sTTSS) and cytokines (sTh1RC/sTh2RC) express the condition
that these antigens and cytokines are degraded after being active for
more than a given number of time steps, even if the conditions for
their activation are still satisfied. Here, we give a biological
justification of these parameters.

Bacterial clearance. To incorporate the fact that bacteria are not
cleared by innate or early adaptive responses, we assume that only a
sustained process of phagocytosis is able to clear the infection (i.e.,
that phagocytosis needs to be continuously on for pmax time steps).

Bacteria� ¼ ðNOT [
Pmax

i¼0
Phagocytosist�iÞAND Bacteria:

The notation [Pmax
i¼0 was introduced to indicate that the present (i¼ 0)

as well as past (i ¼ 1 � � � pmax) states of the node Phagocytosis
compound synergistically to determine the state of the node Bacteria.
This condition signifies that only sustained above-threshold levels of
phagocytosis lead to bacterial clearance.

Antigen regulation. Secreted bacterial toxins and bacterial
adhesins such as LPS follow different time courses during patho-
genesis. Toxin levels can be reduced by interactions with host
immune components (e.g., antigen-specific antibodies) or free decay.
Adhesin levels decrease due to a reduction in bacterial numbers or a
regulation of the genes encoding the antigens. Though both secreted
factors and adhesins can activate antibodies, the removal (neutraliza-
tion) of the former is not associated with bacterial clearance as they
are secreted and released in the host, unlike the latter. We assumed
that the levels of PTX are determined by the presence of bacteria and
of pertussis-specific antibodies, while O-antigen is expressed con-
stitutively in B. bronchiseptica.

PTX� ¼ Bacteria AND NOTðComplement� fixing Ab OR Other ABÞ
OAg� ¼ Bacteria:

The effect of other virulence factors such as TTSS and FHA/ACT is
more complex, possibly due to the cooperation between different
virulence factors. The node TTSS expresses the cooperation between
TTSS and ACT in B. bronchiseptica, and the node FHA/ACT expresses
the cooperation between the adhesins FHA, LPS, and the secreted
factor ACT in B. pertussis. The effects of the TTSS and FHA/ACT are
shown to be removed or decreased below threshold levels during late
pathogenesis [21,23,27,58]. This reduction could not be reproduced
simply by the neutralization of TTSS-secreted factors or of ACT by
antibodies. In the absence of detailed information, we assumed that
the activity or effect of these nodes decays after a continuous
presence for a prespecified number of time steps sTTSS and sFHA/ACT,
even if the conditions that activated them persist. Thus, the transfer
function for TTSS is TTSS*¼Bacteria AND NOT TTSSt�sTTSS ; similar
transfer function applies to FHA/ACT. Thus, the condition for an
above-threshold concentration of TTSS or FHA/ACT nodes (state 1)
is the presence of their activators at the previous time point,
combined with the absence (subthreshold concentration) of TTSS or
FHA/ACT sTTSS or sFHA/ACT time points ago, respectively. Note that it
is possible that other virulence factors such as PTX also exhibit
uncatalyzed decay/inactivation, but this decay rate is probably smaller
than their removal rate by active immune mechanisms. The crucial
difference between the effect of secreted factors PTX, on one hand,
and ACT and TTSS, on the other hand, is that PTX does not
modulate chemokine and cytokine production [23]. Hence, PTX is
less likely to have long-lasting effects after its neutralization, unlike
ACT and TTSS. Our description of the latter nodes allows us to
capture such longer-lasting effects of the nodes by using a decay time
longer than one time step.

