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Analysis of light‑wave nonstaticity 
in the coherent state
Jeong Ryeol Choi

The characteristics of nonstatic quantum light waves in the coherent state in a static environment 
is investigated. It is shown that the shape of the wave varies periodically as a manifestation of its 
peculiar properties of nonstaticity like the case of the Fock‑state analysis for a nonstatic wave. A belly 
occurs in the graphic of wave evolution whenever the wave is maximally displaced in the quadrature 
space, whereas a node takes place every time the wave passes the equilibrium point during its 
oscillation. In this way, a belly and a node appear in turn successively. Whereas this change of wave 
profile is accompanied by the periodic variation of electric and magnetic energies, the total energy 
is conserved. The fluctuations of quadratures also vary in a regular manner according to the wave 
transformation in time. While the resultant time‑varying uncertainty product is always larger than (or, 
at least, equal to) its quantum‑mechanically allowed minimal value ( �/2 ), it is smallest whenever the 
wave constitutes a belly or a node. The mechanism underlying the abnormal features of nonstatic light 
waves demonstrated here can be interpreted by the rotation of the squeezed‑shape contour of the 
Wigner distribution function in phase space.

A light wave in media can vary spatiotemporally according not only to the variation of electromagnetic param-
eters but to its interaction with matters as well. This may lead the wave being  nonstatic1–8. Regarding this, the 
interaction of laser light with time-varying media has been a subject of great interest from the early days of 
modern  physics6–12. Electromagnetic waves can be amplified or dissipated through the coupling of them, for 
example, with a plasma  wave6–10. This outcome is applicable to several physical branches, such as the frequency 
shifts of light  waves8,9, laser-driven wakefield  accelerators7,12, plasma parametric  amplification4,13, and harmonic 
 generation14. A notable field among them is a production of terahertz/millimeter-waves via frequency shifts. 
The resources of other means for producing such waves are actually rare and  limited5. It is also noteworthy that 
femtosecond light pulses produced by high power lasers are necessary in realizing ultrafast optical technology 
such as ion acceleration at multi-MeV  energies15,16. Beside these, there are many other scientific and technological 
branches where the nonstatic waves are  utilizable17–20.

From our recent report associated with light-wave  nonstaticity21, it was known that nonstatic waves also take 
place even when the environment is static. Regarding this, the time behavior of nonstatic waves in the Fock states 
was analyzed fundamentally. Nonstatic waves in such a case show a peculiar property that the waves undergo 
collapse and expansion in turn periodically in quadrature space. The concept of the measure of nonstaticity has 
been introduced as a tool for estimating the magnitude of nonstatic character for such a  wave21. In order for 
efficient manipulation and control of nonstatic waves, it is necessary to understand the mechanism how nonstatic 
light waves evolve.

The research for wave nonstaticity in a coherent state, as well as in the Fock states, may also deserve our atten-
tion. Coherent states are fundamental in quantum optics because they allow classical-like description of light 
waves. Glauber-type coherent  states22 provide an elegant representation of wave evolution with Gaussianity. A 
paradigmatic research with coherent states is demonstrating quantum-classical correspondence which addresses 
how quantum behavior of a system develops to  classicality23. It is well known that coherent-state description of 
a quantum state can also be extended to a wide range of branches in physics beyond quantum optics, such as 
atomic  physics24,25, nuclear  physics26,27, solid state  mechanics28,29, biological  systems30,31, etc.

Stimulated by the above consequence and associated research trends, we will investigate nonstatic waves in 
this work, focusing on the coherent state in a static environment. A quadratic invariant operator which follows 
the Liouville-von Neumann equation will be adopted for this purpose. Lots of dynamical properties of non-ideal 
physical systems including nonstatic light waves can be treated by means of such a dynamical  invariant32–34. The 
reason why the invariant operator method is useful in this context is that a generalized quantum wave function 
of a light wave is obtained by utilizing an invariant operator instead of the direct use of the Hamiltonian.
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How the wave nonstaticity affects the time evolutions of diverse physical quantities will be analyzed rigorously. 
The similarities and differences between the evolutions of nonstatic and static coherent waves will be clarified. 
Moreover, we will find a global profile of wave nonstaticity extended to the coherent state and provide graphics of 
the wave evolutions which display apparent nonstaticity. The phenomena of wave collapse and expansion in the 
coherent state will be illustrated and compared with those occurred in the Fock states. The behavior of quantum 
energy and quadrature fluctuations which accompany nonstatic coherent waves will also be addressed, examin-
ing their pattern/regularity in the evolution. Finally, we will try to elucidate the mechanism related to resultant 
wave-nonstaticity on the basis of the Wigner distribution function.