Cytokine regulation. The decision between generating Th1 cells or
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Th2 cells is determined by a group of cytokines produced during the
interaction of antigen-presenting cells and T cells. How the balance
between Th1 cells and Th2 cells maintained in the presence of
double-negative feedback between Th1-related cytokines and Th2-
related cytokines is still unknown. Our modeling of the double-
negative feedback between Th1RCs and Th2RCs led to different
dynamic outcomes in asynchronous and synchronous algorithms.
Asynchronous algorithms gave advantage to the process that is
activated earlier (an example of bistability), whereas in the
synchronous algorithm synchronous oscillations of Th1RCs and
Th2RCs were observed (refer to Table 2 and Text S1 for the Boolean
transfer functions of these nodes and to Dynamic simulation for the
algorithm). To remove the dependence on the order of update of the
asynchronous method in the consensus Bordetellae model (without
specific virulence factors), we assumed that Th1RCs/Th2RCs decay
after a period sTh1RC/sTh2RC. We found that the value of these decay
times is dependent on bacterial virulence factors (refer to Parameter
analysis and Text S2 for details). We chose the decay times such that
(1) in the species-specific models incorporating TTSS/FHA (in B.
bronchiseptica) and FHA/ACT activity (in B. pertussis), a reproducible
switch (i.e., activation of Th2RCs followed by Th1RC activation) is
observed; and (2) in the consensus model (absent specific virulence
factors), there is more than one such switching. Alternative activation
of Th1RCs and Th2RCs is found in many disregulations, for example
in allergies and allografts [59,60], when the balance between Th1RCs
and Th2RCs is not directly modulated, and is also predicted by other
models [61].

Parameter analysis. In this section we analyze the realistic range of
the threshold parameter pmax and the decay constants sTTSS/sFHA/ACT.
All parameters and their analysis are given in Text S2. We performed
a systematic search in parameter space to determine the parameter
regions that satisfy the following two criteria: (1) reaching bacterial
clearance and (2) association of bacterial clearance with activation of
phase III. We performed 1,000 simulations for each parameter value
in a biologically realistic region. The disease was allowed to evolve for
70 time steps in each simulation. To test the first condition, we
determined the distribution of the time steps at which bacteria were
cleared; for the second criterion, we monitored the frequency of
activation of the node Th1RC around the time step at which bacteria
were cleared. Figure S4 shows the evaluation of condition 2 in the
case of sTTSS, as an example.

pmax in Bacteria� ¼ ðNOT [
Pmax

i¼0
Phagocytosist�iÞ AND Bacteria:

We sampled the threshold for clearance-inducing phagocytosis, pmax,
in the interval 0 � pmax � 10. For pmax , 2, B. bronchiseptica were
cleared by innate immune responses, which is inconsistent with the
literature [2,14,24,39]. For pmax . 1, the bacterial clearance was
delayed by one time step for each unit increase in the pmax value in
both species. Increasing pmax above 2 increased the length of phase III,
which was shorter in the simulation than in experimental studies.
Our perturbation analysis indicated that for pmax . 4, the
perturbations in which early clearance was observed (TTSS deletion,
antibody-mediated clearance in B. bronchiseptica; see Table S3) could
not be reproduced, implying that the condition is too stringent. We
chose pmax ¼ 4; the success of the results obtained with this value
suggest that in later phase III, bacterial concentration might decrease
so much that phagocytosis is active at low (close to threshold or even
subthreshold) levels, requiring a longer time for complete clearance.
Experiments performed at shorter time intervals around the
expected clearance time than the customary sampling at days 28,
50, and 70 will be necessary to better elucidate this parameter.

sTTSS=sFHA=ACT in TTSS � ¼ Bacteria AND NOT TTSSt�sTTSS

and

FHA=ACT � ¼ Bacteria AND NOT FHA=ACTt�sFHA=ACT :

sFHA/ACT and sTTSS were varied in the intervals 1 � sFHA/ACT � 22, 1 �
sTTSS � 22, and the distribution of the time steps of bacterial
clearance was plotted (see Figure S4). Clearance was delayed by one
time step with each unit increment. When sTTSS . 15 or sFHA/ACT .
18, bacteria were not cleared. For 3 � sFHA/ACT � 8 or 3 � sTTSS � 8,
the bacterial clearance was not associated with Th1-related responses;
for 0 � sFHA/ACT or 0 � sTTSS � 3, there were spurious oscillations
between Th2RCs and Th1RCs. As natural killer cell activation in B.
pertussis infection activates IFN-c (a Th1RC) production [38,62]
earlier than in B. bronchiseptica infections, thus sFHA/ACT , sTTSS.
Hence, we used sFHA/ACT ¼ 12 and sTTSS ¼ 15. The result that the
composite action of the nodes FHA/ACT and TTSS decreases below

threshold levels after 12 and 15 time steps, or after nine to 12 time
steps of active antibody response, suggests that these nodes have a
longer effect than other independently acting virulence factors such
as PTX and O-antigen. A possible mechanism in support of this
suggestion is damage to cellular systems; for example, TTSS
permeabilizes cell membranes, which require a longer time to heal
even after the toxin can be neutralized by antibodies.