Results and discussion
Basic formulation and the invariant operator. We consider a light wave propagating through a non-
conductive medium in which electric permittivity ǫ and magnetic permeability µ do not vary over time. Because 
the electromagnetic parameters are independent of time in this case, the medium is static to the wave packets 
evolving in it. The Hamiltonian for the light waves in such a static medium is given by Ĥ = p̂2/(2ǫ)+ ǫω2q̂2/2, 
where ω is the angular frequency of the form ω = kc whereas k is the wave number. Then, the wave velocity is 
constant and it is given by c = 1/

√
ǫµ.

By the way, as mentioned in the introduction part, nonstatic quantum waves can emerge in the Fock states in 
this static situation. Wave nonstaticity may also appear in other states in general, such as the coherent state, the 
squeezed state, and the thermal state. We investigate quantum wave phenomena associated with the nonstatic 
coherent state built up under the static circumstance. This will be carried out based on the complete analytical 
description of them.

To treat the light in a general way, let us see the invariant operator  theory32. In fact, the Hamiltonian itself is 
an invariant operator for this system, because the Hamiltonian is a time-independent form that corresponds to 
a conserved energy. However, in order to treat the system more generally, we need to obtain a general form of 
an invariant Î from the Liouville-von Neumann equation:

By inserting the Hamiltonian into this equation, we derive a quadratic invariant operator as

where f(t) is a time function that yields the nonlinear  equation21,33

Although the time derivative of Eq. (2) results in zero, the invariant operator Î is given in terms of f(t) that is 
related to the time evolution of the system. We consider a general solution for f(t), which is given  by21:

where ϕ̃(t) = ω(t − t0)+ ϕ , t0 is an initial time and ϕ is a phase, whereas c1 , c2 , and c3 are real constants that 
follow the condition

Without loss of generality, we restrict ϕ within the range −π/2 ≤ ϕ < π/2 for convenience; the consideration 
of this range is enough because the period of Eq. (4) is π.

At this stage, we introduce an annihilation operator associated with the invariant, Eq. (2), which is of the 
 form33

Then, its Hermitian adjoint Â† is a creation operator. These operators obey the boson commutation relation 
[Â, Â†] = 1 . Notice that the invariant operator can be rewritten in terms of these generalized ladder operators 
to be
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2f (t)
q̂

)2
]

,

(3)f̈ (t)− [ḟ (t)]2
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(6)Â =
√

ǫω

2�f (t)

(

1− i
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If we denote the eigenfunctions of Î as �q|�n(t)� ( n = 0, 1, 2, . . . ), we can obtain them from the eigenvalue 
equation Î�q|�n(t)� = �n�q|�n(t)� , while their formula is provided in Eq. (46) in “Methods” section (the last 
section). Here, the eigenvalues are given by �n = �ω(n+ 1/2) . Notice that the wave functions in the Fock states 
are represented by �q|�n(t)� as shown in Eq. (45). For the basic of solving the eigenvalue equation of an invariant 
operator, refer to Refs.32,35.

From inverse representations of Eq. (6) together with its conjugate equation ( Â† ), we can readily have the 
formula of q̂ and p̂ , such that

These formulae are useful when we investigate the behavior of quantum observables such as quadrature fluctua-
tions and quantum energy.

As is well known, the Glauber coherent state is the eigenstate of an annihilation operator. A generalized wave 
function in the coherent state will be derived by evaluating the eigenstate of Â given in Eq. (6) in the subsequent 
subsection. We will use this wave function as a basic tool for unfolding quantum theory of wave nonstaticity.

Wave nonstaticity in the coherent state. To obtain the analytical description of the wave function in 
the coherent state, let us see the eigenstate of Â . If we write the eigenvalue equation of Â in the form

|A� is the coherent state. By solving Eq. (10) using Eq. (6) in the configuration space in a straightforward way, 
we have the coherent state as

where ζ(t) = ǫω/[�f (t)] . From this wave function, we can investigate various properties of the nonstatic light 
wave in the coherent state.

If c1 = c2 = 1 and c3 = 0 , the wave undergoes no nonstaticity. The wave nonstaticity occurs only when c1 
and/or c2 deviate from unity. If such deviations are large, the wave becomes highly nonstatic. Regarding this, 
the measure of nonstaticity associated with Eq. (11) is the same as that in the Fock states, which is of the  form21

We now see the eigenvalue A of Eq. (10) in detail. For this purpose, let us denote the solutions of the classical 
equations of motion (second-order differential equations) for canonical variables q and p as Qcl(t) and Pcl(t) , 
respectively. Then, the eigenvalue is given in terms of them as

From fundamental mechanics, we can represent

where θ̃ (t) = ω(t − t0)+ θ0 , θ0 is an arbitrary phase at t0 . The eigenvalue A can be rewritten in terms of an 
amplitude and a phase, such that

where
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Figure 1.  Time evolution of the probability density |�q|A�|2 where ( c1 , c2 ) are (1, 1) for A, (5, 2) for B, and (1, 
100) for C. The measure of nonstaticity is 0.00 for A, 2.37 for B, and 35.70 for C. We have used ω = 1 , A0 = 1 , 
� = 1 , ǫ = 1 , t0 = 0 , and ϕ = θ = 0 . We see from Eq. (5) that the allowed values of c3 , when c1 and c2 have been 
determined, are two: One is positive and the other is negative. Among them, we choose a positive one as the 
value of c3 in this and all subsequent figures for convenience.
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We can easily check that the differentiation of A0 with respect to time results in zero. This means that A0 is a 
time-constant. Note that A0 can also be expressed in a simple form as

where t1 is a particular time that is given by t1 = t0 + (π/2− θ0)/ω . From a direct differentiation of Eq. (18) 
with time, we have

Hence, we can put κ in the form

where θ is a phase. Thus, we conclude that

where A(t0) = A0e
−iθ and T(t) =

∫ t
t0
f −1(t′)dt′.

The integration in T(t) can be performed and this leads  to21,36

where

while G(t) = π
∑∞

m=0 u[t − t0 − (2m+ 1)π/(2ω)+ ϕ/ω] and u[x] is the Heaviside step function. By insert-
ing Eq. (23) with Eq. (24) into Eq. (21), we can have the formula of κ . Notice that κ obtained in such a way is 
continuous over time because the discontinuity originated from the characteristic of the arctangent function is 
compensated by introducing the step function.

On the other hand, the former expression of κ given in Eq. (18) is discontinuous over time, although its time 
derivative gives the same result as that of the new κ which was mentioned a little while ago. For this reason, 
we will use Eq. (21) with Eqs. (23) and (24) as the expression of κ in the subsequent analysis of the nonstatic 
coherent wave.

Because we know the complete formula of A(t) from Eq. (22) and subsequent equations at this stage, it is 
possible to investigate the characteristics of the wave function given in Eq. (11). Figure 1 is the time evolution 
of the probability density |�q|A�|2 associated with that wave function. The formula of A(t) given in Eq. (22) will 
also be used subsequently in order to investigate other physical quantities in the coherent state. By the way, if 
we take c3 = 0 and a different formula of A similar to Eq. (13) instead of the one given in Eq. (22), the coherent 
state developed here reduces to that of Ref.33.

p-space analysis of the coherent state may also be necessary for the complete understanding of the evolution 
of the nonstatic wave. p-space eigenfunction of the invariant operator, i.e., the wave function in p-space can be 
obtained from the Fourier transformation:

The exact formula of �p|A� is represented in “Methods” section.
The three kinds of the probability densities, |�q|A�|2 , |�p|A�|2 , and |�q|�n�|2 ( n = 1, 2, 3, · · · ), have been com-

pared to each other in Fig. 2, where �q|�n� are Fock-state wave functions that were previously investigated in 
Ref.21. The formula of �q|�n� has been represented in “Methods” section for convenience. The phase difference 
between the evolutions of |�q|A�|2 and |�p|A�|2 is π/2 . From a careful comparison of Fig. 2A with Fig. 2C, we 
confirm that |�q|A�|2 constitutes a node (a belly) whenever |�q|�n�|2 a node (a belly). From this, we can confirm 
the similarity between the nonstatic evolutions of the coherent-state wave and the Fock-state wave.