Secondary infections. Secondary infections were modeled by using
initial conditions that represent the state of the host when a
secondary bacterial invasion takes place. The secondary initial
condition is defined by the active components of the immune system
and bacteria. Three scenarios were simulated. First, an infection of a
diseased host was represented using an initial condition where the
nodes ‘‘Epithelial cells,’’ ‘‘Ag–Ab complex,’’ ‘‘Complement-fixing Ab,’’
‘‘Other Ab,’’ ‘‘Th2RCs,’’ ‘‘T0 cells,’’ ‘‘Th2 cells,’’ and ‘‘DCs’’ were
active. The node ‘‘Complement’’ was also active in the case of B.
pertussis infection. Second, the infection of a convalescent host was
represented by an initial condition in which the following nodes were
on: ‘‘Epithelial cells,’’ ‘‘Complement,’’ ‘‘Ag–Ab complex,’’ ‘‘Comple-
ment-fixing Ab,’’ ‘‘Other Ab,’’ ‘‘B cells,’’ ‘‘Th1RCs,’’ ‘‘PICs,’’ ‘‘T0 cells,’’
‘‘Th1 cells,’’ ‘‘Recruited PMNs,’’ ‘‘Macrophages,’’ and ‘‘DCs.’’ Last, the
simulation of infection of immune hosts was performed by using the
memory steady state of primary infections as initial condition (i.e.,
setting the two antibody nodes ‘‘Complement-fixing Ab’’ and ‘‘Other
Ab’’ on, along with the node ‘‘Bacteria’’).

Bacteria. We used the sequenced WT strains of B. bronchiseptica
(RB50) and B. pertussis (BP536) as described previously [63,64].
Bacteria were maintained on Bordet-Gengou agar (Difco, http://
www.bd.com), inoculated into Stainer-Scholte broth at optical
densities of 0.1 or lower, and grown to mid-log phase at 37 8C on a
roller drum.

Animal experiments. C57BL/6 mice were obtained from The
Jackson Laboratory (http://www.jax.org). Mice were maintained and
treated at the Pennsylvania State University in accordance with
approved institutional guidelines. Prior to inoculation, mice were
lightly sedated with isoflurane (Abbott Laboratories, http://
www.abbott.com) and were inoculated by pipetting 50 ll of
phosphate-buffered saline containing the 5 3 105 CFU of B.
bronchiseptica or B. pertussis onto the tip of the external nares. For
bacterial enumeration, groups of four animals were killed at the
indicated time point after inoculation. Colonization of respiratory
organs was quantified by homogenization of each tissue in phosphate-
buffered saline, plating onto Bordet-Gengou blood agar containing
20 lg/ml streptomycin, and colony counting. For reinfection experi-
ments, mice were intranasally inoculated with 53105 CFU of bacteria
in 50 lL and reinfected with the same dose 28 d after the initial
inoculation. Mice were dissected 3 d after the reinfection, and
bacterial numbers were enumerated as described above.

Supporting Information

Figure S1. Experimental Time Courses of IFN-c and PMNs

(A) For the IFN-c time course, groups of three to four C57BL/6 mice
were intranasally inoculated with 5 3 105 CFU of the WT (filled
diamonds) or DbscN (open squares) strain of B. bronchiseptica. The
DbscN strain lacks the ATPase required for the secretion of TTSS.
The splenocytes were collected at the indicated time points after
inoculation and restimulated for 3 d with heat-killed B. bronchiseptica,
and the supernatant was analyzed for IFN-c by ELISA.
(B) For the PMN time course, C57BL/6 mice were inoculated with 53
105 CFU of B. pertussis (circles) or B. pertussis DPTX (squares). Mice
were killed on the indicated days, their lungs were perfused with 5 ml
cold phosphate-buffered saline, and total leukocytes per whole lung
were enumerated. Individual cell types were determined by modified
Giemsa staining of cells. n¼ 4 per group. *p , 0.001; **p , 0.05.