Quantum energy and quadrature fluctuations. As the wave becomes nonstatic, the evolutions of 
related physical quantities may also deviate from their standard patterns. To see this in a quantitative way, lets 
consider quantum energy and quadrature fluctuations for instance.
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Figure 2.  Comparison between time evolutions of different probability densities for nonstatic waves. (A) is 
|�q|A�|2 , (B) is |�p|A�|2 , and (C) is |�q|�n�|2 where n = 5 . We have used ( c1 , c2 ) = (10, 10), ω = 1 , A0 = 1 , � = 1 , 
ǫ = 1 , t0 = 0 , and ϕ = θ = 0.

Figure 3.  Time evolution of quantum electric energy Ek , quantum magnetic energy Ep , and total quantum 
energy E for several different values of c1 . The value of c1 that we have chosen is 1 for red, 2 for orange, 4 for 
yellow, 10 for green, and 20 for blue lines. We have used c2 = 1 , ω = 1 , A0 = 1 , � = 1 , ǫ = 1 , t0 = 0 , and 
ϕ = θ = 0 . The evolution of the probability density for the case of c1 = 4 is provided in upper part: this is 
associated to the quantities of yellow lines.
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As shown previously, the Hamiltonian is composed of two terms associated with electric energy p̂2/(2ǫ) and 
magnetic energy ǫω2q̂2/2 . From the evaluation of the expectation values of them in the coherent state using 
Eqs. (8) and (9), we have the formula of the electric energy and the magnetic energy from quantum-mechanical 
point of view as

The time behaviors of these are shown in Fig. 3. Depending on the wave variation over time, both the electric 
and the magnetic energies vary periodically. This can be regarded as the manifestation of wave nonstaticity. 
The electric energy is largest at nodes, whereas the magnetic energy is largest at the bellies. However, the total 
quantum energy does not vary over time and this consequence agrees with the universal physical law of energy 
conservation.

The fluctuation of an observable Ô in the coherent state can be defined as (�O)A = [�Ô2� − �Ô�2]1/2 where 
�· · · � = �A| · · · |A� . Using this, the fluctuations of canonical variables represented in Eqs. (8) and (9) are obtained, 
such that

We also readily have the corresponding uncertainty product as

(26)
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1+ [ḟ (t)]2
4ω2

)]1/2

.

Figure 4.  Time evolution of quadrature fluctuations (�q)A (A), (�p)A (B), and the uncertainty product 
(�q)A(�p)A (C) for several different values of c1 . The value of c1 that we have chosen is 1 for red, 2 for orange, 
4 for yellow, 10 for green, and 20 for blue lines. We have used c2 = 1 , ω = 1 , � = 1 , ǫ = 1 , t0 = 0 , and ϕ = 0 . In 
upper part, the evolution of the probability density is shown with the choice of c1 = 4.
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The time evolutions of the fluctuations (�q)A and (�p)A together with (�q)A(�p)A are represented in Fig. 4. 
These also exhibit periodic behaviors over time. (�q)A is largest at bellies, while (�p)A is largest at nodes. On 
the other hand, (�q)A(�p)A is smallest at both nodes and bellies. By comparing Fig. 4A with Fig. 4B, we see 
that the variation patterns of (�q)A and (�p)A are the same as each other except for the difference in the phase 
between them.

Squeezing effects and nonclassicality. From Fig. 4A,B, we see that both the uncertainties (�q)A and 
(�p)A can be lowered below their standard quantum levels. If (�q)A is lower than its standard quantum level, 
(�p)A is larger than its standard quantum one and vice versa. This means that the nonstatic coherent state 
resembles the squeezed state on one hand. In order to see in more detail about this, let us consider the Wigner 
distribution function which is defined in the form

(30)(�q)A(�p)A = �

2

(

1+ [ḟ (t)]2
4ω2

)1/2

.

(31)W(q, p, t) = 1

π�

∫ ∞

−∞
�A|q+ y��q− y|A�e2ipy/�dy.

Figure 5.  Comparison of the density plot of W for static (A) and nonstatic (B) light waves at t = 0 where ( c1 , c2 ) 
are chosen as (1, 1) for A and (2, 1) for B. We have used ω = 1 , A0 = 0.1 , � = 1 , ǫ = 1 , t0 = 0 , and ϕ = θ = 0.

Figure 6.  Density plots for the time evolution of W where the considered time is represented in each panel. 
The nonstaticity parameters chosen here are ( c1 , c2 ) = (5, 2); this choice corresponds to that of Fig. 1B. We have 
chosen the amplitude as A0 = 1 , which is very large compared to that in Fig. 5. All other parameters taken here 
are the same as those of Fig.  5.
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A straightforward evaluation of this using Eq. (11) results in

The graphical illustration for this outcome is given in Fig. 5. By comparing Fig. 5B with Fig. 5A, we see that W is 
squeezed in a certain direction in phase space as the state becomes nonstatic. The time evolution of the Wigner 
distribution function for a nonstatic wave with a relatively large amplitude ( A0 ) is shown in Fig. 6. From this 
figure, we see that the bar that represents the squeezed distribution contour rotates as time goes by. Not only the 
center of the bar rotates clockwise with respect to the origin of coordinates, but the bar itself rotates clockwise 
about its center as well. The periods of both kinds of rotations are the same as each other and they are given by 
tp = 2π/ω . Whereas the former kind of rotation is usual, the latter kind is clearly related to the fundamental 
light-wave nonstaticity, such as the time variation of the uncertainties and the appearance of bellies and nodes 
in the wave evolution. Let us look into Fig. 6 in connection with Fig. 1B that was taken the same values of c1 and 
c2 . We confirm that the values of (�q)A in panels B and F in Fig. 6 are relatively high, whereas they correspond 
to the instants of time at which the displacements in Fig. 1B is nearly highest. On the other hand, they are small 
in panels D and H, whereas these cases correspond to the instants where the wave forms nearly a node in Fig. 1B. 
This outcome agrees with the result of Fig. 4A which exhibits that (�q)A is small around a node and high around 
a belly. From this analysis, we can understand the mechanism of squeezing that arises in the nonstatic coherent 
state. Squeezing effects in a quantum state is a well-known nonclassical property.

We now analyze the nonclassicality of the nonstatic state in more detail in relation to the standard description 
of light waves. To this end, we introduce the usual annihilation operator:

and its Hermitian adjoint â† that is the creation operator. Then, Eq. (6) can be rewritten in terms of them to be

where

Notably, µ(t) and ν(t) satisfy the relation

Based on the above expressions, we can also write Eqs. (28) and (29) as

If µ = 1 and ν = 0 (or c1 = c2 = 1 ), these reduce to standard uncertainties in each quadrature, which are rep-
resented with a red curve in panels A and B in Fig. 4, respectively. Thus, we confirm that the time variation of 
the uncertainties shown in Fig. 4 is determined depending purely on the time variations of µ and ν that follow 
Eqs. (35) and (36).

As a measure of nonclassicality, we see Mandel’s Q  parameter37 for this system. â and â† can be used for esti-
mating nonclassicality of the nonstatic state relative to the standard description of light waves because standard 
quantum states are described in terms of them. Considering this, it is possible to represent the Q parameter  as37
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√

ǫω

2�
q̂+ i

p̂√
2ǫω�

,
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where the definition of �· · · � is still the same as the previous one which is �A| · · · |A� . While there is no upper 
bound for the Q parameter, its minimal value allowed in quantum mechanics is −1 . If −1 ≤ Qâ < 0 , the field 
follows sub-Poissonian statistics, whereas it follows super-Poissonian statistics when Qâ > 0 . The light-wave 
description, on the other hand, reduces to Poissonian statistics in the case Qâ = 0.

To evaluate the Q parameter, let us represent â and â† in the form

If we insert these two formulae into Eq. (40), the problem is treated in terms of some arrays of Â and Â† instead 
of the standard ladder operators. We then rearrange the elements of Eq. (40) in a way that each array of ladder 
operators in their representation being the normal  order45. Thus, with the help of Eq. (10), we eventually have

The dependence of Q parameters on c1 and c2 is illustrated in Fig. 7. From Fig. 7A,B, we confirm that Qâ for non-
static states is larger than 0 and it increases as c1 or c2 grows. Figure 7C shows that the value of the Q parameter 
is much higher when both c1 and c2 are large. Interestingly, the Q parameter does not vary over time although 
it is represented in terms of the sinusoidal-like time function f(t). There are also many systems in which the Q 
parameter depends on  time38–40. The Q parameter reduces to 0 in the standard-coherent-state limit ( c1 = c2 = 1 ) 
as expected.