Found at doi:10.1371/journal.pcbi.0030109.sg001 (17 KB PDF).

Figure S2. Distributions of B. bronchiseptica and B. pertussis Clearance
upon Implementation of Two Constraints on the Order of Updates

(A) Epithelial cells updated before dendritic cells.
(B) Th1RCs are updated before Th2RCs, and Th2RCs are updated
before PICs.

Found at doi:10.1371/journal.pcbi.0030109.sg002 (408 KB AI).

Figure S3. B. bronchiseptica (Bb) and B. pertussis (Bp) Clearance Time
Distributions in the Completely Asynchronous Model for the
Following Perturbations

(A) TTSS deletion or FHA/ACT deletion.
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(B) Th1 cell deletion.
(C) Macrophage deletion.
(D) Antibody treatment.

Found at doi:10.1371/journal.pcbi.0030109.sg003 (661 KB TIF).

Figure S4. Parameter Analysis

(A) The frequency of an association between bacterial clearance and
the activity of Th1RCs as a function of the parameter sTTSS. Similar
frequency plots were made for all other parameters in the simulation.
(B) The dependence of the timing of bacterial clearance on the
parameters sTTSS in B. bronchiseptica (gray) and sFHA/ACT in B. pertussis
(green). All symbols represent 100% of the clearance times when the
simulation was run for 1,000 times for each sTTSS and sFHA/ACT.
(C) Oscillations of Th1RCs (blue) and Th2RCs (purple) in B. pertussis
for sTh1RC ¼ sTh2RC ¼ 1. The corresponding time course in B.
bronchiseptica is identical with the exception that Th1RCs are activated
on the fifth time step.

Found at doi:10.1371/journal.pcbi.0030109.sg004 (637 KB TIF).

Table S1. Synthesis of Experimental Information about Regulatory
Interactions between Host Immune Components and Bacterial
Virulence Factors

Found at doi:10.1371/journal.pcbi.0030109.st001 (97 KB DOC).

Table S2. Temporal Information Known from Experimental Obser-
vations in B. bronchiseptica (Bb) and B. pertussis (Bp)
Found at doi:10.1371/journal.pcbi.0030109.st002 (66 KB DOC).

Table S3. Summary of Experimental Data on the Effect of Bacteria/
Mouse Knockout Mutations on Bacterial Clearance

This information was used to test the model’s outcomes in the
corresponding simulated knockouts. For comparison, the timing of
the WT infections is also given.

Found at doi:10.1371/journal.pcbi.0030109.st003 (40 KB DOC).

Table S4. Nodes Active in (a Portion of) Each Phase of the Infection
with B. bronchiseptica (Bb) and B. pertussis (Bp)
Found at doi:10.1371/journal.pcbi.0030109.st004 (55 KB DOC).

Table S5. B. bronchiseptica and B. pertussis Clearance Time Steps during
Simulated Cross-Infections

Found at doi:10.1371/journal.pcbi.0030109.st005 (29 KB DOC).

Text S1. Detailed Explanation of Boolean Transfer Functions

Found at doi:10.1371/journal.pcbi.0030109.sd001 (85 KB DOC).

Text S2. Parameter Analysis

Found at doi:10.1371/journal.pcbi.0030109.sd002 (90 KB DOC).

Text S3. Cross-Infections

Found at doi:10.1371/journal.pcbi.0030109.sd003 (27 KB DOC).

Accession Numbers

The GeneDB (http://www.genedb.org) accession numbers for the
bacterial genes discussed in this paper are: adenylate cyclase toxin
(BB0324 in B. bronchiseptica, BP0760 in B. pertussis), filamentous
hemagglutinin (BB2993 in B. bronchiseptica, BP1879 in B. pertussis),
pertussis toxin (five subunits: BP3786, BP3785, BP3787, BP3783,
BP3784), and type III secretion system (BB1628). The ExPASy
database (http://ca.expasy.org) accession number for Toll-like recep-
tor 4 is TLR4_HUMAN (O00206) and TLR4_MOUSE (Q9QUK6).
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