Since Qâ > 0 unless c1 = c2 = 1 , the nonstatic state considered here is described by super-Poissonian sta-
tistics. Other systems in which the photon distribution is governed by super-Poissonian statistics are found in 
Refs.41–44. While it is possible to attain photon bunching via the super-Poissonian distribution of photons, the 
noise in the associated photo-count is higher than the one for the standard coherent  state45. Strong electromag-
netic fields with enhanced photon bunching is important for controlling multiexciton processes in core-shell 
 nanocrystals41 and intensity correlations in EIT (Electromagnetically Induced Transparency)  media42.

Conclusion
The quantum mechanical behavior of a nonstatic light wave in the coherent state has been analyzed. A generalized 
annihilation operator was introduced and its eigenfunction which plays the wave function of light was derived. 
We confirmed that the modification in the evolution pattern of the probability density reflects the details of the 
wave nonstaticity. The departure of the periodical wave evolution from that of the well-known ordinary wave 
becomes distinct as the degree of nonstaticity increases.

(40)Qâ =
[(�(â†â))A]2 − �â†â�

�â†â� ,

(41)â =µ∗Â− νÂ†,

(42)â† =µÂ† − ν∗Â.

(43)�â†â� =(|µ|2 + |ν|2)|A|2 − µνA∗2 − µ∗ν∗A2 + |ν|2,

(44)
[(�(â†â))A]

2 =(|µ|4 + 6|µ|2|ν|2 + |ν|4)|A|2 − 2(|µ|2 + |ν|2)(µνA∗2 + µ∗ν∗A2)

+ 2|µ|2|ν|2.

Figure 7.  Mandel’s parameter Qâ versus t for several different values of c1 (A), c2 (B), and c1 and c2 (C). We have 
used c2 = 1 for A, c1 = 1 for B, ω = 1 , A0 = 1 , t0 = 0 , and ϕ = θ = 0.
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The amplitude of the wave collapses and expands in turn as a manifestation of its nonstaticity like the behav-
ior of the Fock-state nonstatic waves. A node takes place in the graphic of wave evolution in quadrature space 
whenever the wave passes through q = 0 , whereas a belly takes place whenever the displacement of the wave is 
instantaneously largest. In fact, the instants of time where a node (or a belly) occurs are the same as those in the 
Fock states. The wave in conjugate p-quadrature space also exhibits similar pattern of nonstaticity, but the phase 
of its evolution precedes π/2 compared to that of the q-space wave.

The electric and magnetic energies of the wave also vary according to the characteristics of nonstaticity in the 
evolution of the wave. The electric energy is largest at the nodes, whereas the magnetic energy is largest at the 
bellies. However, the total wave energy does not vary over time, leading energy being conserved even if the wave 
exhibits nonstaticity. The fluctuations of quadratures q and p also exhibit periodic behaviors due to nonstaticity 
of the wave. (�q)A is largest at bellies and (�p)A is largest at nodes, while the corresponding uncertainty product 
(�q)A(�p)A is in contrast smallest at both bellies and nodes.

We have confirmed that the above characteristics of wave nonstaticity in the coherent state can be explained 
by means of the analysis of the Wigner distribution function. As the wave becomes nonstatic, the contour of the 
Wigner distribution function in its phase-space plot exhibits squeezing and rotates clockwise with respect to its 
center. This rotation is responsible for various effects of the wave nonstaticity. We also confirmed that the Mandel’s 
Q parameter for the nonstatic wave is larger than unity. From this, the wave follows super-Poissonian statistics.

Methods

Methods summary. To describe the nonstaticity of a light wave, we introduce an invariant operator that 
obeys the Liouville von-Neumann equation. The invariant operator is expressed in terms of generalized annihi-
lation and creation operators ( Â and Â† ). By solving the eigenvalue equation of Â , we establish a coherent state 
that exhibits the characteristic of nonstaticity. Based on the wave function in this state, we investigate light wave 
nonstaticity. The quantum energy, quadrature fluctuations, the Wigner distribution function, and Mandel’s Q 
parameter in the nonstatic coherent state are derived using the wave function.

Wave functions in the Fock states. Fock-state wave functions with nonstaticity are given  by21

where �q|�n(t)� are eigenfunctions of Î (given in Eq. (2) or in Eq. (7)) and γn(t) wave phases, of which formulae 
are of the form

while Hn are nth order Hermite polynomials.

The eigenfunction in p‑quadrature space. The eigenfunction in p-quadrature is easily evaluated from 
Eq. (25) and it results in
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2ζ�2[1− iḟ (t)/(2ω)]
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